17
Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Embed Size (px)

DESCRIPTION

metal vacuum n imaginary imaginary Surface plasmons Cannot be excited directly and only with E in plane of incidence (TM)

Citation preview

Page 1: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Hybrid states of Tamm plasmons and exciton-polaritons

M Kaliteevski, S Brand, R A Abram, I Iorsh,A V Kavokin, T C H Liew and I A Shelykh

Page 2: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Plan

Tamm plasmons

Coupling Tamm plasmonsand exciton-polaritons

Controlling exciton-polaritons

Page 3: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

22

21 pn

metal

vacuum

p n imaginary

k imaginary

imaginaryk

Surface plasmons

ck /||

Cannot be excited directly and only with E in plane of incidence (TM)

Page 4: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Surface plasmon dispersion

Page 5: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

22

21 pn

metal

Braggreflector

p n imaginary

k imaginary

imaginaryk

Tamm plasmons

even with BR

0|| kCan be excited at normal and oblique incidence (TE and TM)

Page 6: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

if high index layercomes first

1leftr1rightr

Page 7: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Field profile for Tamm plasmons

Page 8: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Field intensity profile for cavity photons

Page 9: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

...

QWCAVITY

rM rR

CL

Au

r

t

r

Resonant coupling of Tamm plasmons and exciton-polaritons

Page 10: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

(a)

(b)

(c)

E l

e c

t r

i c

f

i e

l d

Page 11: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

0 00

C C X C TP

C X X

C TP TP

2 2 and C TP C X

Hybrid modesThree oscillator model

Lowest hybrid mode is lower in energy thanexciton-polariton by

2 2C TP C X C X

When C X TP

Page 12: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

20 25 30 35 40 45 50 55 601.52

1.53

1.54

1.55

1.56

28 30 32 34 36 381.52

1.53

1.54

1.55

1.56

1.57

1.58

Layer thickness (nm)

Layer thickness (nm)

(a)

(b)

Ener

gy (e

V)

Ener

gy (e

V)

Real part of energy of the hybrid modes versus width of the semiconductor layer adjacent to the gold

Real part of energy of the hybrid modes versus thickness of the gold layer. Vertical bars give the imaginary parts of energy

Page 13: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

0 1 2 3 4 5 61.53

1.54

1.55

1.56

1.57

Ener

gy (e

V)

K (m-1)

In-plane dispersion curves of hybrid modes for 50 nm film of gold:solid TE, dashed TM

Page 14: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

20 25 30 35 40 45 50 55 601.52

1.53

1.54

1.55

1.56

28 30 32 34 36 381.52

1.53

1.54

1.55

1.56

1.57

1.58

Layer thickness (nm)

Layer thickness (nm)

(a)

(b)En

ergy

(eV

)En

ergy

(eV

)

Using surface metallization for lateral spatial control of exciton-polaritons

Illuminate at a photon energy just above the lowest mode - excitations only created where there is metal

Page 15: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Pump detuning

Using the Stark effect and polariton bistability

Reduce detuning in one segment by Stark effect – local state goes from lower red to green

Diffusion into adjacent segment– local state goes from green to upper red

Page 16: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Conclusions

Technologically straightforward process of surface metallization makes it possible to have Tamm plasmons in planar microcavity structures

Strong coupling of Tamm plasmons and exciton-polaritons is possible

Effect can be used to provide spatial control of exciton-polaritons

Page 17: Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh

Acknowledgements

Valuable discussions with T. Ostatnický

EU FP7 funding through the POLALAS (230811) and Clermont4 (235114) projects

NCCR Quantum Photonics, Swiss National Science Foundation

Center of Excellence in Polaritonics, funded by RANNIS