11
Computational Vision U. Minn. Psy 5036 Daniel Kersten Lecture 19: MotionII http://vision.psych.umn.edu/www/kersten-lab/courses/Psy5036/SyllabusF2000.html) Initialize Off@General::spell1D; << Graphics` Outline Last time • Early motion measurement--types of models correlation gradient feature tracking •Functional goals of motion measurements • Optic flow Cost function (or energy) descent model A posteriori and a priori constraints Gradient descent algorithms Computer vs. human vision and optic flow -- area vs. contour Today Motion phenomena Neither the area-based nor the contour-based algorithms we've seen can account for the range of human motion phenomena or psychophysical data that we now have. Look at human motion perception Local measurements Representing motion, Orientation in space-time Fourier representation and sampling Optic flow, the gradient constraint, aperture problem Neural systems solutions to the problem of motion measurement. Space-time oriented receptive fields Global integration Sketch a Bayesian formulation--the integrating uncertain local measurements with the right priors can be used to model a variety of human motion results. Human motion perception Demo: area-based vs. contour-based models Last time we asked: Are the representation, constraints, and algorithm a good model of human motion perception? The answer seems to be "no". The representation of the input is probably wrong. Human observers seem to give more weight to contour movement than to intensity flow. Human perception of the sequence illustrated below differs from "area-based" models of optic flow such as the above Horn and Schunck algorithm. The two curves below would give a maximum correlation at zero--hence zero predicted velocity. Human observers see the contour move from left to right-- because the contours are stronger features than the gray-levels. However we will see in Adelson's missing fundamental illusion that the story is not as simple as a mere "tracking of edges" --and we will return to spatial frequency channels to account for the human visual system's motion measurements 2 19.MotionII.nb

Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

Com

puta

tiona

l Vis

ion

U. M

inn.

Psy

503

6D

anie

l Ker

sten

Lect

ure

19: M

otio

nII

http

://vi

sion

.psy

ch.u

mn.

edu/

ww

w/k

erst

en-la

b/co

urse

s/P

sy50

36/S

ylla

busF

2000

.htm

l)

Init

ializ

e

Off@General::spell1D;

<<Graphics`

Ou

tlin

e

Las

t ti

me

• E

arly

mot

ion

mea

sure

men

t--t

ypes

of

mod

els

corr

elat

ion

grad

ient

feat

ure

trac

king

•Fun

ctio

nal

goal

s of

mot

ion

mea

sure

men

ts

• O

ptic

flo

w

Cos

t fun

ctio

n (o

r en

ergy

) de

scen

t mod

el

A p

oste

rior

i and

a p

rior

i con

stra

ints

Gra

dien

t des

cent

alg

orith

ms

Com

pute

r vs

. hum

an v

isio

n an

d op

tic f

low

-- a

rea

vs. c

onto

ur

To

day

‡M

otio

n p

heno

men

a

Nei

ther

the

area

-bas

ed n

or th

e co

ntou

r-ba

sed

algo

rith

ms

we'

ve s

een

can

acco

unt f

or th

e ra

nge

of h

uman

mot

ion

phen

omen

a or

psy

chop

hysi

cal d

ata

that

we

now

hav

e.

Loo

k at

hum

an m

otio

n pe

rcep

tion

‡L

ocal

mea

sure

men

ts

Rep

rese

ntin

g m

otio

n, O

rien

tatio

n in

spa

ce-t

ime

Four

ier

repr

esen

tatio

n an

d sa

mpl

ing

Opt

ic f

low

, the

gra

dien

t con

stra

int,

aper

ture

pro

blem

Neu

ral s

yste

ms

solu

tions

to th

e pr

oble

m o

f m

otio

n m

easu

rem

ent.

Spac

e-tim

e or

ient

ed r

ecep

tive

fiel

ds

‡G

loba

l int

egra

tion

Sket

ch a

Bay

esia

n fo

rmul

atio

n--t

he in

tegr

atin

g un

cert

ain

loca

l mea

sure

men

ts w

ith th

e ri

ght p

rior

s ca

n be

use

d to

mod

el a

va

riet

y of

hum

an m

otio

n re

sults

.

Hu

man

mo

tio

n p

erce

pti

on

Dem

o:

are

a-b

ased

vs.

co

nto

ur-

bas

ed m

od

els

Las

t tim

e w

e as

ked:

Are

the

repr

esen

tatio

n, c

onst

rain

ts, a

nd a

lgor

ithm

a g

ood

mod

el o

f hu

man

mot

ion

perc

eptio

n?

The

ans

wer

see

ms

to b

e "n

o". T

he r

epre

sent

atio

n of

the

inpu

t is

prob

ably

wro

ng. H

uman

obs

erve

rs s

eem

to g

ive

mor

e w

eigh

t to

cont

our

mov

emen

t tha

n to

inte

nsity

flo

w. H

uman

per

cept

ion

of th

e se

quen

ce il

lust

rate

d be

low

dif

fers

fro

m

"are

a-ba

sed"

mod

els

of o

ptic

flo

w s

uch

as th

e ab

ove

Hor

n an

d Sc

hunc

k al

gori

thm

. The

two

curv

es b

elow

wou

ld g

ive

a m

axim

um c

orre

latio

n at

zer

o--h

ence

zer

o pr

edic

ted

velo

city

. Hum

an o

bser

vers

see

the

cont

our

mov

e fr

om le

ft to

rig

ht--

beca

use

the

cont

ours

are

str

onge

r fe

atur

es th

an th

e gr

ay-l

evel

s. H

owev

er w

e w

ill s

ee in

Ade

lson

's m

issi

ng f

unda

men

tal

illus

ion

that

the

stor

y is

not

as

sim

ple

as a

mer

e "t

rack

ing

of e

dges

" --

and

we

will

ret

urn

to s

patia

l fre

quen

cy c

hann

els

to

acco

unt f

or th

e hu

man

vis

ual s

yste

m's

mot

ion

mea

sure

men

ts

219.MotionII.nb

Page 2: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

size = 120;

Clear[y];

low = 0.2; hi = .75;

y[x_] := hi /; x<1

y[x_] := .5 Exp[-(x-1)^2]+.1 /; x >= 1

ylist = Table[y[i],{i,0,3,3/255.}];

width = Dimensions[ylist][[1]];

Let

's m

ake

a 2D

gra

y-le

vel p

ictu

re d

ispl

ayed

with

Lis

tDen

sity

Plo

t to

exp

erie

nce

the

Mac

h ba

nds

for

ours

elve

s. P

lotR

ange

al

low

s us

to s

cale

the

brig

htne

ss.

picture1 = Table[ylist,{i,1,width/2}];

picture2 = .9 - Transpose[Reverse[Transpose[picture1]]];

g1 = ListPlot[picture1[[size/2]],DisplayFunction->Identity,PlotStyle-

>{Hue[.3]}];

g2 = ListPlot[picture2[[size/2]],DisplayFunction->Identity,PlotStyle-

>{Hue[.6]}];

Show[g1,g2,DisplayFunction->$DisplayFunction];

50

100

150

200

250

0.2

0.4

0.6

0.8

ListDensityPlot[picture1,Frame->False,Mesh->False,

PlotRange->{0,1}, AspectRatio->Automatic];

ListDensityPlot[picture2,Frame->False,Mesh->False,

PlotRange->{0,1}, AspectRatio->Automatic];

19.MotionII.nb

3

Ap

ertu

re e

ffec

ts

niter = 8; width = 64;

theta1 = Pi/4.; contrast1 = 0.5;

freq1 = 4.; period1 = 1/freq1;

stepx1 = Cos[theta1]*(period1/niter); stepy1 = Sin[theta1]*(period1/niter);

grating[x_,y_,freq_,theta_] := Cos[(2. Pi freq)*(Cos[theta]*x +

Sin[theta]*y)];

‡C

ircu

lar

aper

ture

For[i=1,i<niter + 1,i++,

DensityPlot[If[(x-0.5)^2+(y-0.5)^2<0.3^2,grating[x+i*stepx1,y+i*stepy1,freq

1,theta1],0],{x,0,1},{y,0,1},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];

];

‡Sq

uare

ape

rtur

e

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1],{x,0,1},{y,0,1},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];

];

Wha

t do

you

see

at th

e ve

rtic

al b

ound

arie

s? T

he h

oriz

onta

l bou

ndar

ies?

419.MotionII.nb

Page 3: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

‡R

ecta

ngul

ar h

oriz

onta

l ap

ertu

re

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1],{x,0,1},{y,0,.25},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width,

AspectRatio->Automatic];

];

‡R

ecta

ngul

ar v

erti

cal a

pert

ure

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1],{x,0,.25},{y,0,1},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width,

AspectRatio->Automatic];

];

Ad

elso

n's

mis

sin

g f

un

dam

enta

l m

oti

on

illu

sio

n

We

firs

t m

ake

a sq

uare

-wav

e gr

atin

g.

real

squa

re[x

_,y_

,pha

se_]

:=

Sig

n[Si

n[x

+ p

hase

]];

And

mak

e a

four

-fra

me

mov

ie in

whi

ch t

he g

rati

ng g

ets

prog

ress

ivel

y sh

ifte

d L

EF

T in

ste

ps o

f P

i/2. T

hat

is w

e sh

ift

the

grat

ing

left

in 9

0 de

gree

ste

ps.

For

[i=0

,i<4,

i++,

Den

sity

Plo

t[re

alsq

uare

[x,y

,i P

i/2],

{x,0

,14}

,{y,

0,1}

, Fra

me-

>Fal

se,

Mes

h->F

alse

,Plo

tPoi

nts

-> 6

0, A

xes-

>Non

e, P

lotR

ange

->{-

4,4}

]];

Now

a s

quar

e w

ave

can

be d

ecom

pose

d in

to it

s Fo

urie

r co

mpo

nent

s as

:

rea

lsqu

are(

x) =

(4/p)

*{si

n(x)

+ 1

/3 s

in(3

x) +

1/5

sin

(5x)

+ 1

/7 s

in(7

x) +

...}

19.MotionII.nb

5

Now

sub

trac

t ou

t th

e fu

ndam

enta

l fr

eque

ncy

from

the

squ

are

wav

e

...le

avin

g (4

/p)*

{1/3

sin

(3x)

+ 1

/5 s

in(5

x) +

1/7

sin

(7x)

+ ..

.}

real

mis

sing

fund

amen

tal[

x_,y

_,ph

ase_

] :=

rea

lsqu

are[

x,y,

phas

e] -

(4.

0 / P

i) S

in[x

+ p

hase

];

And

mak

e an

othe

r fo

ur-f

ram

e m

ovie

in w

hich

the

mis

sing

fun

dam

enta

l gr

atin

g ge

ts

prog

ress

ivel

y sh

ifte

d L

EF

T in

ste

ps o

f P

i/2. T

hat

is w

e sh

ift

the

grat

ing

left

in 9

0 de

gree

ste

ps.

It is

wel

l-kn

own

that

a lo

w c

ontr

ast s

quar

e w

ave

with

a m

issi

ng f

unda

men

tal s

imila

r to

sam

e sq

uare

wav

e (t

here

is a

pitc

h an

alog

y in

aud

ition

). O

ne r

easo

n is

that

we

are

mor

e se

nsiti

ve to

sha

rp th

an g

radu

al c

hang

es in

inte

nsity

. If

you

look

at t

he

lum

inan

ce p

rofi

le w

ith th

e m

issi

ng f

unda

men

tal,

you

wou

ld p

roba

bly

gues

s th

at th

e pe

rcei

ved

mot

ion

for

this

seq

uenc

e w

ould

app

ear

to m

ove

to th

e le

ft, a

s be

fore

. But

it d

oesn

't. S

urpr

isin

gly,

the

mis

sing

fun

dam

enta

l wav

e ap

pear

s to

mov

e to

th

e ri

ght!

For

[i=0

,i<4,

i++,

Den

sity

Plo

t[re

alm

issi

ngfu

ndam

enta

l[x,

y,i

Pi/2

],{x

,0,1

4},{

y,0,

1}, F

ram

e->F

alse

,M

esh-

>Fal

se,P

lotP

oint

s ->

60,

Axe

s->N

one,

Plo

tRan

ge->

{-4,

4}]

]

Play

the

abov

e m

ovie

. It t

ypic

ally

app

ears

to b

e m

ovin

g to

the

righ

t. Y

ou c

an g

ener

ate

mov

ies

with

dif

fere

nt c

ontr

asts

by

adju

stin

g th

e Pl

otR

ange

par

amet

ers.

In f

act

the

mis

sing

fun

dam

enta

l fr

eque

ncy

mov

es t

owar

ds t

he le

ft a

s yo

u ca

n s

ee b

y pl

ayin

g th

e m

ovie

bel

ow.

For

[i=0

,i<4,

i++,

Plo

t[Si

n[x

+ i

Pi/2

],{x

,0,1

4},

Plo

tPoi

nts

-> 6

0, A

xes-

>Non

e]];

619.MotionII.nb

Page 4: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

Wha

t in

the

sti

mul

us d

oes

mov

e to

the

rig

ht?

Why

mig

ht th

is b

e? P

roba

bly

the

best

exp

lana

tion

com

es f

rom

look

ing

at th

e do

min

ant f

requ

ency

com

pone

nt in

the

patte

rn, w

hich

is th

e 3r

d ha

rmon

ic. I

t tur

ns o

ut th

at th

e th

ird

harm

onic

is ju

mpi

ng in

1/4

cyc

le s

teps

to th

e ri

ght,

even

th

ough

the

patte

rn a

s a

who

le is

jum

ping

in 1

/4 c

ycle

ste

ps (

rela

tive

to th

e m

issi

ng f

unda

men

tal)

to th

e le

ft, a

s sh

own

in th

e fi

gure

bel

ow:

Mak

e a

mo

vie

wit

h P

lot[

] th

at s

ho

ws

the

thir

d h

arm

on

ic.

Wh

ich

way

do

es it

mo

ve?

For

[i=0

,i<4,

i++,

Plo

t[Si

n[3

(x +

i P

i/2)]

,{x,

0,14

},P

lotP

oint

s ->

60]

]

24

68

10

12

14

-1

-0.5

0.51

24

68

10

12

14

-1

-0.5

0.51

19.MotionII.nb

7

24

68

10

12

14

-1

-0.5

0.51

24

68

10

12

14

-1

-0.5

0.51

And

her

e is

the

mov

ie w

ith

jus

t th

e th

ird

har

mon

ic. W

hich

way

doe

s it

mov

e?

For

[i=0

,i<4,

i++,

Den

sity

Plo

t[Si

n[3

(x +

i P

i/2)]

,{x

,0,1

4},{

y,0,

1}, F

ram

e->F

alse

,M

esh-

>Fal

se,P

lotP

oint

s ->

60,

Axe

s->N

one,

Plo

tRan

ge->

{-4,

4}]

]

819.MotionII.nb

Page 5: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

The

mai

n co

nclu

sion

dra

wn

from

this

dem

onst

ratio

n is

that

hum

an m

otio

n m

easu

rem

ent m

echa

nism

s ar

e tu

ned

to s

patia

l fr

eque

ncy.

How

can

the

infe

rred

bio

logi

cal m

echa

nism

s be

pie

ced

toge

ther

to c

ompu

te o

ptic

flo

w?

We

can

cons

truc

t th

e fo

llow

ing

roug

h ou

tline

. (Fo

r a

rece

nt a

lgor

ithm

for

opt

ic f

low

bas

ed o

n bi

olog

ical

ly p

laus

ible

spa

tiote

mpo

ral f

ilter

s se

e H

eege

r, 1

987)

. Ass

ume

we

have

, at e

ach

spat

ial l

ocat

ion,

a c

olle

ctio

n of

filt

ers

tune

d to

var

ious

ori

enta

tions

(q)

and

spe

eds

(s)

over

a lo

cal r

egio

n. (

Alr

eady

we

run

into

pro

blem

s w

ith th

is s

impl

e in

terp

reta

tion,

bec

ause

man

y V

1 ce

lls a

re k

now

n to

be

tune

d to

spa

tial a

nd te

mpo

ral

freq

uenc

y in

suc

h a

way

that

the

spat

io-t

empo

ral

filte

r is

the

prod

uct o

f th

e sp

ace

and

time

filte

rs. T

his

mea

ns th

at th

ere

is a

fav

ored

tem

pora

l fre

quen

cy th

at is

the

sam

e ac

ross

spa

tial f

requ

enci

es, s

o th

e fi

lter

will

be

tune

d to

dif

fere

nt s

peed

s de

pend

ing

on th

e sp

atia

l fre

quen

cy).

In th

is s

chem

e, th

e op

tic f

low

mea

sure

men

ts a

re d

istr

ibut

ed a

cros

s th

e un

its, s

o if

we

wan

ted

to r

ead

off

the

velo

city

fro

m

the

patte

rn o

f ac

tivity

, we

wou

ld n

eed

som

e ad

ditio

nal p

roce

ssin

g. F

or e

xam

ple,

the

optic

flo

w c

ompo

nent

s co

uld

be

repr

esen

ted

by th

e "c

ente

rs o

f m

ass"

acr

oss

the

dist

ribu

ted

activ

ity. B

ecau

se th

ese

mea

sure

men

ts a

re lo

cal,

we

still

hav

e th

e ap

ertu

re p

robl

em. W

e w

ill lo

ok a

t pos

sibl

e bi

olog

ical

sol

utio

ns to

this

pro

blem

in th

e ne

xt le

ctur

e.

Mo

tio

n p

laid

s

Tw

o ov

erla

ppin

g (a

dditi

ve tr

ansp

aren

t) s

inus

oids

at d

iffe

rent

ori

enta

tions

and

mov

ing

in d

iffe

rent

dir

ectio

ns a

re, u

nder

ce

rtai

n co

nditi

ons

seen

as

a si

ngle

pat

tern

mov

ing

with

a v

eloc

ity c

onsi

sten

t w

ith a

n in

ters

ectio

n of

con

stra

ints

. Und

er o

ther

co

nditi

ons,

the

two

indi

vidu

al c

ompo

nent

mot

ions

are

see

n.

19.MotionII.nb

910

19.MotionII.nb

Page 6: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

Ori

enta

tio

n in

sp

ace-

tim

e

Rep

rese

nta

tio

n o

f m

oti

on

‡Mathematica

dem

o

size

=32;x0

=4;y0=4;pw

=12;xoffset

=1;

A1

=Table@Random@D,8size<,8size<D;H*A2

=A1;*L

A2=Table@Random@D,8size<,8size<D;

A2@@Range@y0,y0+pwD,Range@x0,x0+pwDDD

=A1@@Range@y0,y0+pwD,Range@x0-xoffset,x0+pw-xoffsetDDD;

ListDensityPlot@A1,MeshØFalseD;

ListDensityPlot@A2,MeshØFalseD;

05

1015202530

05

10

15

20

25

30 0

51015202530

05

10

15

20

25

30

19.MotionII.nb

11

nframes = 8;

xt = {};

For[i=0,i<nframes,i++,

A2[[Range[y0,y0+pw],Range[x0,x0+pw]]] =

A1[[Range[y0,y0+pw],Range[x0+i,x0+pw+i]]];

xt = Join[xt,{A2[[8]]}]

];

ListDensityPlot[xt, Mesh->False, Frame->False];

‡x-

y-t

spac

e

1219.MotionII.nb

Page 7: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

Neu

rop

hys

iolo

gic

al f

ilter

s

‡Sp

ace-

tim

e fi

lter

s fo

r de

tect

ing

orie

ntat

ion

in s

pace

-tim

e

From

Wan

dell,

"Fo

unda

tions

of

Vis

ion"

19.MotionII.nb

13

‡A

pos

sibl

e m

echa

nsim

for

bui

ldin

g sp

ace-

tim

e fi

lter

s fr

om t

wo

spat

ial f

ilter

s w

ith

a te

mpo

ral d

elay

‡R

elat

ions

hip

of

the

grad

ient

con

stra

int

to o

rien

ted

spac

e-ti

me

filt

ers

vL x

vL y

L tx

y

∂ ∂∂ ∂

∂ ∂+

+=

0

vL x

L tx

∂ ∂∂ ∂

+=

0

Imag

e L

(x,y

,t) -

> b

lurr

ed in

spa

ce a

nd s

mea

red

in ti

me,

g(x

,y,t)

vg x

g tx

∂ ∂∂ ∂

+=

0

1419.MotionII.nb

Page 8: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

Bay

esia

n m

od

el f

or

inte

gra

tin

g lo

cal

mo

tio

n m

easu

rem

ents

Glo

bal i

nteg

ratio

n.

19.MotionII.nb

15

Rec

all L

ore

nce

au &

Sh

iffr

ar's

dem

o

Gen

eral

pro

ble

m

Inte

rsec

tio

n o

f co

nst

rain

ts r

evis

ited

Gra

ting

plai

ds s

omet

ime

seen

as

cohe

rent

, oth

er ti

mes

as

two

over

lapp

ing

tran

spar

ent g

ratin

gs m

ovin

g se

para

tely

.

1619.MotionII.nb

Page 9: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

Wei

ss &

Ad

elso

n's

Bay

es m

od

el f

or

inte

gra

tio

n

‡P

roba

bilis

tic

inte

rpre

tati

on o

f in

ters

ecti

on o

f co

nstr

aint

s

19.MotionII.nb

17

‡P

roba

bilis

tic

inte

rpre

tati

on w

ith

nois

y m

easu

rem

ents

‡G

ener

aliz

e to

oth

er t

ypes

of

mot

ion

stim

uli

Req

uire

men

ts f

or g

ener

aliz

atoi

n:

Bas

e lik

elih

oods

on

actu

al im

age

data

spat

iote

mpo

ral

mea

sure

men

ts

Incl

ude

“2D

” fe

atur

es

E.g

. cor

ners

Rig

id r

otat

ions

, non

-rig

id d

efor

mat

ions

Stag

e 1:

loca

l lik

elih

oods

Stag

e 2:

Bay

esia

n co

mbi

natio

n

- Pr

ior

slow

ness

--

wag

on w

heel

exa

mpl

e, q

uart

et e

xam

ple

smoo

thne

ss -

e.g

. tra

nsla

ting

rigi

d ci

rcle

1819.MotionII.nb

Page 10: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

‡O

verv

iew

of

Wei

ss &

Ade

lson

the

ory

19.MotionII.nb

19

Tes

ts o

f th

eory

‡R

hom

bus

expe

rim

ent

‡A

pert

ure

effe

cts

2019.MotionII.nb

Page 11: Human motion perception - Vision Labsvision.psych.umn.edu/.../19.MotionII.nb.pdf · Look at human motion perception ‡ Local measurements Representing motion, Orientation in space-time

‡P

laid

s

19.MotionII.nb

21

From

Wei

ss a

nd A

dels

on, 1

998.

Typ

e I

and

I pl

aids

. (Y

o an

d W

ilson

, 199

2)

Ap

pen

dic

es

Ref

eren

ces

Bar

low

, H. B

., &

Lev

ick,

R. W

. (19

65).

The

Mec

hani

sm o

f D

irec

tiona

l Sel

ectiv

ity

in th

e R

abbi

t's R

etin

a. J

ourn

al

of P

hysi

olog

y, 1

73, 4

77-5

04.

Bar

low

, H. (

1996

). I

ntra

neur

onal

info

rmat

ion

proc

essi

ng, d

irec

tiona

l se

lect

ivity

and

mem

ory

for

spat

io-t

empo

ral

sequ

ence

s.

Net

wor

k: C

ompu

tatio

n in

Neu

ralS

yste

ms,

7, 2

51-2

59.

Bra

ddic

k, O

. J. (

1974

). A

sho

rt-r

ange

pro

cess

in a

ppar

ent m

otio

n. V

isio

n R

esea

rch,

14,

519

-527

.

Has

sens

tein

, B.,

& R

eich

ardt

, W. (

1956

). F

unct

iona

l St

ruct

ure

of a

Mec

hani

sm o

f Pe

rcep

tion

of O

ptic

al M

ove-

men

t. Pr

ocee

ding

s Fi

rst I

nter

natio

nal

Con

gres

s on

Cyb

erne

tics,

797

-801

.

He,

S.,

& M

asla

nd, R

. H. (

1997

). R

etin

al d

irec

tion

sele

ctiv

ity a

fter

targ

eted

lase

r ab

latio

n of

sta

rbur

st a

mac

rine

cel

ls.

Nat

ure,

389

(664

9), 3

78-8

2.

Hild

reth

, E. C

. (19

84).

The

Mea

sure

men

t of

Vis

ual M

otio

n. C

ambr

idge

, MA

: MIT

Pre

ss.

Van

San

ten,

J. P

. H.,

& S

perl

ing,

G. (

1985

). E

labo

rate

d R

eich

ardt

Det

ecto

rs. J

ourn

al o

f th

e O

ptic

al S

ocie

ty o

f A

mer

ica,

2(

7), 3

00-3

21.

Ade

lson

, E. H

., &

Ber

gen,

J. R

. (19

85).

Spa

tiote

mpo

ral E

nerg

y M

odel

s fo

r th

e Pe

rcep

tion

of M

otio

n. J

ourn

al o

f th

e O

ptic

al

Soci

ety

of A

mer

ica,

2(2

), 2

84-2

99.

Koc

h, C

., T

orre

, V.,

& P

oggi

o, T

. (19

86).

Com

puta

tions

in th

e V

erte

brat

e R

etin

a: M

otio

n D

iscr

imin

atio

n G

ain

Enh

ance

-m

ent a

nd D

iffe

rent

iatio

n. T

rend

s in

Neu

rosc

ienc

e, 9

(5),

204

-211

.

Yui

lle, A

., &

Grz

ywac

z, N

. (19

88).

A c

ompu

tatio

nal t

heor

y fo

r th

e pe

rcep

tion

of c

oher

ent v

isua

l mot

ion.

Nat

ure,

333

, 71-

74.

J.A

. Mov

shon

, E.H

. Ade

lson

, M.S

. Giz

zi a

nd W

.T. N

ewso

me.

198

6. T

he a

naly

sis

of m

ovin

g vi

sual

pat

tern

s.

Wei

ss, Y

., &

Ade

lson

, E. H

. (19

98).

Slo

w a

nd s

moo

th: a

Bay

esia

n th

eory

for

the

com

bina

tion

of lo

cal m

otio

n si

gnal

s in

hu

man

vis

ion

(A.I

. Mem

o N

o. 1

624)

. M.I

.T.

© 2

000

Dan

iel

Ker

sten

, C

ompu

tatio

nal

Vis

ion

Lab

, D

epar

tmen

t of

Psy

chol

ogy,

Uni

vers

ity o

f M

inne

sota

. (

http

://vi

sion

.psy

ch.u

mn.

edu/

ww

w/k

erst

en-la

b/ke

rste

n-la

b.ht

ml)

2219.MotionII.nb