196
Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 1 / 17

Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test

Lecture 20Section 10.7 Improper Integrals

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 1 / 17

Page 2: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 3: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 4: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 5: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 6: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 7: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 8: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 9: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 10: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 11: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 12: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 13: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 14: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 15: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 16: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 17: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 18: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What are Improper Integrals?∫ ∞

1

1

x2dx =?,

∫ 1

0

1

x2dx =?

Known:

∫ b

af (x) dx =

∫ b

a

1

x2dx =

[−1

x

]b

a

=1

a− 1

b, 0 < a < b,

the interval of integration [a, b], 0 < a < b, is bounded,

the function being integrated f (x) = 1x2 is bounded over [a, b].

By a limit process, we can extend the integration process to

unbounded intervals (e.g., [1,∞)):∫ ∞

1

1

x2dx = lim

b→∞

∫ b

1

1

x2dx = lim

b→∞

(1

1− 1

b

)= 1

unbounded functions (e.g., as x → 0+, f (x) = 1x2 →∞):∫ 1

0

1

x2dx = lim

a→0+

∫ 1

a

1

x2dx = lim

a→0+

(1

a− 1

1

)= ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 2 / 17

Page 19: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 20: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 21: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 22: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 23: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 24: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 25: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 26: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 27: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 28: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 29: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 30: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 31: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 32: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals Over Unbounded Intervals

Let f be continuous on [a,∞).We define∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If limb→∞

f (x) 6= 0, then

∫ ∞

af (x) dx diverges.

If f is continuous on (−∞, b],

∫ b

−∞f (x) dx = lim

a→−∞

∫ b

af (x) dx .

If f is cont. on (−∞,∞),

∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 3 / 17

Page 33: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx = lim

b→∞

(F (x)|ba

)= lim

b→∞F (b)−F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 34: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx = lim

b→∞

(F (x)|ba

)= lim

b→∞F (b)−F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 35: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx = lim

b→∞

(F (x)|ba

)= lim

b→∞F (b)−F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 36: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx = lim

b→∞

(F (x)|ba

)= lim

b→∞F (b)−F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 37: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx = lim

b→∞

(F (x)|ba

)= lim

b→∞F (b)−F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 38: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = lim

b→∞

∫ b

af (x) dx = lim

b→∞

(F (x)|ba

)= lim

b→∞F (b)−F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 39: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 40: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 41: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 42: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 43: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 44: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 45: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 46: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx =

∫ 0

−∞f (x) dx +

∫ ∞

0f (x) dx

=

(F (0)− lim

x→−∞F (x)

)+

(lim

x→∞F (x)− F (0)

)Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 47: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ≥ a. Then∫ ∞

af (x) dx = F (x)

∣∣∞a

= limx→∞

F (x)− F (a)

Let f (x) = F ′(x) for ∀x ≤ b. Then∫ b

−∞f (x) dx = F (x)

∣∣b−∞ = F (b)− lim

x→−∞F (x)

Let f (x) = F ′(x) for ∀x . Then∫ ∞

−∞f (x) dx = F (x)

∣∣∞−∞ = lim

x→∞F (x)− lim

x→−∞F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 4 / 17

Page 48: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 49: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 50: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 51: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 52: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 53: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 54: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 55: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 56: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 57: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 58: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 59: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 60: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 61: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 62: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 63: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 64: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 65: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

1

1

x3dx = − 2

x2

∣∣∣∣∞1

= limx→∞

(− 2

x2

)− (−2) = 2

∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

∫ ∞

0e−2x dx = −e−2x

2

∣∣∣∣∞0

= limx→∞

(−e−2x

2

)−

(−1

2

)=

1

2∫ ∞

−∞

c

c2 + x2dx = tan−1

(x

c

)∣∣∣∞−∞

= limx→∞

(tan−1

(x

c

))− lim

x→−∞

(tan−1

(x

c

))=

π

2−

(−π

2

)= π

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 5 / 17

Page 66: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 67: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 68: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 69: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 70: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 71: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 72: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 73: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 74: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 75: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 76: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 77: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 78: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 79: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx = lim

b→∞

∫ b

−b

2x

1 + x2dx = lim

b→∞

(ln(1 + x2)

∣∣b−b

)= lim

b→∞

(ln(1 + b2)− ln(1 + (−b)2)

)= lim

b→∞(0) = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 80: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx 6= lim

b→∞

∫ b

−b

2x

1 + x2dx = 0

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 81: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx 6= lim

b→∞

∫ b

−b

2x

1 + x2dx = 0∫ ∞

0

2x

1 + x2dx = ln(1 + x2)

∣∣∞0

= limx→∞

ln(1 + x2)− ln 1 = ∞

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 82: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx 6= lim

b→∞

∫ b

−b

2x

1 + x2dx = 0∫ ∞

0

2x

1 + x2dx = ln(1 + x2)

∣∣∞0

= limx→∞

ln(1 + x2)− ln 1 = ∞

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 83: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx 6= lim

b→∞

∫ b

−b

2x

1 + x2dx = 0∫ ∞

0

2x

1 + x2dx = ln(1 + x2)

∣∣∞0

= limx→∞

ln(1 + x2)− ln 1 = ∞

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 84: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ ∞

−∞

2x

1 + x2dx 6= lim

b→∞

∫ b

−b

2x

1 + x2dx = 0∫ ∞

0

2x

1 + x2dx = ln(1 + x2)

∣∣∞0

= limx→∞

ln(1 + x2)− ln 1 = ∞

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 85: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?

∞ =

∫ ∞

−∞

2x

1 + x2dx 6= lim

b→∞

∫ b

−b

2x

1 + x2dx = 0∫ ∞

0

2x

1 + x2dx = ln(1 + x2)

∣∣∞0

= limx→∞

ln(1 + x2)− ln 1 = ∞

Note that we did not define

∫ ∞

−∞f (x) dx as lim

b→∞

∫ b

−bf (x) dx .∫ ∞

−∞f (x) dx = L ⇒ lim

b→∞

∫ b

−bf (x) dx = L

limb→∞

∫ b

−bf (x) dx = L ;

∫ ∞

−∞f (x) dx = L

For every odd function f , we have limb→∞

∫ b

−bf (x) dx = 0;

but this is certainly not the case for

∫ ∞

−∞f (x) dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 6 / 17

Page 86: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 87: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 88: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 89: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 90: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 91: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 92: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 93: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 94: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 95: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 96: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 97: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 98: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫∞1

1xα dx , α > 0

∫ ∞

1

1

xαdx =

1

α− 1, if α > 1,

∞, if α ≤ 1.

If α 6= 1, then∫ ∞

1

1

xαdx =

1

1− αx1−α

∣∣∣∣∞1

=1

1− αlim

x→∞x1−α − 1

1− α

=

{1

α−1 , if α > 1,

∞, if α < 1.

If α = 1, then∫ ∞

1

1

xdx = ln x |∞1 = lim

x→∞(ln x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 7 / 17

Page 99: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Quiz

Quiz

1. Find limx→∞

x2

ex

(a) 0, (b) 1, (c) ∞.

2. Find limx→∞

x

ln x(a) 0, (b) 1, (c) ∞.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 8 / 17

Page 100: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 101: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 102: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 103: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 104: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 105: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 106: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 107: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 108: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 109: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 110: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 111: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 112: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 113: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Integrals of Unbounded Functions

Let f be continuous on [a, b), but f (x) → ±∞as x → b−. We define∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx

The improper integral converges if the limit exists.The improper integral diverges if the limit doesn’t exist.

If f is continuous on (a, b], but f (x) → ±∞ as x → a+.,∫ b

af (x) dx = lim

c→a+

∫ b

cf (x) dx .

If f is cont. on [a, b], except at some point c in (a, b) wheref (x) → ±∞ as x → c− or x → c+,∫ b

af (x) dx =

∫ c

af (x) dx +

∫ b

cf (x) dx

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 9 / 17

Page 114: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx = lim

c→b−(F (x)|ca) = lim

c→b−F (c)−F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 115: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx = lim

c→b−(F (x)|ca) = lim

c→b−F (c)−F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 116: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx = lim

c→b−(F (x)|ca) = lim

c→b−F (c)−F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 117: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx = lim

c→b−(F (x)|ca) = lim

c→b−F (c)−F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 118: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx = lim

c→b−(F (x)|ca) = lim

c→b−F (c)−F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 119: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then∫ b

af (x) dx = lim

c→b−

∫ c

af (x) dx = lim

c→b−(F (x)|ca) = lim

c→b−F (c)−F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 120: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then ∫ b

af (x) dx = F (x)

∣∣ba

= limx→b−

F (x)− F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 121: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then ∫ b

af (x) dx = F (x)

∣∣ba

= limx→b−

F (x)− F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 122: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then ∫ b

af (x) dx = F (x)

∣∣ba

= limx→b−

F (x)− F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 123: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then ∫ b

af (x) dx = F (x)

∣∣ba

= limx→b−

F (x)− F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 124: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Fundamental Theorem of Integral Calculus

Let f (x) = F ′(x) for ∀x ∈ [a, b) and f (x) → ±∞ as x → b−.Then ∫ b

af (x) dx = F (x)

∣∣ba

= limx→b−

F (x)− F (a)

If limx→b−

F (x) = ±∞, then

∫ b

af (x) dx diverges.

Let f (x) = F ′(x) for ∀x ∈ (a, b] and f (x) → ±∞ as x → a+.Then ∫ b

af (x) dx = F (x)

∣∣ba

= F (b)− limx→a+

F (x)

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 10 / 17

Page 125: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 126: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 127: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 128: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 129: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 130: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 131: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 132: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 133: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 134: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 135: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 136: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 137: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 138: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ 1

0

1

x1/3dx =

3

2x2/3

∣∣∣∣10

=3

2− 3

2lim

x→0+

(x2/3

)=

3

2∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

∫ π2

0tan x dx = ln sec x |

π20 = lim

x→π2−

(ln sec x)− ln 1 = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 11 / 17

Page 139: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 140: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 141: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 142: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 143: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 144: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 145: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 146: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 147: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 148: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 149: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 150: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 151: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 152: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 153: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Examples

∫ ∞

0

e−x

√1− e−2x

dx =

∫ 0

1

−du√1− u2

=

∫ 1

0

1√1− u2

du

= sin−1 u∣∣10

2

Set u = e−x , then du = −e−x dx and u2 = e−2x .

∫ π3

0

sin x√2 cos x − 1

dx =

∫ 0

1

−12du√

u=

1

2

∫ 1

0

1√u

du

=1

4

√u∣∣10

=1

4

Set u = 2 cos x − 1, then du = −2 sin x dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 12 / 17

Page 154: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 155: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 156: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 157: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 158: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 159: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 160: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 161: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 162: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx 6= − 1

x − 2

∣∣∣∣41

= −3

2

= − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 163: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx 6= − 1

x − 2

∣∣∣∣41

= −3

2∫ 2

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 164: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx 6= − 1

x − 2

∣∣∣∣41

= −3

2∫ 2

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 165: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx 6= − 1

x − 2

∣∣∣∣41

= −3

2∫ 2

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 166: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?∫ 4

1

1

(x − 2)2dx 6= − 1

x − 2

∣∣∣∣41

= −3

2∫ 2

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 167: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

What is Wrong with This?

What is wrong with the following argument?

∞ =

∫ 4

1

1

(x − 2)2dx 6= − 1

x − 2

∣∣∣∣41

= −3

2∫ 2

1

1

(x − 2)2dx = − 1

x − 2

∣∣∣∣21

= limx→2−

(− 1

x − 2

)− 1 = ∞

Note that 1(x−2)2

→∞ as x → 2− or

x → 2+. To evaluate

∫ 4

1

1

(x − 2)2dx we

need to calculate the improper integrals∫ 2

1

1

(x − 2)2dx and

∫ 4

2

1

(x − 2)2dx .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 13 / 17

Page 168: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 169: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 170: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 171: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 172: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 173: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 174: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 175: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 176: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 177: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 178: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 179: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 180: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions∫ 1

01xα dx , α > 0

∫ 1

0

1

xαdx =

1

1− α, if α < 1,

∞, if α ≥ 1.

If α 6= 1, then∫ 1

0

1

xαdx =

1

1− αx1−α

∣∣∣∣10

=1

1− α− 1

1− αlim

x→0+x1−α

=

{1

1−α , if α < 1,

∞, if α > 1.

If α = 1, then∫ 1

0

1

xdx = ln x |10 = ln 1− lim

x→0+(ln x) = ∞

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 14 / 17

Page 181: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Unbounded Intervals Unbounded Functions

Quiz

Quiz

3. Find limx→∞

x sin1

x(a) 0, (b) 1, (c) ∞.

4. Find limx→0+

x

ex

(a) 0, (b) 1, (c) ∞.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 15 / 17

Page 182: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 183: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 184: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 185: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 186: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 187: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 188: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 189: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 190: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 191: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 192: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x3

dx converges since

0 ≤ 1√1 + x3

<1√x3

, ∀x ≥ 1 and

∫ ∞

1

1√x3

dx converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 193: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x2

dx diverges since

0 ≤ 1

1 + x<

1√1 + x2

, ∀x ≥ 1 and

∫ ∞

1

1

1 + xdx diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 194: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x2

dx diverges since

0 ≤ 1

1 + x<

1√1 + x2

, ∀x ≥ 1 and

∫ ∞

1

1

1 + xdx diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 195: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Comparison Test for Convergence

Let

∫I

be improper integration over an

interval I , and suppose that f and g arecontinuous on I such that

0 ≤ f (x) ≤ g(x), ∀x ∈ I

If

∫Ig(x) dx converges, then so does

∫If (x) dx .

If

∫If (x) dx diverges, then so does

∫Ig(x) dx .

The improper integral

∫ ∞

1

1√1 + x2

dx diverges since

0 ≤ 1

1 + x<

1√1 + x2

, ∀x ≥ 1 and

∫ ∞

1

1

1 + xdx diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 16 / 17

Page 196: Improper Integrals Comparison Test - UHjiwenhe/Math1432/lectures/lecture20.pdf · Improper Integrals Comparison Test Lecture 20 Section 10.7 Improper Integrals Jiwen He Department

Improper Integrals Comparison Test Comparison Test

Outline

Improper IntegralsIntegrals Over Unbounded IntervalsIntegrals of Unbounded Functions

Comparison Test for ConvergenceComparison Test for Convergence

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 20 March 27, 2008 17 / 17