97
0 16.01.2020 - University of Stuttgart Dominic Scheider - University of Stuttgart How to construct Breather Solutions using Nonlinear Helmholtz Systems Dominic Scheider KIT – The Research University in the Helmholtz Association www.kit.edu

How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

  • Upload
    others

  • View
    30

  • Download
    0

Embed Size (px)

Citation preview

0 16.01.2020 - University of Stuttgart Dominic Scheider-

University of Stuttgart

How to construct Breather Solutionsusing Nonlinear Helmholtz Systems

Dominic Scheider

KIT – The Research University in the Helmholtz Association www.kit.edu

Outline

1 16.01.2020 - University of Stuttgart Dominic Scheider-

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

∂2tU − ∆U +m2U = U3 on R×R3

3 Breather solutions for the nonlinear Wave Equation

∂2tU − ∆U = |U |p−2U on R×RN

Breather solutions

2 16.01.2020 - University of Stuttgart Dominic Scheider-

The Sine-Gordon Breather

∂2tU − ∂2

xU + sin(U) = 0 on R×R

. Ablowitz et al. 1973:

U(t, x) = 4 arctan

(√1−ω2

ω

cos(ω(t − t0))

cosh(√1−ω2(x − x0))

).

. Kichenassamy 1991, Weinstein et al. 1994: Rigidity.

“breathing takes place only for isolated nonlinearities”

Breather solutions

2 16.01.2020 - University of Stuttgart Dominic Scheider-

The Sine-Gordon Breather

∂2tU − ∂2

xU + sin(U) = 0 on R×R

. Ablowitz et al. 1973:

U(t, x) = 4 arctan

(√1−ω2

ω

cos(ω(t − t0))

cosh(√1−ω2(x − x0))

).

. Kichenassamy 1991, Weinstein et al. 1994: Rigidity.

“breathing takes place only for isolated nonlinearities”

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Breather solutions

4 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (2/3)

V (x)∂2tU − ∂2

xU + q(x)U = Γ(x)|U |p−2U on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019:

Assumptions:V (x) ∼ q(x) specific periodic delta / step / Hr potentials;2 < p < p∗(V ).

Methods:Variational approach (Nehari manifold).

Result:Existence of (possibly large) time-periodic ground state solutions.

Breather solutions

4 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (2/3)

V (x)∂2tU − ∂2

xU + q(x)U = Γ(x)|U |p−2U on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019:

Assumptions:V (x) ∼ q(x) specific periodic delta / step / Hr potentials;2 < p < p∗(V ).

Methods:Variational approach (Nehari manifold).

Result:Existence of (possibly large) time-periodic ground state solutions.

Breather solutions

5 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (3/3)

V (x)∂2tU − ∂2

xU +m2 V (x)U = f (x ,U) on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019.

Guiding principles:

U(t, x) = ∑k

eikωtuk (x) −u′′k + (m2 − k2ω2)V (x)uk = fk (x ,U).

Aim for 0 6∈ σ(− d2

dx2 + (m2 − k2ω2)V (x)). Problem: |k | → ∞ ...

Periodicity & roughness of V (x) yield uniformly open spectral gaps. “breathing takes place only for carefully designed potentials”

Breather solutions

5 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (3/3)

V (x)∂2tU − ∂2

xU +m2 V (x)U = f (x ,U) on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019.

Guiding principles:

U(t, x) = ∑k

eikωtuk (x) −u′′k + (m2 − k2ω2)V (x)uk = fk (x ,U).

Aim for 0 6∈ σ(− d2

dx2 + (m2 − k2ω2)V (x)). Problem: |k | → ∞ ...

Periodicity & roughness of V (x) yield uniformly open spectral gaps. “breathing takes place only for carefully designed potentials”

Breather solutions

5 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (3/3)

V (x)∂2tU − ∂2

xU +m2 V (x)U = f (x ,U) on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019.

Guiding principles:

U(t, x) = ∑k

eikωtuk (x) −u′′k + (m2 − k2ω2)V (x)uk = fk (x ,U).

Aim for 0 6∈ σ(− d2

dx2 + (m2 − k2ω2)V (x)). Problem: |k | → ∞ ...

Periodicity & roughness of V (x) yield uniformly open spectral gaps. “breathing takes place only for carefully designed potentials”

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.Here, breathing is not a rare phenomenon.

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.Here, breathing is not a rare phenomenon.

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.

Here, breathing is not a rare phenomenon.

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.Here, breathing is not a rare phenomenon.

Outline

7 16.01.2020 - University of Stuttgart Dominic Scheider-

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

∂2tU − ∆U +m2U = U3 on R×R3

3 Breather solutions for the nonlinear Wave Equation

∂2tU − ∆U = |U |p−2U on R×RN

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0

(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Breathers for the Klein-Gordon Equation

12 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Breathers for the Klein-Gordon Equation

12 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Breathers for the Klein-Gordon Equation

12 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Breathers for the Klein-Gordon Equation

13 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

. Reformulate as f ((uk )k ,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − (k2ω2 −m2) vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

13 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

. Reformulate as f ((uk )k ,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − (k2ω2 −m2) vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

13 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

. Reformulate as f ((uk )k ,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − (k2ω2 −m2) vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .

Summary: Multitude of (weakly) localized solutions.

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Breathers for the Klein-Gordon Equation

16 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

µ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Breathers for the Klein-Gordon Equation

16 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

µ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Breathers for the Klein-Gordon Equation

16 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

µ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Breathers for the Klein-Gordon Equation

17 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) together with an asymptotic phase condition (far field condition)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

has a nontrivial solution in X iff τ = τ∞. (Unique up to constant multiple.)

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Breathers for the Klein-Gordon Equation

19 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Breathers for the Klein-Gordon Equation

19 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Breathers for the Klein-Gordon Equation

20 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3

Breathers for the Klein-Gordon Equation

21 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − (k2ω2 −m2) uk = (u ∗ u ∗ u)k on R3

where u = (uk )k ∈ `1(Z,X ).

Breathers for the Klein-Gordon Equation

22 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − µk uk = (u ∗ u ∗ u)k on R3

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2.

. Reformulate as f (u,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − µk vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

22 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − µk uk = (u ∗ u ∗ u)k on R3

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2.

. Reformulate as f (u,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − µk vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

23 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 (k 6= 0 !).

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

24 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. Ensure 1-dim. kernel of linearized problem

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 (k 6= 0 !).

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Breathers for the Klein-Gordon Equation

25 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. X Recall Lemma: Choose τs “good” and all other τk “bad” s.t.

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 ⇒ vk ≡ 0 holds iff k 6= s.

For k = 0, this is a result in the literature.. Verify remaining conditions of the CR Bifurcation Theorem

(transversality).

Breathers for the Klein-Gordon Equation

26 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. X Recall Lemma: Choose τs “good” and all other τk “bad” s.t.

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 ⇒ vk ≡ 0 holds iff k 6= s.

For k = 0, this is a result in the literature.. X Transversality condition: Direct computation using asymptotics.

Breathers for the Klein-Gordon Equation

27 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. X Recall Lemma: Choose τs “good” and all other τk “bad” s.t.

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 ⇒ vk ≡ 0 holds iff k 6= s.

For k = 0, this is a result in the literature.. X Transversality condition: Direct computation using asymptotics.. X Regularity of breathers: Scaling property of convolution with Ψτk

µk.

Breathers for the Klein-Gordon Equation

28 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Outline

29 16.01.2020 - University of Stuttgart Dominic Scheider-

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

∂2tU − ∆U +m2U = U3 on R×R3

3 Breather solutions for the nonlinear Wave Equation

∂2tU − ∆U = |U |p−2U on R×RN

Breathers for the Wave Equation

30 16.01.2020 - University of Stuttgart Dominic Scheider-

This is work in progress.

Theorem 2 [sketch]Let Γ ∈ S(RN ), Γ > 0 and N ≥ 2, 2 < p < 2(N + 1)/(N − 1). Thenthe nonlinear wave equation

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

has a nontrivial dual ground state U : R×RN → R, which is 2π-periodic(π-antiperiodic) in time.

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x)

with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,. hence J has a nontrivial ground state V0 ∈ Lp

′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,. hence J has a nontrivial ground state V0 ∈ Lp

′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,

. hence J has a nontrivial ground state V0 ∈ Lp′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,. hence J has a nontrivial ground state V0 ∈ Lp

′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

35 16.01.2020 - University of Stuttgart Dominic Scheider-

Thank you for your attention!

C. Blank, M. Chirilus-Bruckner, V. Lescarret and G. Schneider, BreatherSolutions in Periodic Media, Comm. Math. Phys. 3 (2011), pp. 815–841.A. Hirsch and W. Reichel, Real-valued, time-periodic localized weaksolutions for a semilinear wave equation with periodic potentials,Nonlinearity 32 (2019), no. 4, pp. 1408–1439.R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions fornonlinear Helmholtz equations, ZAMP 6 (2017), article 121.G. Evéquoz and T. Weth, Dual variational methods and nonvanishing forthe nonlinear Helmholtz equation Adv. in Math. 280 (2015), pp. 690–728.

The bifurcation result for the KG equation is part of my PhD thesis(KITopen, 2019).

35 16.01.2020 - University of Stuttgart Dominic Scheider-

Thank you for your attention!

C. Blank, M. Chirilus-Bruckner, V. Lescarret and G. Schneider, BreatherSolutions in Periodic Media, Comm. Math. Phys. 3 (2011), pp. 815–841.A. Hirsch and W. Reichel, Real-valued, time-periodic localized weaksolutions for a semilinear wave equation with periodic potentials,Nonlinearity 32 (2019), no. 4, pp. 1408–1439.R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions fornonlinear Helmholtz equations, ZAMP 6 (2017), article 121.G. Evéquoz and T. Weth, Dual variational methods and nonvanishing forthe nonlinear Helmholtz equation Adv. in Math. 280 (2015), pp. 690–728.

The bifurcation result for the KG equation is part of my PhD thesis(KITopen, 2019).