40
Geothermal Energy Conversion Highlights of Research at DIEF Daniele Fiaschi, Giampaolo Manfrida, Lorenzo Talluri May 26 th , 2016

Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

  • Upload
    vuduong

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Geothermal Energy Conversion

Highlights of Research at DIEFDaniele Fiaschi, Giampaolo Manfrida, Lorenzo Talluri

May 26th, 2016

Page 2: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Supercritical ORC for Geothermal Energy Conversion

• Completely closed ORC layout

• Heat capacity matching with Geothermal Resource (Well Production Characteristic)

• Close to Ideal Trapezoidal Cycle

• Objectives:

– Power production

– Total reinjection of NCGs – avoiding flash and expensive NCG treatment for contaminants (H2S, Hg, NH3,…); includes reinjection of CO2

2016

Page 3: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Input data (Monte Amiata Bagnore 3):

• h[1] = 1200 kJ/kg

• p[1] = 60 bar

• m[1] = 122 kg/s

• T[4] = 130 °C

• T[8] = 40 °C

• Depth of BH pump installation = 800 m

• ΔT_HE_approach= variable depending on fluid

• ΔT_IHE_inlet = 5 °C

• P[9]= variable depending on fluid

• Assigned well geometry ( = 0,24 m)

Supercritical ORC: Case study

Modeling Approach:• Thermodynamic and Exergy Analysis• Exergoeconomic (thermoeconomic) Analysis• Model includes friction and heat losses in production

well• Optimized temperature profiles in HE e IHE with

evaluation of local pinch (variable heat capacities on both sides, brine and working fluid)

• Optimal conditions for THD cycle with different fluids

Working Fluids:

• Refrigerants (R143a, R134a,….)

• Pure Hydrocarbons (n-esane, n-pentane,….)

Page 4: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Brine THD properties – H2O-CO2-Saline Mixture - Duan & Sun model

0

0,5

1

1,5

2

2,5

3

3,5

4

273,15 323,15 373,15 423,15 473,15 523,15 573,15

[mol/kgH2O]

Temperature [K]

Moles of CO2 vs Temperature

p=60 bar

p=100 bar

p=200 bar

p=400 barConditions in deepreservoir

Conditions at ground level, pressurized pipe

Chemical Potential

Model fundamentals:

• Liquid Phase: Particle interaction theory

• Vapor phase: Accurate Real-fluid EOS

Activity coefficient (water brine with salts: 𝑁𝑎+,𝐾+, 𝐶𝑎+, 𝑀𝑔2+, 𝐶𝑙− and 𝑆𝑂4

2−)

Fugacity Coefficient (CO2 in Water, EES real fluid )

PressureMoles of CO2

in vapourphase

The difference in CO2 solubility determines accumulation of pressurized NCGs in the HE

Page 5: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Management of NCGs (CO2 ) for complete reinjection

1% 2% 3%

𝑊𝑡𝑜𝑡47,51 146,3 241 kW

𝑄𝑃𝐶 142,5 438,7 722,7 kW

𝑄𝐼𝐶 125,5 386,5 636,7 kW

𝑄𝐴𝐶 66,41 204,5 336,9 kW

𝑄𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝐞𝐫 85,14 262,2 431,9 kW

Qthermal user 18 54 90 -

ሶ𝑚𝐶𝑂20,618 1,903 3,135 kg/s

𝐶𝑂𝑃 3,546 3,546 3,546 -

Cycle performance with variable CO2 contents of the brine

• T[6] = 15°C

• P[6] = 163 bar

• T[15] = 80°C

• T[13] = 40°C

• T cond = 40°C

• T eva = -10°C

Objective:

• Obtaining an homogeneous liquid phase for reinjection

• CO2 droplets of small diameter

• Density: ρ𝐶𝑂2 > ρ𝐻2𝑂• Gravity-induced stratification of liquid CO2

Page 6: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

ORC: Brine modeled as pure Water

HE Temperature profile

ORC cycle diagram:

R143a

N-pentane

IHE Temperature profile

Page 7: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

ORC: Performance (Brine = Water)

21

21,5

22

22,5

23

23,5

24

24,5

25[%] Efficiency

0

100

200

300

400

500

600

[kg/s]WF flow rate

20

21

22

23

24

25

26

27

28

[MW] Turbine shaft power

0

1

2

3

4

5

6

7

8[MW]

Pump Power (working fluid)

Page 8: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

ORC: Analysis with real brine properties (water and CO2)

17

17,5

18

18,5

19

19,5

20

H2O 0,51% CO2 1% CO2 2% CO2 3% CO2

[MW] Net Power

N-butano

N-pentano

Isobutano

N-esano

RC318

R143a

N-butane N-pentane Isobutane N-hexane RC318 R134a

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

Deviation of Net Power (Brine/pure water)Non-dimensional performance assessment:

• Efficiency

• Exergy Efficiency

• Power

• Working fluid flow rate

• Turbine Power

• Pump power

• HE effectiveness

• IHE effectiveness

H2O + CO2

2%1%0,51% 3%

Analysis at Treinj = cost

Deviation wrto pure waterExergy destructions

and losses

Page 9: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

ORC: Exergoeconomics (Thermoeconomics)

0

1

2

3

4

5

6

7

8

9[c€/kWh]

Cost of produced kWh

-20000000

0

20000000

40000000

60000000

80000000

100000000

120000000

0 5 10 15 20

[€]

Year

NPV N-hexane

6%

10%

14%

18%

ORC-N-esane T_MAX=245,1°C – T_CO=40°C

Thermal input 79267 [kWt]

Output net power 19532 [kW]

Hours per year 7446 [ore/anno]

Cost of kWh ORC 0.06384 [€/kWh]

Interest rate 10%

Selling price electricity 0,0722 [€/kWh]

kWh per year 145435272 [kWh/anno]

Yearly cash flow 10500426,6 [€/year]

Total Capital Investment 10780000 [€]

Time span 20 [years]

O&M + insurance 323400 [€/ear]

NPV 72148051,3 [€]

NPV Analysis 1% Inflation rate

Evaluation process

Cost of Exergy Destruction

ExergoeconomicFactor

Exergy Efficiency

Interest Rate

Page 10: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

ORC: check of borehole pump feasibility

Non-dimensional coefficient method for pump design(Anderson, Stepanoff,…)

Units

η 0,84 [-]

Ns 4800 [-]

NStages 34 [-]

Z 6 [-]

RPM 2910 [RPM]

Q 0,002605 [m3/s]

HStage 27 [m]

Input data:

• p[1] = 60 bar• m[1] = 122 kg/s• h[1] = 1200 kJ/kg• p[2] = 128,64 bar• D[2] = 200 mm

Pump geometryVelocity triangles and metal angles

Evaluation of losses

Mixture of water and CO2

CO2% 0,51% 1% 2% 3% Units

Wpump 1,34 1,51 1,76 2,04 [MW]

Page 11: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Supercritical CO2 Solutions

Pre-compression

CO2 Cycle

Regenerative Recompression

Same layout as for Supercritical ORC

Variable T reinjection

Thermodynamic, Exergy and Thermoeconomic Analysis

Constant T reinjection

Variable T condenser

Page 12: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Comparison of ORC and supercritical CO2 solutions

Analysis

Hydrocarbons Refrigerants

0

5

10

15

20

25

[MW] Net Power

0

5

10

15

20

25[c€/kWh]

Cost of kWh

Thermodynamics

Thermoeconomics

Effects of real brine composition

(MAX Deviation35%)

THD variables (pressure,

temperature, flow rate, …)

Size of components

Cost of components

Page 13: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

2015Case study: Bagnore 3 Hybridization

Present Plant Layout

0 200 400 600 800 1.000 1.200 1.400 1.600

0

25

50

75

100

125

150

175

200

s [J/kg-K]

T [

°C]

14.7 bar

1.38 bar

n-Pentane

1orc

2orc

3orc 4orc

6orc

7orc8orc9orc

Flash Power Plant

ORC

Sustainability 2015, 7, 15262-15283; doi:10.3390/su71115262

Page 14: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Hybrid 1 – Base Case

ORC coupled to secondary flash S2(double-flash)

Page 15: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Hybrid 2 – LB/ORC

ORC coupled to Liquid Brine heat recovery(single-flash)

Page 16: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

2-pressure level ORC coupled to backpressure steam turbine; double-flash.

With air-cooled condenser ACC.

Hybrid 3 – 2P-ORC/BPS

Page 17: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Hybrid 4 –ORC/BPS/TR

1-pressure level ORC coupled to backpressure steam turbine; double-flash; with total reinjection of NCGs.

With air-cooled condenser ACC.

Page 18: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Powers/Heat Rate (MW)

Baseline LB-ORC 2PORC/BPS ORC/BPS/TR

ሶ𝑊𝑠𝑡,𝑇,𝑔𝑟𝑜𝑠𝑠 21.2 21.2 11.77 6.21

ሶ𝑊𝐻𝑃𝑜𝑟𝑐,𝑇 - - 1.62 -

ሶ𝑊𝐿𝑃𝑜𝑟𝑐,𝑇 - - 7.93 -

ሶ𝑊𝑜𝑟𝑐,𝑇,𝑔𝑟𝑜𝑠𝑠 4.04 4.36 9.55 17.0

ሶ𝑊𝑡𝑜𝑡,𝑔𝑟𝑜𝑠𝑠 25.23 25.56 21.31 23.22

ሶ𝑊𝑝1 0.47 0.47 0.09 0.36

ሶ𝑊𝑝2 0.19 0.13 0.06 0.33

ሶ𝑊𝑝3 0.15 0.06 - 0.08ሶ𝑊𝑓𝑎𝑛𝑠 0.18 0.18 1.24 2.21ሶ𝑊𝐶1 0.62 0.62 - 2.14ሶ𝑊𝐶2 0.47 0.47 - 0.50

ሶ𝑊𝑡𝑜𝑡,𝑝𝑎𝑟 2.08 1.94 1.39 5.58ሶ𝑊𝑡𝑜𝑡,𝑛𝑒𝑡 23.16 23.64 19.92 17.63ሶ𝑄𝐸𝑉𝐴 13.62 10.05 - 53.76ሶ𝑄𝑃𝐻 11.36 11.28 - 20.01

ሶ𝑄𝐿𝑃𝐸𝑉𝐴 - - 45.71 -ሶ𝑄𝐿𝑃𝑃𝐻 - - 14.02 -ሶ𝑄𝐻𝑃𝐸𝑉𝐴 - - 16.16 -ሶ𝑄𝐻𝑃𝑃𝐻 - - 7.51 -ሶ𝑄𝑅𝐺 4.63 6.15 12.02 31.1ሶ𝑄𝐼𝐶 - - - 25.87ሶ𝑄𝑊𝐶𝐶 21.14 17.56 - -ሶ𝑄𝐴𝐶𝐶𝑠 - - 86.0 91.06

Table 2. Comparison of power and heat rates in key power plant components.

Bagnore 3 Hybridization – Performance Comparison

Page 19: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Exergy balances: destructions, losses and power output. (a) = Baseline; (b) = 2P-ORC/BPS; (c) = ORC/BPS/TR; (d) = ORC/BPS/TR.

Bagnore 3 Hybridization – Exergy Balances

Page 20: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Parameter u.m. Baseline LB-ORC 2PORC/BPS ORC/BPS/TR

- 13.2 13.5 11.32 10.02

- 42.8 43.5 36.38 32.55

USFR (kg/s)/kWh 19.08 18.72 22.03 24.91

EFCO2 g/kWh 396 388 454 0

EFH2S g/kWh 1.21 1.18 0.28 0

EFHg mg/kWh 1.3 1.27 0.42 0

Table 3. Overall performance of the four power plant options.

Bagnore 3 Hybridization – Environmental Performance

Page 21: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Circuit Layout:

•Geothermal Heat Exchanger;

•Steam vessel fed by solar thermal

collectors (preheaters/evaporators with

drum; typically evacuated pipe

collectors without concentration);

•High temperature solar field with

focusing collectors (low optical

concentration).

•Eventual reheater/RHE (regenerator)

•Microturbine expander;

•High-temperature heat user

(desuperheater)

•Low-temperature heat user

(condenser)

Steam

vessel

Condensate

line

Solar heater 2

(SH – Parabolic Trough)

Solar heater 1

(Ev. pipe collector)

Geothermal

Heater

Micro

Turbine S

Regenerator

(if needed)

De-Super

Heater

Condenser

To High-Temperature

Heat User

To Low-Temperature

Heat User

Geothermal

Well

Geothermal

Reinjection

6

7

5

9

8

2

3

10

Small Solar/Geothermal Power Units

2009-2012

Page 22: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Micro CHP: geothermal + solar superheating from low enthalpy resources

Dynamic analysis of system including off-design behavior of main components (HXs, expander)

Small Solar/Geothermal Power Units

Page 23: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Fluid R134a CyclHex N-Pentane R245fa R1234yf R236fa

W [kW] 50 50 50 50 50 50

Rec_Eff 0 0 0 0 0,25 0

T_geoin [K] 363 363 363 363 363 363

T_cond [K] 318 318 318 318 318 318

T_max [K] 420 420 420 420 420 420

p_C [bar] 40,59 40,75 33,6 36,5 33,8 32

T_C [K] 374 554 470 427 368 398

T_DSH [K] 371 358 373 335 369 365

T_geoout [K] 321 321 322 323 333 323

DeltaT_SH [K] 49 1,76 21,8 1,6 56,5 25

p_GV [bar] 38 5 10 31 31 30

p_cond [bar] 11,6 0,298 1,36 2,92 11,5 5

m_f [kg/s] 1,77 0,544 0,67 1,33 2,32 1,83

VFR_7 [m3/s] 0,041 0,6382 0,206 0,088 0,05 0,066

m_geo [kg/s] 0,63 0,2528 0,386 0,43 0,93 0,585

m_solar [kg/s] 1,1 5,73 1,85 3,35 1,234 1,133

A_eff_coll [m2] 338 261 308 252 383 289

[kg/(sm2)] 0,0033 0,0220 0,0060 0,0133 0,0032 0,0039

[kg/(hm2)] 11,72 79,03 21,62 47,86 11,60 14,11

DSH inlet

Temperature

Well Reinjection

Temperature

Steam Generator

Pressure

DSH/Condenser

Pressure

Flow rates

Net area collectors field

Collectors field specific

flow rates

Negative

Positive

Small Solar/Geothermal Power Units

Page 24: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Fluid R134a CycloHex N-Pentane R245fa R1234yf R236fa

Eta_sys 9,1 14,6 11,7 13 7,3 9,77

EtaC 10,5 17,2 13,6 15,1 8,5 11,3

Eta_x 13,5 19,4 16,1 18,7 10,7 14,6

FracPump 0,103 0,085 0,024 0,073 0,197 0,17

FracGeo 0,26 0,155 0,188 0,235 0,247 0,265

Q_Geo [kW] 111 44,6 67 72,2 117 97,5

Q_sol [kW] 316 244 288 235 357 270

Q_CHPBT [kW] 280 207 235 236 298 246

Q_CHPAT [kW] 102 31,8 71 24 136 79,7

Q_Rec [kW] 0 0 0 0 45 0

Delta_h_T

[kJ/kg] 28,2 91,9 74,5 37,6 21,5 27,3

Results of simulation with different working fluids

Efficiency

Work fraction Pump/Turbine

Geothermal fraction

Heat balance

Turbine Enthalpy drop

Choice of Working Fluid:

•Cyclohexane best for power output (Low pressurization)

•R236fa best for geothermal fraction (but large pump power)

•R245fa and N-Pentane good compromise (Low Pressurization)

•Regenerator necessary for R1234yf (not large)

•Moderate enthalpy drop, possible simple one-stage axial expanders

Negative

Positive

Small Solar/Geothermal Power Units

Page 25: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

DSH+CON

DLPP

GEO HX

Etc-1 EXL

Etc-1 EXD

Etc-2 EXL

Etc-2 EXD

HPPPTC EXL

PTC EXD

HPTMixe

rLPT

R134a 1,6% 0,2% 0,7% 1,8% 6,7% 1,7% 6,2% 0,0% 23,2% 38,1% 0,2% 0,3% 1,8%

R236fa 1,5% 0,6% 0,3% 1,7% 6,1% 2,2% 8,0% 0,9% 22,5% 35,4% 0,5% 0,1% 1,6%

R245fa 1,5% 0,1% 0,5% 4,1% 14,5% 2,4% 8,2% 0,1% 18,3% 27,5% 0,5% 0,0% 2,3%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

R134a

R236fa

R245fa

Exergy balance, different working fluids

Small Solar/Geothermal Power Units

Page 26: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mini and micro Expanders for ORCs

Radial turboexpanders

From accurate 0D design (real

EOS with evaluation of losses) …

… to refined 3D design

(real PR EOS)

2012-2015

Page 27: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mini and micro Expanders for ORCsRadial turboexpanders

Accurate 0D design for different fluids (real EOS with evaluation of losses)

IFR=Radial inlet flowIFG=General Inlet Flow

Page 28: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mini and micro Expanders for ORCsRadial turboexpanders

Variation of velocity triangles with increasing flow coefficient (from solid black to dashed green, (a) IFR and (b) IFG)

Variation of velocity triangles at rotor inlet with increasing load coefficient (from solid black to dashed green, (a) IFR and (b) IFG )

Variation of velocity triangles with increasing isentropic degree of reaction Rs (from solid black to dashed green, (a) IFR and (b) IFG )

Accurate 0D design: influnce of the main parameters on the geometry:

flow coefficient , load coefficient isentropic degree of reaction Rs

Page 29: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mini and micro Expanders for ORCsRadial turboexpanders

Mass flowrate mc vs. pressure ratio p01/p03

Isentropic efficiency c vs. pressure ratio p01/p03

Velocity triangles at rotor inlet at variable corrected speeda) Radial blades b) Backswept blades

Accurate 0D model: off design analysis and characteristic curves (des = design value)

0,5 0,6 0,7 0,8 0,9 1 1,10,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

1,04

(p01/p03)/(p01/p03)des

mc/

(mc)

des

NC /(Nc)des=1.0

NC

/(N

c)d

es=

0,85

NC /(Nc)des=0,70

IFRIFR

IFGIFG

0,5 0,6 0,7 0,8 0,9 1 1,10,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

1,04

(p01/p03)/(p01/p03)des

( hts

)/( h

ts) d

es

NC /(Nc)des=1.0

NC /(Nc)des=0,85

NC /(Nc)des=0,70

IFRIFR

IFGIFG

0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1 1,050,97

0,98

0,99

1

1,01

1,02

1,03

1,04

NC /(Nc)des

( hts

)/( h

ts) d

es

IFRIFR

IFGIFG

Isentropic efficiency c vs. corrected speed Nc

1 0.85 0.70

N/(T01)1/2

b2

1 0.85 0.70

N/(T01)1/2

b2

𝑁𝑐 =𝑁

𝑇01

Page 30: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mini and micro Expanders for ORCsRadial turboexpanders

From the preliminary 0D to the Refined 3D design (real PR EOS, R134a)

Downscaled size from 50 kW of the basic 0D design to 5 kW

Meshing2 steps:1) first attempt design;2 refined design

3D design important to

assess the convenientnumber of

blades

Page 31: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mini and micro Expanders for ORCsRadial turboexpanders

From the preliminary 0D to the Refined 3D design (real PR EOS, R134a)

Distribution of relative velocity (Midspan layer,

Improved geometry).

Relative Mach Number distribution on meridional surface

First attemptgeometry

Improvedgeometry

Good agreement between preliminary 0D and 3D refined design

Reliable combined tool:0D: defines the basic geometry;3D: refines the channels shape and the number of blades

Page 32: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

• Kalina cycles: may be preferred to ORCs when the geothermal fluid has temperature < 150 °C

• NH3-H2O mixture has a range of evaporation curves depending on the composition and temperature possibility of working with low well temperature is considerably extended

Kalina 2015

ASME Power Energy 2015

WATER-AMMONIA CYCLES FOR THE UTILIZATIONOF LOW TEMPERATURE GEOTHERMAL RESOURCES

Page 33: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

WATER-AMMONIA CYCLES FOR THE UTILIZATIONOF LOW TEMPERATURE GEOTHERMAL RESOURCES

MATCHING THE CONDENSER AND EVAPORATOR CURVES

The matching level of the curves is attractive due to the variable evaporation and condensing temperatures.

reduction of the irreversibilities related to heat transfer.

Condenser temperature/heat transfer diagram Evaporator temperature/heat transfer diagram

0 200 400 600 8001000 1400 1800 2200 2600 3000

286

288

290

292

294

296

298

300

302

304

306

308

Q [kW]

T [

K]

NH3-H2O Condenser

Cooling air

0 2004006008001000 1400 1800 2200 2600 3000 3400320325330335340345350355360365370375380385390395400405410

Q [kW]

T

[K]

Geothermal fluid

NH3-H2O Economizer

NH3-H2O Evaporator

Page 34: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

PARAMETRIC ANALYSIS AND OPTIMIZATION OF THE POWER CYCLE

34

25 30 35 40 45 50 55 60 65 70 75 80 850,115

0,12

0,125

0,13

0,135

0,14

0,145

0,15

0,155

pev [bar]

hel

x1 = 0.8

x1 = 0.85

x1 = 0.89pcond = 7.5 bar

50 55 60 65 70 75 80 850,115

0,12

0,125

0,13

0,135

0,14

0,145

0,15

0,155

pev [bar]

hel

x1 = 0.89

pcond = 7.5

pcond = 8.5

pcond = 9.5

375 380 385 390 395 400 405 4100,06

0,08

0,1

0,12

0,14

0,16

Tev [K]

hel

x1 = 0.89

x1 = 0.85

x1 = 0.8

pcond = 7.5 bar; pev = 55 bar

Efficiency curves, pcond= 7.5 bar

Efficiency curves, x1 = 0.89Efficiency curves, pcond= 7.5 bar; pevap=55 bar

A sensitivity analysis was performed analyzing thepower cycle performance (efficiency el) in functionof the following main parameters:1) NH3-H2O composition (3 values)2) Condenser pressure3) Evaporator pressure (optimizing range 45-55 bar)4) Evaporator temperature

Q x1 WTWP

Tapp - GEO-Solution el

pcond area cycle el

WATER-AMMONIA CYCLES FOR THE UTILIZATIONOF LOW TEMPERATURE GEOTHERMAL RESOURCES

Page 35: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Kalina 2016

Thermoeconomic analysis and comparison – ORC and Kalinacycles at low and medium-high resource temperature

NH3 rich

NH3-H2OCondensed

NH3 lean

vaporized NH3-H2O

Geo in

Geo out

Air out

Air in

Kalina

Ammonia lean mixture

Ammonia rich vapour

Geothermal fluid

Basic mixture composition

Cooling Air

3

4

5

6

7

7b 8

9

10

11

1

2

Evaporator

Turbine

LTR

HTR

Throttle valve

Pump

Condenser

Mixer

Separator

Geo in

Geo out

Air out

Air in

ORC

Geothermal Fluid

Organic Rankine Fluid

Cooling Air

15

16

17

18

19

14

Pump

Condenser

Regenerator

Turbine

Evaporator

• R245fa• Isobutene• R600

• R218• Carbon Dioxide• R1234ze• R1233zd

Page 36: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Thermoeconomic analysis and comparison – ORC and Kalinacycles at low and medium-high resource temperature

Mt. Amiata case study

Twell = 212°C

Pomarance case study

Tresource = 120°C

Page 37: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

• Mt. Amiata case study

0

0.05

0.1

0.15

0.2

0.25

0.3

Componenti

ExD KalinaExD Kalina

ExD ORC R218ExD ORC R218

ExD ORC IsobuteneExD ORC Isobutene

R1233zdR1233zd

Ex

D /E

xin

,to

t [-

]

Eva

pora

tor

Con

dens

er

Pum

p

Turbine

Throt

tle V

alve

LTHE

HTH

E

+4%

Thermoeconomic analysis and comparison – ORC and Kalinacycles at low and medium-high resource temperature

Page 38: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

0

0.05

0.1

0.15

0.2

0.25

Ex

D /E

xin

,to

t [-]

Evapora

tor

Condense

r

Pump

Turbin

e

HTH

ELTH

E

Throttl

e valv

e

Mixer

KalinaKalina

ORC (R218)ORC (R218)

ORC (Isobutene)ORC (Isobutene)

ORC (R1234ze)ORC (R1234ze)

• Pomarance case study

Thermoeconomic analysis and comparison – ORC and Kalinacycles at low and medium-high resource temperature

Page 39: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mt. Amiata case study

Twell = 212°C

Pomarance case study

Tresource = 120°C

0

0,05

0,1

0,15

0,2

0,25

c€/kWh

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

c€/kWh

Thermoeconomic analysis and comparison – ORC and Kalinacycles at low and medium-high resource temperature

Page 40: Highlights of Research at DIEF - UniFI · Highlights of Research at DIEF ... • Thermodynamic and Exergy Analysis • Exergoeconomic (thermoeconomic) Analysis ... Model fundamentals:

Mt. Amiata case study (212°C) TLR Pomarance case study (120°C)

Kalina ORC (R1233zd(E)) Kalina ORC (R1234ze)

Power [kW] 5982 6237 645 483

First law efficiency 0.1684 0.1755 0.1289 0.0966

Second law

efficiency0.5731 0.5943 0.5709 0.4276

Critical component Turbine Turbine TurbineCondenser;

Evaporator

TCI [k€] 8663 8483 2244 1852

Electricity cost 9.125 8.845 12.53 15.53

Thermoeconomic analysis and comparison – ORC and Kalinacycles at low and medium-high resource temperature