18
Dr. David DiMarco Dr. Ryan Savitz Neumann University How a River’s Length and Discharge Relate to the Precipitation in its Basin

How a River’s Length and Discharge Relate to the

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: How a River’s Length and Discharge Relate to the

Dr.DavidDiMarcoDr.RyanSavitz

NeumannUniversity

How a River’s Length and Discharge Relate to the

Precipitation in its Basin

Page 2: How a River’s Length and Discharge Relate to the

Abstract

•  The authors wish to find out how a river’s length and basin’s precipitation relate to its discharge. This will be accomplished by dividing the discharge rate at its mouth by its length, generating the river’s discharge gain per kilometer (DGPK), essentially how rapidly the river gains flow as it progresses to its mouth.

Page 3: How a River’s Length and Discharge Relate to the

AbstractCon;nued

•  Then the Pearson product-moment correlation coefficient (PCC) will be used to measure to what degree the DGPK correlates to the mean precipitation over the river basin over the 14 rivers studied in this paper. Since the correlation turns out to be significant, the corresponding regression line will be generated.

Page 4: How a River’s Length and Discharge Relate to the

Data

•  Inthetablebelowriverlengthsarecitedfromthe2010WorldAlmanac.Theprecipita;onfiguresforallriversexcepttheMagdalena,Po,VolgaandYukonarefrom(Lakshmietal.,2018).Thevirginmeanannualdischarge(VMAD,thedischargebeforeanysubstan;alhumanmanipula;ons)dataarefromanar;cleinScienceMagazine(Nilsson,2005).

Page 5: How a River’s Length and Discharge Relate to the

Data Ave. Monthly River Length(miles/kms) Precip.(mm) VMAD(m3/sec) Amazon 3,900/6,276 190.42 200,000 Colorado 1,450/2,334 24.54 550 Congo 2,720/4,377 124.61 41,000 Danube 1,770/2,849 77.26 6,450 Ganges 1,560/2,511 112.6 22,102 Magdalena 1,000/1,609 170.83* 7,500 Mekong 2,700/4,345 135.46 15,900 Mississippi 2,340/3,766 71.7 18,400 Murray 1,609/2,589 40.31 775 Nile 4,160/6,695 54.79 3,000 Po 405/652 100.0* 1,460 Volga 2,290/3,685 55.17** 8,050 Yangtze(Chang-Jiang) 3,450/5,552 86.92 29,460 Yukon 1,979/3,185 40.22*** 6,370 * Institute for Technology and Resources Management in the Tropics and Subtropics (See reference list) ** The Volga River Basin Report (See reference list) *** U.S. Geological Survey, Water-Resources Investigations Report 99-4204 (See reference list)

Table 1: River Data

Page 6: How a River’s Length and Discharge Relate to the

LiteratureReview

•  Changesinriverdischargecanhavegreatprac;calimpacts.Theseimpactsincludetherela;velyobviouspossibilityoffloodingwithintheriver’sproximity.Inaddi;ontoimpactssuchasthese,morecompleximpactsexist.Inpar;cular,Nohara,Kito,Hosaka,andOki(2006)notethatchangesinriverdischargecanaffectthermohalinecircula;on,which,inturn,canhaveglobalclima;cimpacts.

Page 7: How a River’s Length and Discharge Relate to the

LiteratureCont.

•  Giventheseimportantimpacts,developingamodelofchangesinriverdischargeduetochangesintheclimatewouldbeofgreatvalueand,indeed,workhasbeendoneinthisarea.Mostofthesemodels,however,arebasedoncomplexcoupledatmosphere-oceangeneralcircula;onmodels,andareuniquetopar;cularregionsoftheglobe(Noharaetal.2006).

Page 8: How a River’s Length and Discharge Relate to the

LiteratureCont.

•  Itisthegoalofthispapertopresentaparsimoniousandeasytounderstandmodelthatcanbeusedtohelppredictriverdischargeatanyloca;on.

•  Foreachriver,wewillcalculatethequan;tyVMAD/length,andcallthisquan;tythedischargegainperkilometer(DGPK).

Page 9: How a River’s Length and Discharge Relate to the

DataRiver DGPK Amazon 31.867 Colorado 0.236 Congo 9.367 Danube 2.264 Ganges 8.802 Magdalena 4.661 Mekong 3.659 Mississippi 4.886 Murray 0.299 Nile 0.448 Po 2.239 Volga 2.185 Yangtze(Chang-Jiang) 5.306 Yukon 2.000

Table 2: River DGPK

Page 10: How a River’s Length and Discharge Relate to the

Analysis

•  Wewillnowinves;gatehowcloselytheDGPKcorrelateswithprecipita;onusingthePearsonproduct-momentcorrela;oncoefficient(PCC).Lengthwillbeinkms,VMADinm3/secandprecipita;oninmms.Andtheresul;ngPCCis0.720.WealsonotetheT-testis3.5958witha1-sidedp-valueof0.00734.Theseresultsarefromtheonlinecalculatorat(WessaP.,2017).

Page 11: How a River’s Length and Discharge Relate to the

Analysis

•  Thisprovidesconvincingevidencethatasta;s;callysignificantposi;verela;onshipexistsbetweenDGPKandbasinprecipita;on.Thisresultisintui;ve,inthatitshowsthatthereisasignificantandposi;verela;onshipbetweenariver’sdischargeandtheamountofprecipita;onovertheriver’sbasin.

Page 12: How a River’s Length and Discharge Relate to the

Analysis

Page 13: How a River’s Length and Discharge Relate to the

Analysis

•  Theini;alregressionrunwasusedtopredictdischargegainasafunc;onofprecipita;on.Thisregression,however,appearedtoresultinerrorsthatwerenotnormallydistributed,andanon-constanterrorvariance(heteroskedas;city).Thiswasmostlikelyduetothecurvatureofthedata,aswellastheskewnessofthedatasetsthemselves.

Page 14: How a River’s Length and Discharge Relate to the

Analysis

•  Hencethenaturallogarithm(ln)ofeachvariablewastaken,andanewregression,withln(precipita;on)usedtopredictln(dischargegain)wasperformed.Thisregressionwasfoundtocloselysa;sfytherequirementsofhavingaconstanterrorvarianceandnormallydistributederrors.

Page 15: How a River’s Length and Discharge Relate to the

Analysis

•  Equa%on1:DGPK=0.00055*P1.94,whereDGPKisdischargeandPisprecipita;onoverthebasin.Unlikeothercurrentlyusedandcomplexmodels,thisequa;onprovidesaneasytouseandunderstandmodelthatcanquicklyes;matethedischargeofariver.

Page 16: How a River’s Length and Discharge Relate to the

ReferencesArora, V. K., & Boer, G. J. (2001). Effects of simulated climate change on the hydrology of major river basins. Journal of Geophysical Research: Atmospheres, 106(D4), 3335-3348. Bintanja, R., & Selten, F. M. (2014). Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509(7501), 479. Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3).

Golosov, V., and Belyaev, V. The Volga River Basin Report. UNESCO International Sediment Initiative, http://isi.irtces.org/isi/rootfiles/2017/07/04/1496391629451299-1498713525725099.pdf Retrieved 29 May 2019. Institute for Technology and Resources Management in the Tropics and Subtropics, http://www.basin-info.net/ Retrieved 5/29/19. Kriauciuniene, J., Meilutyte-Barauskiene, D., Reihan, A., Koltsova, T., Lizuma, L., & Sarauskiene, D. (2012). Variability in temperature, precipitation and river discharge in the Baltic States.

Page 17: How a River’s Length and Discharge Relate to the

ReferencesCont.Lakshmi, V., Fayne, J., & Bolten, J. (2018). A comparative study of available water in the major river basins of the world. Journal of hydrology, 567, 510-532. Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., & Smith, L. C. (2008). Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global and planetary change, 62(3-4), 187-194. .National Oceanic and Atmospheric Administration. U.S. had its wettest 12 months on record – again. https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.noaa.gov%2Fnews%2Fus-has-its-wettest-12-months-on-record-again&data=02%7C01%7CSAVITZR%40neumann.edu%7Ccea1c0c8dd72412d6ee108d7048ddcb7%7C0625771818b8471e979d44ec1dcafa3b%7C1%7C0%7C636982879650327006&sdata=w7P9CR%2BS6Xg4gFf3tXdWqGWdO0VuLeDEaLhAmdQESg0%3D&reserved=0. Retrieved 9 July 2019. Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408. Nohara, D., Kitoh, A., Hosaka, M., & Oki, T. (2006). Impact of climate change on river discharge projected by multimodel ensemble. Journal of Hydrometeorology, 7(5), 1076-1089.

Page 18: How a River’s Length and Discharge Relate to the

ReferencesCont.U.S. Geological Survey, Water-Resources Investigations Report 99-4204, https://pubs.usgs.gov/wri/wri994204/pdf/wri994204.pdf Retrieved 29 May 2019.

Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C. J., Lammers, R. B., Shiklomanov, A. I., ... & Rahmstorf, S. (2002). Increasing river discharge to the Arctic Ocean. science, 298(5601), 2171-2173. van Emmerik, T., Mulder, G., Eilander, D., Piet, M., & Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment. Frontiers in Earth Science, 3, 62. Wessa P., (2017), Pearson Correlation (v1.0.13) in Free Statistics Software (v1.2.1), Office for Research Development and Education, URL https://www.wessa.net/rwasp_correlation.wasp/ Retrieved 5/31/19