13
Kragujevac Journal of Mathematics Volume 40(2) (2016), Pages 224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW EXISTENCE AND UNIQUENESS RESULTS LOUIZA TABHARIT 1 AND ZOUBIR DAHMANI 2 Abstract. In this paper, we study a class of high dimensional coupled fractional differential systems using Caputo approach. We investigate the existence of solutions using Schaefer fixed point theorem. Moreover, new existence and uniqueness results are obtained by using the contraction mapping principle. Finally, Some examples are presented to illustrate our main results. 1. Introduction and Preliminaries Fractional differential equations have gained a great interest because of their many applications in modeling of physical and chemical processes and in engineering sci- ences. For the basic theory of fractional differential equations, see [110, 1214, 17, 22]. Moreover, the nonlinear coupled systems involving fractional derivatives are also very important, since they occur in various problems of applied mathematics. In the litera- ture, we can find many papers dealing with the existence and uniqueness of solutions. For more details, we refer the reader to [11,16,18–21] and the references therein. Motivated by cited coupled systems-papers, in this work, we discuss the existence and uniqueness of solutions for the following problem: Key words and phrases. Banach contraction principle, Caputo derivative, fixed point, differential equation, existence, uniqueness. 2010 Mathematics Subject Classification. 30C45, 39B72, 39B82. Received: October 12, 2015. Accepted: December 4, 2015. 224

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

Kragujevac Journal of MathematicsVolume 40(2) (2016), Pages 224–236.

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEWEXISTENCE AND UNIQUENESS RESULTS

LOUIZA TABHARIT1 AND ZOUBIR DAHMANI2

Abstract. In this paper, we study a class of high dimensional coupled fractionaldifferential systems using Caputo approach. We investigate the existence of solutionsusing Schaefer fixed point theorem. Moreover, new existence and uniqueness resultsare obtained by using the contraction mapping principle. Finally, Some examplesare presented to illustrate our main results.

1. Introduction and Preliminaries

Fractional differential equations have gained a great interest because of their manyapplications in modeling of physical and chemical processes and in engineering sci-ences. For the basic theory of fractional differential equations, see [1–10,12–14,17,22].Moreover, the nonlinear coupled systems involving fractional derivatives are also veryimportant, since they occur in various problems of applied mathematics. In the litera-ture, we can find many papers dealing with the existence and uniqueness of solutions.For more details, we refer the reader to [11,16,18–21] and the references therein.

Motivated by cited coupled systems-papers, in this work, we discuss the existenceand uniqueness of solutions for the following problem:

Key words and phrases. Banach contraction principle, Caputo derivative, fixed point, differentialequation, existence, uniqueness.

2010 Mathematics Subject Classification. 30C45, 39B72, 39B82.Received: October 12, 2015.Accepted: December 4, 2015.

224

Page 2: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS 225

Dα1u1 (t) =l∑

i=1

f 1i (t, u1 (t) , . . . , um (t) , Dγ1u1 (t) , . . . , Dγmum (t)) , t ∈ J,

Dα2u2 (t) =l∑

i=1

f 2i (t, u1 (t) , . . . , um (t) , Dγ1u1 (t) , . . . , Dγmum (t)) , t ∈ J,

...

Dαmum (t) =l∑

i=1

fmi (t, u1 (t) , . . . , um (t) , Dγ1u1 (t) , . . . , Dγmum (t)) , t ∈ J,

uk (0) = ak0,

u(j)k (0) = 0, j = 1, 2, . . . , n− 2,

u(n−1)k (0) = Jrkuk(τk), rk > 0,

(1.1)

where k = 1, 2, . . . ,m. We suppose that n − 1 < αk < n, γk ∈ ]0, n− 1[, k =1, 2, . . . ,m, n ∈ N∗ − 1, m, l ∈ N∗, τ ∈]0, 1[, J := [0, 1]. The derivatives Dαk , Dγk ,k = 1, 2, . . . ,m, are taken in the sense of Caputo. For the functions

(fki)k=1,2,...,m

i=1,...,l:

J × R2m → R, we will specify them later.The paper is organised as follows: We begin by introducing some definitions and

lemmas that will be used in the proof of the main results. Then, in the Main ResultsSection, we prove the existence of solutions theorems. At the last section, someillustrative examples are treated. So, let us now present the basic definitions andlemmas [15].

Definition 1.1. The Riemann-Liouville fractional integral operator of order α > 0,for a continuous function f on [0,∞[ is defined as:

Jαf(t) =

1

Γ (α)

∫ t

0

(t− s)α−1 f (s) ds, α > 0, t ≥ 0,

f(t), α = 0, t ≥ 0,

(1.2)

where Γ (α) :=∫∞0e−xxα−1dx.

Definition 1.2. The Caputo derivative of order α for a function u : [0,∞) → R,which is at least n-times differentiable can be defined as:

Dαu(t) =1

Γ (n− α)

∫ t

0

(t− s)n−α−1 u(n) (s) ds = Jn−αu(n)(t),

for n− 1 < α < n, n ∈ N∗ − 1.

We recall the following lemmas [7, 19].

Page 3: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

226 L. TABHARIT AND Z. DAHMANI

Lemma 1.1. For α > 0, the general solution of the fractional differential equationDαu(t) = 0, is given by

u(t) =n−1∑j=0

cjtj,

where cj ∈ R, j = 0, . . . , n− 1, n = [α] + 1.

Lemma 1.2. Let α > 0. Then

JαDαu(t) = u(t) +n−1∑j=0

cjtj,

where cj ∈ R, j = 0, 1, . . . , n− 1, n = [α] + 1.

Lemma 1.3. Let q > p > 0, g ∈ L1 ([a, b]). Then DpJqf (t) = Jq−pf (t), t ∈ [a, b].

Lemma 1.4 (Schaefer fixed point Theorem). Let E be Banach space and T : E → Eis a completely continuous operator. If V = u ∈ E : u = µTu, 0 < µ < 1 is bounded,then T has a fixed point in E.

The proof of the following auxiliary lemma is crucial for the problem (1.1).

Lemma 1.5. Assume that(Qki

)k=1,...,m

i=1,...,l∈ C ([0, 1] ,R), m, l ∈ N∗. And consider the

problem

(1.3) Dαkuk(t) =l∑

i=1

Qki (t), t ∈ J, n− 1 < αk < n, n ∈ N∗ − 1 ,

associated with the conditions:uk (0) = ak0,

u(j)k (0) = 0, j = 1, 2, . . . , n− 2,

u(n−1)k (0) = Jrkuk(τk),

(1.4)

where k = 1, 2, . . . ,m. Then for all k = 1, 2, . . . ,m, we have

uk(t) =−l∑

i=1

t∫0

(t− s)αk−1

Γ (αk)Qki (s) ds+ ak0 +

Γ (rk + n) tn−1

(n− 1)!(τ rk+n−1k − Γ (rk + n)

l∑i=1

τk∫0

(τk − s)αk+rk−1

Γ (αk + rk)Qki (s) ds− ak0τ

rkk

Γ (rk + 1)

.(1.5)

Proof. Thanks to (1.2) and by (1.3), we have

(1.6) uk(t) =l∑

i=1

t∫0

(t− s)αk−1

Γ (αk)Qki (s) ds− ck0 − ck1t− ck2t2 − · · · − ckn−1tn−1,

Page 4: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS 227

where ckj ∈ R, j = 0, 1, 2, . . . , n − 1, k = 1, 2, . . . ,m, m ∈ N∗, and n − 1 < αk < n,n ∈ N∗ − 1.

For all k = 1, 2, . . . ,m, we observe thatuk(0) = −ck0,

u(j)k (0) = −j!ckj , j = 1, 2, . . . , n− 2,

u(n−1)k (0) = − (n− 1)!ckn−1.

The conditions (1.4) will allow us to obtain

(1.7)

ck0 = −ak0,ckj = 0, j = 1, 2, . . . , n− 2,

ckn−1 =Γ (rk + n)

Γ (n)(τ rk+n−1k − Γ (rk + n)

) (ak0 τ rkkΓ (rk + 1)

−l∑

i=1

Jαk+rkQki (τk)

),

where k = 1, 2, . . . ,m. The values of ckj given by (1.7) replaced in (1.6) imply (1.5).This completes the proof of Lemma 1.5.

Now, we consider the space:

S := (u1, u2, . . . , un) : uk ∈ C ([0, 1] ,R) , Dγkuk ∈ C ([0, 1] ,R) , k = 1, 2, . . . ,m ,endowed with the norm

‖(u1, u2, . . . , um)‖S = max1≤k≤m

(‖uk‖∞ , ‖Dγkuk‖∞) .

This Banach space will be used in the proof of the theorems.

2. Main Results

We impose the following hypotheses:

(H1): There exist nonnegative constants(µk, k,=1,2,...,mi, i=1,...,l

)j, j=1,2,...,2m

, such that for all

t ∈ [0, 1] and for all (u1, u2, . . . , u2m), (v1, v2, . . . , v2m) ∈ R2m, we have∣∣fki (t, u1, u2, . . . , u2m)− fki (t, v1, v2, . . . , v2m)∣∣ ≤ 2m∑

j=1

(µki)j|uj − vj| .

(H2): The functions(fki)k=1,2,...,m

i=1,2,...,l: [0, 1]× R2m → R;m, l ∈ N∗ are continuous.

(H3): There exist nonnegative functions(ωki)k=1,2...,m

i=1,...,l∈ C ([0, 1]), such that: for all

t ∈ [0, 1] and for all (u1, u2, . . . , u2m) ∈ R2m∣∣fki (t, u1, u2, . . . , u2m)∣∣ ≤ ωki (t) ,

withsupt∈J

ωki (t) = Cki .

Page 5: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

228 L. TABHARIT AND Z. DAHMANI

Setting the following quantities:

Σk =2m∑j=1

l∑i=1

(µki)j,

zk =1

Γ (αk + 1)+

Γ (rk + n) ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1),

z∗k :=1

Γ (αk − γk + 1)+

Γ (rk + n) ταk+rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1),

and

Wk =∣∣ak0∣∣+

Γ (rk + n)∣∣ak0∣∣ τ rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (rk + 1),

W ∗k =

Γ (rk + n)∣∣ak0∣∣ τ rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (rk + 1).

We now prove the first main result.

Theorem 2.1. Assume that (H1) and the following are satisfied

(2.1) max1≤k≤m

Σk (zk,z∗k) < 1.

Then, the problem (1.1) has a unique solution on J .

Proof. Let us take the operator P : S → S given by

P (u1, u2, . . . , um) (t) := (P1 (u1, u2, . . . , um) (t) , . . . , Pm (u1, u2, . . . , um) (t)) , t ∈ J,such that

Pk (u1, u2, . . . , um) (t)

:= −l∑

i=1

t∫0

(t− s)αk−1

Γ (αk)fki (t, u1 (t) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)) ds+ ak0

+Γ (rk + n) tn−1

(n− 1)!(τ rk+n−1k − Γ (rk + n)

(l∑

i=1

τk∫0

(τk − s)αk+rk−1

Γ (αk + rk)fki (t, u1 (t) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)) ds

− ak0τrkk

Γ (rk + 1)

).

We shall prove that P is contractive: Let (u1, u2, . . . , um), (v1, v2, . . . , vm) ∈ S. Then,for all k = 1, 2, . . . ,m and t ∈ J , we get:

|Pk (u1, u2, . . . , um) (t)− Pk (v1, v2, . . . , vm) (t)|

Page 6: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS 229

≤ 1

Γ (αk + 1)sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)−fki

(s, v1 (s) , . . . , vm (s) , D

γ1v1 (s) , . . . , Dγmvm (s))∣∣

+Γ (rk + n) ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

× sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)−fki

(s, v1 (s) , . . . , vm (s) , D

γ1v1 (s) , . . . , Dγmvm (s))∣∣ .

Using (H1), yields

‖Pk (u1, u2, . . . , um)− Pk (v1, v2, . . . , vm)‖∞

(1

Γ (αk + 1)+

Γ (rk + n) ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

)

×l∑

i=1

((µki)1

+(µki)2

+ · · ·+(µki)2m

)max1≤k≤m

(‖uk − vk‖∞ , ‖Dγk (uk − vk)‖∞) .

Thus,

‖Pk (u1, u2, . . . , um)− Pk (v1, v2, . . . , vm)‖∞≤ Σkzk ‖(u1 − v1, . . . , um − vm, Dγ1 (u1 − v1) , . . . , Dγm (um − vm))‖S .(2.2)

On the other hand, we have

|DγkPk (u1, u2, . . . , um) (t)−DγkPk (v1, v2, . . . , vm) (t)|

≤ tαk−γk

Γ (αk − γk + 1)sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)−fki

(s, v1 (s) , . . . , vm (s) , D

γ1v1 (s) , . . . , Dγmvm (s))∣∣

+Γ (rk + n) tn−γk−1ταk+rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (r + n)

∣∣Γ (αk + rk + 1)

× sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)−fki

(s, v1 (s) , . . . , vm (s) , D

γ1v1 (s) , . . . , Dγmvm (s))∣∣ .

Then,

‖DγkPk (u1, u2, . . . , um)−DγkPk (v1, v2, . . . , vm)‖∞

(1

Γ (αk − γk + 1)+

Γ (rk + n) ταk+rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

)

Page 7: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

230 L. TABHARIT AND Z. DAHMANI

×2m∑i=1

l∑i=1

µki ‖(u1 − v1, . . . , um − vm, Dγ1 (u1 − v1) , . . . , Dγm (um − vm))‖S .

So,

‖DγkPk (u1, u2, . . . , um)−DγkPk (v1, v2, . . . , vm)‖∞≤ Σkz∗k ‖(u1 − v1, . . . , um − ym, Dγ1 (u1 − v1) , . . . , Dγm (um − vm))‖S .(2.3)

Thanks to (2.3) and (2.2), we obtain

‖P (u1, u2, . . . , um)− P (v1, v2, . . . , vm)‖S≤ max

1≤k≤nΣk(zk,z∗k) ‖(u1−v1, . . . , um−vm, Dγ1(u1−v1) , . . . , Dγm(um−vm))‖S .(2.4)

By (2.1) the operator P is contractive. Hence, P has a unique fixed point which is asolution of the system (1.1). This ends the proof.

The following result presents new conditions to the existence of one solution. Weprove the result by using Schaefer theorem:

Theorem 2.2. Let(fki)k=1,2,...,m

i=1,2,...,lsatisfied (H2) and (H3). Then, the problem (1.1)

has at least one solution on J .

Proof. First, we prove that P is completely continuous. We consider the set

Ωσ := (u1, u2, . . . , um) ∈ S; ‖(u1, u2, . . . , um)‖S ≤ σ, σ > 0 ,and we show that P maps bounded sets into bounded sets in S.

Let (u1, u2, . . . , um) ∈ Ωσ. The hypothesis (H3) implies that

‖Pk (u1, u2, . . . , um)‖∞

≤ tαk

Γ (αk + 1)sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)∣∣+∣∣ak0∣∣+

Γ (rk + n) tn−1∣∣ak0∣∣ τ rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (rk + 1)

+Γ (rk + n) tn−1ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

× sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)∣∣

(1

Γ (αk + 1)+

Γ (rk + n) ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

)sups∈J

l∑i=1

ωki (s)

(2.5)

+∣∣ak0∣∣+

Γ (rk + n)∣∣ak0∣∣ τ rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (rk + 1).

Page 8: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS 231

Therefore,

‖Pk (u1, u2, . . . , um)‖∞

(1

Γ (αk + 1)+

Γ (rk + n) ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

)

×l∑

i=1

Cki +

∣∣ak0∣∣+Γ (rk + n)

∣∣ak0∣∣ τ rkk(n− 1)!

∣∣τ rk+n−1k − Γ (rk + n)∣∣Γ (rk + 1)

≤ zk

l∑i=1

Cki +Wk.(2.6)

Furthermore, we get

‖DγkPk (u1, u2, . . . , um)‖∞

≤ tαk−γk

Γ (αk − γk + 1)sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)∣∣+

Γ (rk + n) tn−γk−1∣∣ak0∣∣ τ rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (rk + 1)

+Γ (rk + n) tn−γk−1ταk+rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

× sups∈J

l∑i=1

∣∣fki (s, u1 (s) , . . . , um (s) , Dγ1u1 (s) , . . . , Dγmum (s)

)∣∣≤

(1

Γ (αk − γk + 1)+

Γ (rk + n) ταk+rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

)

×l∑

i=1

ωki (t) +Γ (rk + n)

∣∣ak0∣∣ τ rkkΓ (n− γk)

∣∣τ rk+n−1k − Γ (rk + n)∣∣Γ (rk + 1)

.

Hence,

(2.7) ‖DγkPk (u1, u2, . . . , um)‖∞ ≤ z∗kl∑

i=1

Cki +W ∗

k .

From (2.6) and (2.7), we get

(2.8) ‖P (u1, u2, . . . , um)‖S ≤ max1≤k≤m

(zk

l∑i=1

Cki +Wk, z∗k

l∑i=1

Cki +W ∗

k

)<∞.

So, P maps bounded sets into bounded sets in S.

Page 9: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

232 L. TABHARIT AND Z. DAHMANI

The hypothesis (H2) implies that P is continuous on S. Now, let t1, t2 ∈ [0, 1] ;t1 < t2, and (u1, u2, . . . , um) ∈ S, we have:

‖Pk (u1, u2, . . . , um) (t2)− Pk (u1, u2, . . . , um) (t1)‖∞

≤ 1

Γ (αk + 1)

(2 (t2 − t1)αk +

(tαk2 − tαk1

)) l∑i=1

Cki(2.9)

+Γ (rk + n)

∣∣ak0∣∣ τ rkk(n− 1)!

∣∣τ rk+n−1k − Γ (rk + n)∣∣Γ (rk + 1)

(tn−12 − tn−11

)+

Γ (rk + n) ταk+rkk

(n− 1)!∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

(tn−12 − tn−11

) m∑i=1

Cki ,

and

‖DγkPk (u1, u2, . . . , um) (t2)−DγkPk (u1, u2, . . . , um) (t1)‖∞

≤2 (t2 − t1)αk−γk +

(tαk−γk2 − tαk−γk1

)Γ (αk − γk + 1)

l∑i=1

Cki

+Γ (rk + n)

∣∣ak0∣∣ τ rkkΓ (n− γk)

∣∣τ rk+n−1k − Γ (rk + n)∣∣Γ (rk + 1)

(tn−γk−12 − tn−γk−11

)

+Γ (rk + n) ταk+rkk

Γ (n− γk)∣∣τ rk+n−1k − Γ (rk + n)

∣∣Γ (αk + rk + 1)

(tn−γk−12 − tn−γk−11

) l∑i=1

Cki .

(2.10)

The right-hand sides of the above inequalities (2.9) and (2.10) are independent of(u1, u2, . . . , um) and tend to zero as t2 − t1 → 0. Then the operator P , is equi-continuous. Hence, the operator P is a completely continuous.

Finally we show that

λ := (u1, u2, . . . , um) ∈ S, (u1, u2, . . . , um) = ηP (u1, u2, . . . , um) 0 < η < 1

is bounded.For (u1, u2, . . . , um) ∈ λ, we have (u1, u2, . . . , um) (t) = ηP (u1, u2, . . . , um) (t), for

all t ∈ [0, 1]. Using (2.8), we get

‖(u1, u2, . . . , um)‖S ≤ η max1≤k≤m

(zk

l∑i=1

Cki +Wk, z∗k

l∑i=1

Cki +W ∗

k

)<∞.

Thus, λ is a bounded. By Lemma 1.4, the operator P has a fixed point which is asolution of (1.1). Theorem 2.2 is thus proved.

3. Examples

In this section, we give some examples to illustrate our theorems.

Page 10: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS 233

Example 3.1. Consider the following system:(3.1)

D113 u1 (t) =

1

12π3 (t+ 1)

cos (u1 (t)) + cos (u2 (t)) +

∣∣∣D 83u1 (t) +D

52u2 (t)

∣∣∣(1 +

∣∣∣D 43u1 (t) +D

32u2 (t)

∣∣∣)

+1

64π (t+ 1)

(|u1 (t) + u2 (t)|

2π (1 + |u1 (t) + u2 (t)|)+ sinD

83u1 (t) + sinD

52u2 (t)

),

t ∈ [0, 1] ,

D195 u2 (t) =

1

14π3et

(|u1 (t) + u2 (t)|

1 + |u1 (t) + u2 (t)|+ sin

(D

83u1 (t)

)+ sin

(D

52u2 (t)

))

+t2

6π3

∣∣∣sin (u1 (t)) + cos (u2 (t)) + cos

(D

83u1 (t)

)+ sin

(D

52u2 (t)

)∣∣∣1 +

∣∣∣sin (u1 (t)) + cos (u2 (t))− cos(D

83u1 (t)

)+ sin

(D

52u2 (t)

)∣∣∣ ,

t ∈ [0, 1] ,

u1 (0) =√3, u

(1)1 (0) = u

(2)1 (0) = 0, u

(3)1 (0) = J

12

(3

7

),

u2 (0) =√5, u

(1)2 (0) = u

(2)2 (0) = 0, u

(3)2 (0) = J

13

(6

7

).

For this example, we have: n = 4, l = 2, α1 = 11/3, α2 = 19/5, γ1 = 8/3, γ2 = 5/2,r1 = 1/2, r2 = 1/3, τ1 = 3/7, τ2 = 6/7, J = [0, 1], and

f 11 (t, u1, u2, u3, u4) =

1

12π3 (t+ 1)

(cosu1 + cosu2 +

|u3 + u4|(1 + |u3 + u4|)

),

f 12 (t, u1, u2, u3, u4) =

1

64π (t+ 1)

(|u1 + u2|

2π (1 + |u1 + u2|)+ sinu3 + sinu4

),

f 21 (t, u1, u2, u3, u4) =

1

14π3et

(|u1 + u2|

1 + |u1 + u2|+ sinu3 + sinu4

),

f 22 (t, u1, u2, u3, u4) =

t2

6π3

(|sinu1 + cosu2 + cosu3 + sinu4|

1 + |sinu1 + cosu2 − cosu3 + sinu4|

).

For all t ∈ J and (u1, u2, u3, u4), (v1, v2, v3, v4) ∈ R4, we get:∣∣f 11 (t, u1, u2, u3, u4)− f 1

1 (t, v1, v2, v3, v4)∣∣

≤ 1

12π3|u1 − v1|+

1

12π3|u2 − v2|+

1

12π3|u3 − v3|+

1

12π3|u4 − v4| ,∣∣f 1

2 (t, u1, u2, u3, u4)− f 12 (t, v1, v2, v3, v4)

∣∣≤ 1

128π2|u1 − v1|+

1

128π2|u2 − v2|+

1

64π|u3 − v3|+

1

64π|u4 − v4| ,∣∣f 2

1 (t, u1, u2, u3, u4)− f 21 (t, v1, v2, v3, v4)

∣∣≤ 1

14π3|u1 − v1|+

1

14π3|u2 − v2|+

1

14π3|u3 − v3|+

1

14π3|u4 − v4| ,

Page 11: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

234 L. TABHARIT AND Z. DAHMANI

∣∣f 22 (t, u1, u2, u3, u4)− f 2

2 (t, v1, v2, v3, v4)∣∣

≤ 1

6π3|u1 − v1|+

1

6π3|u2 − v2|+

1

6π3|u3 − v3|+

1

6π3|u4 − v4| .

We can take: (µ11

)1

=(µ11

)2

=(µ11

)3

=(µ11

)4

=1

12π3,(

µ12

)1

=(µ12

)2

=1

128π2,(µ12

)3

=(µ12

)4

=1

64π,(

µ21

)1

=(µ21

)2

=(µ21

)3

=(µ21

)4

=1

14π3,(

µ22

)1

=(µ22

)2

=(µ22

)3

=(µ22

)4

=1

6π3.

Indeed,

Σ1z1 = 0.001517,Σ2z2 = 0.001820,

Σ1z∗1 = 0.022304,Σ2z∗2 = 0.027009.

Thus,max (Σ1z1,Σ2z2,Σ1z∗1,Σ2z∗2) < 1.

Using Theorem 2.1, system (3.1) has a unique solution on J .

Example 3.2. We consider the following system:

(3.2)

D194 u1 (t) =

t sin(D

72u1 (t) +D

43u2 (t) +D

154 u3 (t)

)1 + |sin (u1 (t) + u2 (t) + u3 (t))|

+et sin

(u1 (t)D

72u1 (t)

)1 +

∣∣∣cos(u2 (t) +D43u2 (t) + u3 (t) +D

154 u3 (t)

)∣∣∣ , t ∈ [0, 1] ,

D174 u2 (t) =

et sin (u1 (t) + u2 (t) + u3 (t))

2− sin(D

72u1 (t) +D

43u2 (t) +D

154 u3 (t)

)+

sin (u2 (t)u3 (t))

π (t+ 1) + sin(u1 (t)D

72u1 (t)D

43u2 (t) +D

154 u3 (t)

) , t ∈ [0, 1] ,

D256 u3 (t) = sin (u1 (t)u2 (t)u3 (t)) e

t cos(D

72 u1(t)+D

43 u2(t)+D

154 u3(t)

)

+t sin (u1 (t)u2 (t)u3 (t))

eD72 u1(t)+D

43 u2(t)+D

154 u3(t)

, t ∈ [0, 1] ,

u1 (0) = 3√2, u

(1)1 (0) = u

(2)1 (0) = u

(3)1 (0) = 0, u

(4)1 (0) = J

18

(1

2

),

u2 (0) =√7, u

(1)2 (0) = u

(2)2 (0) = u

(3)2 (0) = 0, u

(4)2 (0) = J

12

(2

3

),

u3 (0) =√5, u

(1)3 (0) = u

(2)3 (0) = u

(3)3 (0) = 0, u

(4)3 (0) = J

58

(4

5

).

Page 12: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS 235

We have: n = 5, l = 2, α1 = 19/4, γ1 = 7/2, α2 = 17/4, γ2 = 4/3, α3 = 25/6,γ3 = 15/4, r1 = 1/8, r2 = 1/2, r3 = 5/8, τ1 = 1/2, τ2 = 2/3, τ3 = 4/5, J = [0, 1].And, for all (u1, u2, u3, u4, u5, u6) ∈ R6, for all t ∈ J , we get∣∣ f 1

1 (t, u1, u2, u3, u4, u5, u6)∣∣ ≤ ω1

1 (t) =t |sinu4 + u5 + u6|

1 + |sin (u1 + u2 + u3)|≤ C1

1 = 1,

∣∣ f 12 (t, u1, u2, u3, u4, u5, u6)

∣∣ ≤ ω12 (t) =

et |sin (u1u4)|1 + |cos (u2 + u5 + u3 + u6)|

≤ C12 = e,

∣∣f 21 (t, u1, u2, u3, u4, u5, u6)

∣∣ ≤ ω21 (t) =

et |sin (u1 + u2 + u3)|2− sin (u4 + u5 + u6)

≤ C21 = e,

∣∣ f 22 (t, u1, u2, u3, u4, u5, u6)

∣∣ ≤ ω22 (t) =

|sin (u2u3)|π (t+ 1) + sin (u1u4u5 + u6)

≤ C22 =

1

π − 1,∣∣f 3

1 (t, u1, u2, u3, u4, u5, u6)∣∣ ≤ ω3

1 (t) = |sin (u1u2u3)| et cos(u4+u5+u6) ≤ C31 = e,∣∣f 3

2 (t, u1, u2, u3, u4, u5, u6)∣∣ ≤ ω3

2 (t) =t |sin (u1 (t)u2 (t)u3 (t))|

eu4t+u5+u6≤ C3

2 = 1.

The functions fki are continuous and bounded on J × R6. Using Theorem 2.2, thesystem (3.2) has at least one solution on J .

References

[1] M. A. Abdellaoui and Z. Dahmani, Solvability for nonlinear systems of differential equationswith two arbitrary orders, New Zealand J. Math. (to appear).

[2] A. P. Agrawal, M. Benchohra and B. A. Slimani, Existence results for differential equations withfractional order and impulses, Mem. Differ. Equ. Math. Phys. 44 (2008), 1–21.

[3] D. Baleau, S. Z. Nazemi and S. Rezapour, The existence of solution for a n dimentional systemof multiterm fractional integrodifferential equations with antiperiodic boundary value problems,Abstr. Appl. Anal. 2014 (2014), Article ID: 896871.

[4] S. Belarbi and Z. Dahmani, Existence of solutions for multi-points fractional evolution equations,Appl. Appl. Math. 9 (2014), 416–427.

[5] Z. Cui, P. Yu and Z. Mao, Existence of solutions for nonlocal boundary value problems ofnonlinear differential equations, Adv. Dyn. Syst. Appl. 7 (2012), 31–40.

[6] Z. Dahmani and L. Tabharit, Fractional order differential equations involving caputo derivative,Theory Appl. Math. Comput. Sci. 4 (2014), 40–55.

[7] Z. Dahmani and A. Taieb, New existence and uniqueness results for high dimensional fractionaldifferential systems, Facta Univ. Ser. Math. Inform. 30 (2015), 281–293.

[8] Z. Dahmani and A. Taieb, Solvability of a coupled systems of fractional differential equationswith periodic and antiperiodic boundary conditions, Pure and Applied Mathematics Letters 1(2015), 29–36.

[9] M. Gaber and M. G. Brikaa, Existence results for a coupled system of nonlinear fractionaldifferential equation with three point boundary conditions, J. Fract. Calc. Appl. 21 (2012), 1–10.

[10] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Rivers Edge, NewJersey, 2000.

[11] M. Houas and Z. Dahmani, New results for a coupled system of fractional differential equations,Facta Univ. Ser. Math. Inform. 28 (2013), 133–150.

Page 13: HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS: NEW … · 2016-12-06 · KragujevacJournalofMathematics Volume40(2)(2016),Pages224–236. HIGH DIMENSIONAL FRACTIONAL COUPLED SYSTEMS:

236 L. TABHARIT AND Z. DAHMANI

[12] M. Houas, Z. Dahmani and M. . Benbachir, New results for a boundary value problem fordifferential equations of arbitrary order, International Journal of Modern Mathematical Sciences7 (2013), 195–211.

[13] W. H. Jiang, Solvability for a coupled system of fractional differential equations at resonance,Nonlinear Anal. Real World Appl. 13 (2012), 2285–2292.

[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differ-ential Equations, vol. 204 of North Holland Mathematics Studies, Elsevier, New York, 2006.

[15] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, NonlinearAnal. 69 (2008), 2677–2682.

[16] M. Li and Y. Liu, Existence and uniqueness of positive solution for a coupled systems of nonlineardifferential equation, Open Journal of Applied Sciences. 3 (2013), 53–61.

[17] F. Mainardi, Fractional calculus: some basic problems in continum and statistical mechanics, in:A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus In Continum Mechanics,Springer-Verlag, Wien, 1997, pp. 291–248.

[18] K. S. Miler and B. Ross, An Introduction to the Fractional Calculus and Fractional DifferentialEquations, Wiley, New York, 1993.

[19] M. D. Ortigueira and J. A. T. Machado, Fractional calculus applications in signals and systems,Signal Prossessing 86 (2006), 2503–2504.

[20] L. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.[21] A. Taieb and Z. Dahmani, A coupled systems of nonlinear differential equations involving m

nonlinear terms, Georgian Math. J. (2016), DOI: 10.1515/gmj-2016-0014.[22] C. X. Zhu, X. Zhang and Z. Q. Wu, Solvability for a coupled systems of fractional differential

equations with integer boundary conditions, Taiwanese J. Math. 17 (2013), 2039–2054.

1Department of Mathematics and Informatics, Faculty SEI,University of Mostaganem,AlgeriaE-mail address: [email protected]

2LPAM, Faculty SEI,UMAB of Mostaganem,AlgeriaE-mail address: [email protected]