83
High Temperature Superconductor Power Applications CERN Accelerator School CERN Accelerator School May 1 st 2013, Erice, Italy Prof Dr -Ing Mathias Noe Prof. Dr . Ing. Mathias Noe Institute for Technical Physics, Karlsruhe Institute of Technology, Germany

Higgp ph Temperature Superconductor Power Applications · Higgp ph Temperature Superconductor Power Applications CERN Accelerator SchoolCERN Accelerator School May 1st 2013, Erice,

  • Upload
    buinhi

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

High Temperature Superconductor g p pPower Applications

CERN Accelerator SchoolCERN Accelerator SchoolMay 1st 2013, Erice, Italy

Prof Dr -Ing Mathias Noe

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Prof. Dr. Ing. Mathias NoeInstitute for Technical Physics, Karlsruhe Institute of Technology, Germany

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 2

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

Motivation and BenefitsDesign AspectsDesign AspectsState-of-the-Art

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 3

Motivation

19. Century 20. Century 21. Century

Fossile Energy Carrier

Sustainable Energy

Coal and WaterEnergy Carrier Energy

What is the role of SuperconductivityWhat is the role of Superconductivityin this new energy age?

„Load and generation is locally coupled“

„Generation follows load“

„Load follows generation“ 

(Intelligent Systems)

The 21st century is a step into a new energy age

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 4

MotivationThe Role of Superconductivity for Power ApplicationsThe Role of Superconductivity for Power Applications

SuperconductivitySuperconductivity  Highest current densities at zero DC resistance and at high magnetic fields

I P A li iImpact on Power Applications

Improved energy efficiency

Application examples Loss reduction

Generators (some MVA) 30-40 %p gy y Generators (some MVA)Generators (> 100 MVA)

30 40 %40-50 %

Transformers stationary ~ 50 %Transformers mobile 80-90 %Magnetic heating ~ 50 %Magnetic separation > 80 %Magnetic separation > 80 %HTS currents leads 70-80 %HTS high field magnets > 90 %

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 5

HTS high field magnets 90 %

MotivationThe Role of Superconductivity for Power ApplicationsThe Role of Superconductivity for Power Applications

SuperconductivitySuperconductivity  Highest current densities at zero DC resistance and at high magnetic fields

I P A li iImpact on Power Applications

Improved energy efficiency Volume and weight reductionp gy y

Higher power density

Volume and weight reductionGenerators 30-50 %

Transformers 30-50 %

Cables > 50 %

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 6

MotivationThe Role of Superconductivity for Power ApplicationsThe Role of Superconductivity for Power Applications

SuperconductivitySuperconductivity  Highest current densities at zero DC resistance and at high magnetic fields

I P A li iImpact on Power Applications

Improved energy efficiencyp gy y

Higher power densitySuperconductivity facilitates

Superconducting fault current limiters New technology Fault current limiting systems 

Superconducting magnetic energy storage Superconducting magnetic energy storage 

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 7

MotivationThe Role of Superconductivity for Power ApplicationsThe Role of Superconductivity for Power Applications

SuperconductivitySuperconductivity  Highest current densities at zero DC resistance and at high magnetic fields

I P A li iImpact on Power Applications

Improved energy efficiencyp gy y

Higher power densityHigher power quality

Low impedance of superconducting power equipment

New technology

Higher power quality

equipment

High short-circuit capacity of grids with fault current limiters Higher power quality current limiters

Fast compensation of disturbances withsuperconducting magnetic energy storage

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 8

MotivationThe Role of Superconductivity for Power ApplicationsThe Role of Superconductivity for Power Applications

SuperconductivitySuperconductivity  Highest current densities at zero DC resistance and at high magnetic fields

I P A li iImpact on Power Applications

Improved energy efficiencyp gy y

Higher power densityLiquid Nitrogen

New technology

Higher power quality

Liquid Nitrogen

is used as cooling liquid and electricalinsulation Higher power quality

Environment‐friendly easily available

inflammable

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 9

inflammable

MotivationThe Role of Superconductivity for Power ApplicationsThe Role of Superconductivity for Power Applications

SuperconductivitySuperconductivity  Highest current densities at zero DC resistance and at high magnetic fields

I P A li iImpact on Power Applications

Improved energy efficiencyp gy y

Higher power density

New technology

Higher power quality Higher power quality

Environment‐friendly

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 10

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 11

Superconducting CablesMotivation and benefits Wh d i bl ?Motivation and benefits Why superconducting cables?

Why cables?Why cables?

Manhattan „underground“ at 1900Manhattan „underground“ at 2003

SC cables enablehigher current at small diameter or

Manhattan above ground“ at 1880

higher current at small diameter orhigh capacity at lower voltage

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Manhattan „above ground at 1880

Superconducting CablesWhy not LTS Cables in Power Systems?Why not LTS Cables in Power Systems?

Courtesy: Dr. Heinz‐Werner Neumüller, former Siemens Corporate Technology

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 13

Superconducting AC CablesWhy no long distance transmission with AC Cables?Why no long distance transmission with AC Cables?Long distance (> 100 km) transmission of high power (> 1 GW) ?

Cost comparison of overhead transmission line with conventional cable110 k di 1050

1170

110 km distance 380 kV transmission voltage2 Systems overhead transmission line

1050 Numbers in Mio. €

Systems overhead transmission line4 Systems 380 kV conventional cable 6.2:1

105190

85120Conventional AC cables are not yet used for long distance high power 

t i i

Invest Loss Total+ =

transmission. Why should we use HTS AC cables?

OHTL-3x635/117 Al/StCable: 2XS(FL)2Y 1x2500 RM, fully compensated

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 14

Source: B. Oswald, Freileitung/Erdkabel, 14.5.2009, Berlin

Superconducting Cables1 phase in 1 cryostat cold dielectric design1 phase in 1 cryostat – cold dielectric design

Figure: R. Soika, “Superconducting Power Cables” ESAS Summer School on Materials and Applications on Superconductivity, Karlsruhe 2010

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 15

Materials and Applications on Superconductivity, Karlsruhe 2010

Superconducting Cables3 phases in 1 cryostat cold dielectric design3 phases in 1 cryostat – cold dielectric design

Figure: LS Cable

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 16

Superconducting Cables3 concentric phases in one cryostat cold dielectric design3 concentric phases in one cryostat – cold dielectric design

Cryostat

Nit

Nitrogen return DielectricsNitrogen

in Dielectrics

Neutral Phase 3 Phase 1 Phase 2

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 17

Superconducting CablesCable TypesCable Types

3 phases in 1 cryostat1 phase in 1 cryostat 3 concentric phases p yp y

SCEl. Insulation

S d

Therm. InsulationLN2

pin 1 cryostat

CoreSupercond

LN2

• No strayfield • No strayfield N t fi ld• No strayfield• Longest lengths • Highest voltages

• No strayfield• compact design

• Low and medium high

• No strayfield• compact design• Low amount of SC

• gvoltages- • only for medium vpltage

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 18

Superconducting AC CablesState of the Art of HTS AC CablesState‐of‐the‐Art of HTS AC Cables

Manufacturer Place/Country/Year 1) Type Data HTSInnopower Yunnan, CN, 2004 WD 35 kV, 2 kA, 33 m, 3-ph. Bi 2223Sumitomo Albany, US, 2006 CD 34.5 kV, 800 A, 350 m, 3-ph. Bi 2223Ultera Columbus, US, 2006 Triax 13.2 kV, 3 kA, 200 m, 3-ph. Bi 2223Sumitomo Gochang, KR, 2006 CD 22.9 kV, 1.25 kA, 100 m, 3-ph. Bi 2223LS Cable Gochang, KR, 2007 CD 22.9 kV, 1.26 kA, 100 m, 3-ph. Bi 2223Sumitomo Albany, US, 2007 CD 34.5 kV, 800 A, 30 m, 3-ph. YBCONexans Hannover, D, 2007 CD 138 kV, 1.8 kA, 30 m, 1-ph. YBCON L I l d US 2008 CD 138 kV 1 8 kA 600 3 h Bi 2223Nexans Long Island, US, 2008 CD 138 kV, 1.8 kA, 600 m, 3-ph. Bi 2223Nexans Spain, 2008 CD 10 kV, 1 kA, 30 m, 1-ph YBCOUltera New York, US, 2013 Triax 13.8 kV, 4 kA, 240 m, 3-ph. YBCONexans Long Island US 2011 CD 138 kV 2 4 kA 600 m 1-ph YBCONexans Long Island, US, 2011 CD 138 kV, 2.4 kA, 600 m, 1-ph. YBCOLS Cable Gochang, KR, 2011 CD 154 kV, 1 GVA, 100 m, 3-ph. YBCO LS Cable Seoul, KR, 2011 CD 22.9 kV, 50 MVA, 500 m, 3-ph. YBCOSumitomo Yokohama, JP, 2012 CD 66 kV, 200 MVA, 200 m, 3-ph. Bi 2223, , , , , pSumitomo TEPCO, JP CD 66 kV, 5 kA to be definedFurukawa TEPCO, JP CD 275 kV, 3 kA Bi 2223Sumitomo Chubu U., JP, 2010 CD 10 kV, 3 kA DC, 20 m, 200 m Bi 2223VNIIKP Moscow, RU, 2010 CD 20 kV, 200 m Bi 2223Nexans Essen, D, 2013 CD 10 kV, 2.4 kA, 1000 m, 3 ph. Bi 2223

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 19

Superconducting AC CablesState of the Art of HTS AC Cable TestsState‐of‐the‐Art of HTS AC Cable Tests

Maximum rated current of conventional cables in air275 kV, 3 kA, Japan

RM

S

140

160LIPA II ´11 Gochang ´11

275 kV, 3 kA, Japan

ge /

kV

100

120Three phases coaxial1 phase in 1 cryostat3 phases in 1 cryostat

LIPA I ´08

se V

olta

g

80

100 3 phases in 1 cryostatIn red warm dielectric

Yokosuga ´04

Yokohama ´12

se-P

has

40

60

Albany ´06 Yunnan ´04

Pha

s

20

40 y

Gochang ´07Columbus ´06

k ´Moscow´ 09

Copenhagen ´01Icheon ´10

CurrentRMS / kA0 1 2 3 4

05

New York ´13Carollton ´01 Essen ´13

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 20

CurrentRMS / kA

Superconducting AC CablesState of the ArtState‐of‐the‐Art

Columbus  LIPA  Gochang 

Figure: LS Cable

Ultera13.2 kV, 3 kA, 200 mTriaxialTM Design

Nexans138 kV, 2.4 kA, 600

LS Cable22.9 kV, 50 MVA, 100 mBSCCO 2223

Figure: UlteraTriaxialTM Design 

BSCCO 2223Energized 2006High reliability

600 mSingle coaxial design BSCCO 2223Energized 2008

BSCCO 2223Energized 2007500 m field test with YBCO in 2011

Ultera

Figure: Nexans

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 21

High reliability Energized 2008 in 2011

Superconducting AC Cables40 MVA 10 kV 1 km

Project partners: RWE, Nexans, KIT

40 MVA, 10 kV, 1 km

10 kV, 2.3 kA (40 MVA), 1000 m

HTS cable with HTS FCLHTS cable with HTS FCL

Project started in September 2011

P t t t t f ll fi i h d Prototype test successfully finished

Commissioning by end of 2013

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Worlds first HTS system installation in a city center connecting two substations

Superconducting DC CablesWhere are the Applications for HTS DC Cables?Where are the Applications for HTS DC Cables?

Industry high current lines

IntegrateRenewables

Connection of Datacentercurrent lines Renewables Datacenter

Partly grounding GW long distance Degaussing of

Figure: Vision electric Figure: J. Minervini, MIT Figure: J. Minervini, MIT

of HVDC lines transmission ships

Fi N

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 23

Figure: Nexans Figure: C. Rubbia, IASS Figure: B. Fitzpatrick, HTS Peerreview2010

Superconducting DC CablesEnergy Efficiency Comparison of Copper and HTS CablesEnergy Efficiency – Comparison of Copper and HTS Cables

Specific lossAssumptions

Copper transmission line

Current density 1 0 A/mm2kAm

Wm

mmA

pCu 54,1757

11000

2

2 Copper at 20 °C

Current density 1.0 A/mm2

Specific conductivity 57 m/Ωmm2

Temperature value 0,0038kA

WmmA

pCu 2,221

10002

mm2

Copper at 90 °CMax. Temperature 85‐90 °C

HTSL DC transmission

kAmmmm

pCu

45 2

WWkAWWmmPP 2041150 2

pp

S Cryostat diameter 150‐200 mm

Cooling efficiency 1/15

Current lead loss 20W/kA

kAW

mWkAmPP

pCooling

CLCryov 120006,7

151

2

HTS

Current lead loss 20 W/kA

Cryostat loss 1 W/m2Example: 5 kA, 100 km

Copper (300 K) =  8770 kW

HTS DC cables can reduce transmission loss by more than 90 %

HTS  =  712 kW

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 24

HTS DC cables can reduce transmission loss by more than 90 %. 

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 25

Superconducting Rotating MachinesMotivationMotivation

Smaller volume and weight Half the weight and volume Two times higher power density

Less resources Higher efficiency L i l Less material 

Improved operation parameters L lt d ( ~ 0 2 0 3 ) Lower voltage drop (xd~ 0.2‐0.3 p.u.) Higher stability Higher torque and dynamicsHigher torque and dynamics Higher ratio of breakdown torque to nominal torqueMore reactive power

Enables new drive and generator systemsM. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Enables new drive and generator systems

Superconducting Rotating MachinesConventional synchronous machine (4 poles p 2)

Stator winding Parameter

Conventional synchronous machine (4 poles, p=2)

N

a‘cb

Stator windingRotor winding Torque/Lenght

BI.

.

c‘ b‘ Air gaprBIn rstat~

rBrA r1~.

SSaPower

nLrBA 2.

N

Power/Volume

nLrBA r1~

- Small air gap- Iron rotor

nBA r1~- Iron rotor- Stator winding in grooves

What is the impact of superconductivity?M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

What is the impact of superconductivity?

Superconducting Rotating MachinesConventional synchronous machine (4 poles p 2)

Stator winding

Conventional synchronous machine (4 poles, p=2)

ConventionelN

a‘cb

Stator windingRotor winding

Conventionel

B = 1 T

A 1

.

.

c‘ b‘ Air gap

A1 = 1 p.u.

P = 1 p.u.

.SSa

Loss

PCu,stat = 1 p.u.

.

N

PCu,rot = 1 p.u.

PFe = 1 p.u.- Small air gap- Iron rotor- Iron rotor- Stator winding in grooves

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Superconducting Rotating Machines

Superconducting synchronous machine(4 poles, p=2)

Conventional synchronous machine(4 poles, p=2)

N

a‘cb

N

a‘cb

Stator windingRotor winding

.

.

N

SSa

c‘ b‘ .

.

N

SS25-77 K

a

c‘ b‘Air gap

..

N

SSa

.

.

N

SSa

N N

CryostatDamper

- Copper stator winding AC- Superconducting rotor winding DC

ti t

- Small air gap- Iron rotor

- non-magnetic rotor- Air gap stator winding- Large air gap- Damper

- Stator winding in grooves

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

- Damper

Superconducting Rotating Machines

Superconducting synchronous machine(4 poles, p=2)

Stator windingRotor winding

N

a‘cb Superconducting Conventionel

Air gap.

.

N

25-77 K

c‘ b‘

p g

B = 2 T

A1 = 2 p.u.

B = 1 T

A1 = 1 p.u.

.

.SSa

P = 4 p.u.

Loss

P = 1 p.u.

LossN

DamperPCu,stat = 2 p.u.

PCu,rot = 0 p.u. + PKälte

PCu,stat = 1 p.u.

PCu,rot = 1 p.u.

PFe = 0,6 p.u. PFe = 1 p.u.- Copper stator winding AC- Superconducting rotor winding DC - non-magnetic rotornon magnetic rotor- Air gap stator winding- Large air gap- Damper

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

p

Superconducting Rotating MachinesState of the Art of large scale Motors and GeneratorsState‐of‐the‐Art of large scale Motors and Generators

Manufacturer / Country Machine TimelineAMSC (US) 5 MW demo-motor 2004( )

8 MVA, 12 MVA synchronous condenser 2005/2006 (Field test)40 MVA generator design study 2006

36 MW ship propulsion motor 2008p p p8 MW wind generator design study 2010

GE (US) 100 MVA utility generator 2006 (discontinued)

5 MVA homopolar induction motor 2008

LEI (US) 5 MVA high speed generator 2006

Reliance Electric (US) 10.5 MVA generator design study 2008

Kawasaki (JP) 1 MW ship propulsion 200?

IHI Marine, SEI (JP) 365 kW ship propulsion motor 2007

2.5MW ship propulsion motor 2010

Doosan, KERI (Korea) 1 MVA demo-generator 2007

5 MW motor ship propulsion 2011

Siemens (Germany) 4 MVA industrial generator 2008 (Field test)4 MW ship propulsion motor 2010

Converteam (UK), now GE 1.25 MVA hydro-generator 2012

500 kW demo-generator 2008

8 MW wind generator design study 2010

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 31

g g y

Superconducting Rotating MachinesFor which Application?

1st Power Generator 

For which Application?Peugeot ecar 1941

in Germany1891

10000 rpmElectric

1000 rpmPower 

Generator

El t i

IndustryMotor

Aircraft

100 rpmShip 

PropulsionElectric Cars 

Hydro Generator

Container Ship 2010

10 rpm Wind Generator

0.1 MW 1 MW 10 MW 100 MW 1000 MW

There are many potential applications for HTS rotating machines that differ very much in rating torque and speed

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 32

much in rating, torque and speed.

Superconducting Rotating Machines36 5 MW ship propulsion36.5 MW ship propulsion

Pi t fPicture from:Nature Physics 2, 794 - 796 (2006)doi:10.1038/nphys472Wired for the futureJohn Clarke & David C. Larbalestier

Image Courtesy of Converteam Image Courtesy of Siemens

AMSC36.5 MVA, 6 kV120 rpmp8 poles, 75 tonsEfficiency > 97 %Dimensions: 3,4 m x 4,6 m x 4,1 m

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 33

Superconducting Rotating Machines4 MW Synchronous Generator4 MW HTS II – Long term field test at Siemens motor factory in Nuremberg

4 MW Synchronous Generator

Test results: Loss reduced by 50 % Full capacitive power High overload stability Low voltage drop Low total harmonic distortiondistortionMore than 7500 operating hours Safe operation

Figure: Siemens

None of the shutdowns caused by HTS winding or cooling!All operating states and shutdowns tolerated by the system!

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Superconducting Rotating Machines4 MW Size and Weight Comparison (Siemens)4 MW Size and Weight Comparison (Siemens) 

Conventionel Maschine Superconducting Machine

Weight 11 to Weight 7 to

Image Courtesy of Siemens

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 35

Superconducting Rotating Machines4 MW Energy Efficiency Comparison (Siemens)4 MW Energy Efficiency Comparison (Siemens)

100 %

80 %

100 %

60 %

80 %

Loss

40 %

20 %

0 %

Conventionel Superconducting

η=96,5 % η=98,7 %

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 36

η 96,5 % η 98,7 %

Superconducting Rotating Machines1 7 MW Hydrogenerator (EU project Hydrogenie)1.7 MW Hydrogenerator (EU project Hydrogenie)

Objective

Partners

Develop and field test of a compact HTS hydro power generator

GE(Converteam)1.790 MW, 5.25 kV

PartnersGE (Converteam) UKPolitechnika Slaska Poland

214 rpm, 77.3 kNm28 poles, 32.7 tons

Politechnika Slaska, PolandKema, NederlandE ONWasserkraft Germany

4.7 m x 5.2 m x 3.5 mInstallation in 2012

E.ON Wasserkraft, GermanyZenergy Power, GermanyStirling Cryogenics NederlandStirling Cryogenics, NederlandCobham CTS, UK

Image Courtesy of Converteam

Successful test in 2013

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 37

Successful test in 2013

Superconducting Rotating MachinesHTS Wind GeneratorsHTS Wind Generators

TMPicture from AMSC SeaTitanTM Data Sheet

One HTS wind generator with 10 MW and 4000 full load hours earns 1.8 Mio. €1)more per year than a conventional 5 MW wind generator

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

more per year than a conventional 5 MW wind generator.1) 1 kWh=9Eurocent

Superconducting Rotating MachinesSuprapower Project (http //www suprapower fp7 eu/)Suprapower Project (http://www.suprapower‐fp7.eu/)

Weight of the nacelleWeight of the nacelle‐ Reduced support structures and foundations‐ Reduction: SC generator and Direct DriveSC wire: MgB2

‐ based on economical and technical reasonsd i f i bili f‐ demonstration of viability for WT

Cryogenic system: conduction‐cooled (cryogen‐free)

Image Courtesy of Siemens

( y g )‐ Gifford‐McMahon cryocoolers ‐ Heat is removed by closed contact ‐ Compressors cannot rotate => High‐pressure ‐ Helium rotary feed‐through Industrially viable installable and

SC wind turbine according to Tecnalia concept (PTC/ES2009/070639)

Industrially viable, installable and environmentally sustainable

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 39

Superconducting Rotating MachinesSuprapower Project (http //www suprapower fp7 eu/)Suprapower Project (http://www.suprapower‐fp7.eu/)

P tPartner‐ tecnaliaACCIONA WindPower‐ ACCIONA WindPower

‐ ACCIONA EnergiaColumbus Superconductors‐ Columbus Superconductors

‐ Oerlikon‐Leybold Vacuum‐ Institute of Electrical Engineering

Image Courtesy of Siemens

‐ Institute of Electrical Engineering Slovak Academic of Sciences‐ University of Southamptony p‐ KIT‐ d2m Engineering

SC wind turbine according to Tecnalia concept (PTC/ES2009/070639)

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 40

Superconducting Rotating MachinesEnergy Efficiency of HTS Power GeneratorsEnergy Efficiency of HTS Power Generators

Source: High-Temperature Superconductivity for Power Engineering, Materials and Applications, Accompanying Book tothe Conference ZIEHL II Future and Innovation of Power Engineering with High-Temperature-Superconductors 16-17

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 41

the Conference ZIEHL II, Future and Innovation of Power Engineering with High-Temperature-Superconductors, 16-17 March 2010, Bonn, Germany

Superconducting Rotating MachinesEnergy Efficiency of HTS Power GeneratorsEnergy Efficiency of HTS Power Generators

330000

Savings per generatorin Mio. € / a

CO2 reduction per generator in tons / a 1)

2

2,5

3

20000

25000

30000

in to

ns / a

o. €/ a

Efficiency increase 0.5 % Efficiency increase 0.5 %5 €cent per kWh

1

1,5

10000

15000

redu

ction i

ings in

 Mio

0

0,5

0

5000CO2

Savi

300 400 500 600 700 800 900 1000 1100 1200300 400 500 600 700 800 900 1000 1100 1200

Generator Power / MW Generator Power / MW

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 42

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 43

Superconducting TransformersMotivationMotivationManufacturing and transport Compact and lightweight (~50 % Reduction)Environment and Marketing E i (~50 % R d ti ) Energy savings (~50 % Reduction) Ressource savings Inflammable (no oil)Inflammable (no oil)Operation Low short‐circuit impedance p

‐ Higher stability‐ Less voltage drops‐ Less reactive power 

Active current limitation‐ Protection of devices‐ Reduction of investment

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 44

Superconducting TransformersDifferent typesDifferent types

Warm Iron Core Conduction CooledCold Iron Core

Iron CoreLN2 Iron Core

Coldhead

Iron CoreLN2

Cryostat Vacuum

Cryostat

Simple Cryostat

Iron at Room Temperature

Long recooling after quench

Low Cooling Power

Iron at Room Temperature

E i C t t

Simple Cryostat

Simple Cooling inerface

Hi h C li P Long recooling after quench

Temperature difference

Not suitable for high voltage

Expensive Cryostat

3 Cryostats needed

High Cooling Power (Iron core loss at low temp.)

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 45

Superconducting TransformersApplicationsApplications

Auxiliarytransformer

EHV 380 kVGenerator‐transformer

transformer

HSV110 kVNetwork‐transformer

MV 10‐30 kVDistribution‐transformer

LV 0,4 kVSubstation transformer

In general electricity passes 4 5 transformers from generation to load !M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 46

In general electricity passes 4‐5 transformers from generation to load !

Superconducting TransformersState of the ArtState‐of‐the‐Art

Country Inst. Application Data Phase Year HTS

Switzerland ABB Distribution 630 kVA/18,42 kV/420 V 3 Dyn11 1996 Bi 2223

Japan Fuji Electric Kyushu Uni

Demonstrator 500 kVA/6,6 kV/3,3 kV 1 1998 Bi 2223

Germany Siemens Demonstrator 100 kVA/5,5 kV/1,1 kV 1 1999 Bi 2223

USA Waukesha Demonstrator 1 MVA/13,8 kV/6,9 kV 1 Bi 2223

USA Waukesha Demonstrator 5 MVA/24,9 kV/4,2 kV 3 Dy Bi 2223

Japan Fuji Electric U Demonstrator 1 MVA/22 kV/6,9 kV 1 < 2001 Bi 2223p jKyushu

,

Germany Siemens Railway 1 MVA/25 kV/1,4 kV 1 2001 Bi 2223

EU CNRS Demonstrator 41 kVA/2050 V/410 V 1 2003 P-YBCOS- Bi 2223

Korea U Seoul Demonstrator 1 MVA/22,9 kV/6,6 kV 1 2004 Bi 2223

Japan U Nagoya Demonstrator 2 MVA/22 kV/6,6 kV 1 2009 P-Bi 2223S YBCOS-YBCO

Germany KIT Demonstrator 1 MVA, 20 kV 1 2015 P-Cu/S-YBCO

USA Waukesha Prototype 28 MVA/69 kV 3 2013 YBCO

Japan Kyushu Demonstrator 400 kVA 1 2010 YBCO

Australlia Callaghan Innovation

Demonstrator 1 MVA 3 2013 YBCO

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 47

Active current limitation

Superconducting Transformers28 MVA 70 kA Prototype28 MVA, 70 kA PrototypeProject Partners: SuperPower, Waukesha, SCE, ORNL, U Houston

Parameter Value

Objective: Develop and field test a 28 MVA HTS transformer using YBCO

Parameter Value

Primary voltage 70.5 kV

Secondary voltage 12.47 kV

Operating Temperature ~ 70 K, press. LN2 (1.1‐3 bar)

Target Rating  28 MVA

Primary Connection Delta

Secondary connection Wye

YBCO tape length ~ 12 km of 12 mm wide tapeYBCO tape length  12 km of 12 mm wide tape

HV rated current 230 A

LV rated current 1296 A

Source: F. Roy, “The 28‐MVA FCL Smart Grid Demo Transformer and Modeling Concerns about its Operation under Fault Conditions,” 2nd International Workshop on Modeling HTS, April 11‐13, 2011, Cambridge, 

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 48

United Kingdom.

Superconducting Transformers1 MVA Technology Demonstrator1 MVA Technology DemonstratorProject Partners: Callaghan Innovation, Wilson Transformers, General Cable Objective: Develop and field test of a 1 MVA HTS Transformer with YBCO:

HV Winding LV Winding

Objective: Develop and field test of a 1 MVA HTS Transformer with YBCO: 

Source: IRLYBCO Roebel CableL = 20 m15 strands

4 mm wide YBCOI/Ic ~ 25%Polyimide wrap insulation

Source: IRLFi HTS R b l i i fi ld !

15 strands5 mm widthIc ~ 1400 A @ 77 K, sf

Polyimide wrap insulation24 double pancakes

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 49

First HTS Roebel wire in field test!

Superconducting Transformers400 kVA Demonstrator400 kVA DemonstratorProject Partners: Kyushu Electric Power, Kyushu University

Objective: Develop 20 MVA transformer using YBCO

Data of 400 kVA demonstrator tested in 2010

Parameter Value

Primary Voltage 6.9 KVy g

Secondary Voltage 2.3 kV

Op. Temp.  LN2 at ‐207°C

Target Rating 400 kVA

LV Rated Current 174 A

HV R d C 58 AHV Rated Current 58 A

Source: Superconductivity WEB21, Winter 2011, January 17 2011 D=565 mm D=738 mm

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 50

H=810 mmD 738 mmH=2300 mm

Superconducting Transformers  at KITTest experience of recovery under load after fault limitation

V763 32 i

Test experience of recovery under load after fault limitation

ZiIOS R'SLXϭ

Source Transformer Load

0,2

0,3 V763‐32 isec

~ UOS

TS1

R'v

TS2

R'L

0,1

,

)

0 1

0,0i (A

Data:SN = 60 kVAU 1000 V

Recovery time

‐0,2

‐0,1

trec = 2,3 s

tlim= 60 ms

Up = 1000 VIp = 60 Auk = 1,58 %

0,0 0,5 1,0 1,5 2,0 2,5 3,0

‐0,3

lim

12 mm YBCO tape48 m , , , , , , ,

t (s)

F ll d i l l d d d i h 2G HTS i !

Ic= 272 A (77K, sf) Fault duration

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 51

Full recovery under nominal load was demonstrated with 2G HTS wire!

Superconducting TransformersEnergy Efficiency (Example 31 5 MVA Transformer)Energy Efficiency (Example 31,5 MVA Transformer)

180 100,00Loss Efficiency

100120140160

kW

ConventionelSuperconducting

99,70

99,80

99,90

cy / % +0.3%

+0.53%

406080

100

Loss / k

99,40

99,50

99,60

Conventionel

Efficienc

%

02040

0 20 40 60 80 10099,20

99,30

,

0 20 40 60 80 100

ConventionelSuperconducting

Power Transformers in Europe

0 20 40 60 80 100Load / % Load / %Source: A. Berger, 

PhD Thesis to be published 2010KIT Scientific Publishing

Type Number CapacityGVA

380 kV/220kV 689 311 8

Power Transformers in Europe In 2007 the world electricity generation was  19,771 TWh1). 

380 kV/220kV 689 311,8 220 kV/< 220 kV 2612 336,6 380 kV/< 220 kV 791 215,6 

The total power loss in Europe is appr. 6.5 %.  Appr. 40 % of the loss is caused in transformers.

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 52

From entsoe, Statistical Yearbook 2008 1) IEA key world energy statistics 2009

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 53

Superconducting Fault Current Limiters

It is impossible to avoit short‐circuits!M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 54

It is impossible to avoit short‐circuits!

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Normal Operation Short-Circuit

unlimitedunlimited

ent

limitedC

urre

Ti

Ideal Fault Current Limiter

Time

Fast short-circuit limitation No or small impedance at normal operation

F t d t ti Fast and automatic recovery Fail safe Applicable at high voltages

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Applicable at high voltages Cost effective

Normal Operation Short-Circuit

unlimitedunlimited

ent

limitedC

urre

Ti

Ideal Fault Current Limiter

Time

Fast short-circuit limitation No or small impedance at normal operation

F t d t ti Fast and automatic recovery Fail safe Applicable at high voltages

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Applicable at high voltages Cost effective

Normal Operation Short-Circuit

unlimited

Recovery

unlimited

ent

limitedC

urre

Ti

Ideal Fault Current Limiter

Time

Fast short-circuit limitation No or small impedance at normal operation

F t d t ti Fast and automatic recovery Fail safe Applicable at high voltages

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Applicable at high voltages Cost effective

RecoveryNormal Operation Short-Circuit

unlimitedunlimited

ent

limitedC

urre

Ti

Ideal Fault Current Limiter SCFCL

Time

Fast short-circuit limitation No or small impedance at normal operation

F t d t ti

Fast and automatic recovery Fail safe Applicable at high voltages

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Applicable at high voltages Cost effective

Superconducting Fault Current LimitersEconomic benefitsEconomic benefits

Delay improvement of components and upgrade power systemse.g. connect new generation and do not increase short‐circuit currentse.g. couple busbars to increase renewable generation and keep voltage b d i hbandwiths

Lower dimensioning of components, substations and power systemsFCL i t ilie.g. FCL in power system auxiliary

Avoid purchase of power system equipmente g avoid redundant feeders by coupling power systemse.g. avoid redundant feeders by coupling power systems

Increase availibity and reliability e g by coupling power systemse.g. by coupling power systems

Reduce losses and CO2 emissionse g equal load distribution with parallel transformerse.g. equal load distribution with parallel transformers

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 60

Superconducting Fault Current LimitersApplicationsApplications

HöS 380 kVHöS 380 kV

HS 110 kV

MS 10‐30 kV

NS 0,4 kV

There are many applications for SCFCLs at different voltage levels.

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 61

y pp g

Superconducting Fault Current LimitersState of the Art

1) Year of test2) 3‐Ph. : Phase‐phase voltageState‐of‐the‐Art

Lead Company Country/Year 1) Type Data 2) Phase SuperconductorACCEL/NexansSC D / 2004 Resistive 12 kV, 600 A 3-ph. Bi 2212 bulk

1‐Ph. : Phase‐ground voltage

pCAS China / 2005 Diode bridge 10.5 kV, 1.5 kA 3-ph. Bi 2223 tapeCESI RICERCA Italy / 2005 Resistive 3.2 kV, 220 A 3-ph. Bi 2223 tapeSiemens / AMSC D / USA / 2007 Resistive 7.5 kV, 300 A 1-ph. YBCO tapeLSIS Korea / 2007 Hybrid 24 kV, 630A 3-ph. YBCO tapeHyundai / AMSC Korea / 2007 Resistive 13.2 kV, 630 A 1-ph. YBCO tapeKEPRI Korea / 2007 Res.-hybrid 22.9 kV, 630 A 3-ph. Bi 2212 bulkI Chi / 2008 DC bi d i 35 kV 90 MVA 3 h Bi 2223 tInnopower China / 2008 DC biased iron core 35 kV, 90 MVA 3-ph. Bi 2223 tapeToshiba Japan / 2008 Resistive 6.6 kV, 72 A 3-ph. YBCO tapeNexans SC D / 2009 Resistive 12 kV, 100 A 3-ph. Bi 2212 bulkZenergy Power USA / 2009 DC biased iron core 12 kV 1 2 kA 3-ph Bi 2223 tapeZenergy Power USA / 2009 DC biased iron core 12 kV, 1.2 kA 3 ph. Bi 2223 tapeZenergy Power USA / 2010 DC biased iron core 12 kV, 1.2 kA 3-ph. Bi 2223 tapeNexans SC D / 2009 Resistive 12 kV, 800 A 3-ph. Bi 2212 bulkNexans SC D / 2011 Resistive 12 kV, 800 A 3-ph. YBCO tapeInnopower China / 2010 DC biased iron core 220 kV,300 MVA 3-ph. Bi 2223 tapeERSE I / 2010 Resistive 9 kV, 250 A 3-ph. Bi 2223 tapeERSE I / 2010 Resistive 9 kV, 1 kA 3-ph. YBCO tapeKEPRI Korea / 2010 Resistive 22.9 kV, 3 kA 3-ph. YBCO tapeAMSC / Siemens USA / D / 2012 Resistive 66 kV, 1.2 kA 1-ph. YBCO tapeInnopower China / 2012 DC biased iron core 220 kV, 800 A 3-ph. Bi 2223 tapeNexans SC EU / 2012 Resistive 24 kV 1005 A 3 ph YBCO tape

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 62

Nexans SC EU / 2012 Resistive 24 kV, 1005 A 3-ph. YBCO tape

Superconducting Fault Current LimitersDifferent typesDifferent types

Shielded iron coreResistive type DC biased iron core„Inductive“

Cu coilIron core

„saturated iron core“

vL1 vL2

Currentleads

HTS coilC1

L1 L2

i i

HTS Module iDC1 iDC2

Cryostat

LN2

odu e

No current leads to low temp.

Simple concept fail safe

no SC quench immediate recovery

y

p Fail safe High volume

fail safe compact, low weight Current leads to low

immediate recovery adjustable trigger current High volume and weight

High weighttemp.g g

High impedance at normal op.

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 63

Superconducting Fault Current LimitersSuccessful SCFCL Field Tests until 2000

St t 2000

Successful SCFCL Field Tests until 2000

100kVR

MS

Status: 2000

10olta

ge /

‘9610

hase

Vo ‘96

hase

-Ph

1ResistiveDC biased iron core

10-2 10-1 1 100.1

Ph Others

10 10 1 10

Current / kARMS

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 64

Superconducting Fault Current LimitersSuccessful and planned SCFCL Field Tests Status 2010

St t 2010

Successful and planned SCFCL Field Tests ‐ Status 2010

Hi h l

100kVR

MS

Status: 2010 ‘10‘12

High voltage

10olta

ge /

‘04‘96 ‘09

‘08

‘09 ’09 ‘10‘10

‘10

‘11

‘12

10

hase

Vo ‘04

‘08 ‘05‘10Medium voltage

hase

-Ph

1ResistiveDC biased iron core

10-2 10-1 1 100.1

Ph Others

10 10 1 10

Current / kARMS

A id bl b f SCFCL fi ld t t h b f d ithi th l tM. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 65

A considerable number of SCFCLs field tests have been performed within the last years.

Superconducting Fault Current Limiters220 kV 800 A DC biased iron core220 kV, 800 A DC biased iron core

Loose coupling hexagonal

Iron core

Loose coupling, hexagonal

ac coil

Dewar with dc coil In grid operation since 2012

A d i d f t i f 500 kV t t i iM. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 66

A design and manufacturing for a 500 kV prototype is ongoing.

Superconducting Fault Current LimitersResistive Type SCFCL NexansResistive Type SCFCL Nexans

12 kV, 800 A12 kV, 100 A 12 kV, 400 ABi 2212 bulkCommercial Projects

,Bi 2212 bulk

,Bi 2212 bulk

,Bi 2212 bulk

11/2009 201110/2009

10 kV, 600 AYBCO tapes

10 kV, 2.3 kAYBCO tapes

20 kV, 1 kAYBCO tapesYBCO tapeswww.eccoflow.org

10/2011 2012 2013

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 67

Superconducting Fault Current LimitersApplication Example (FP7 Project Eccoflow www eccoflow org)Application Example (FP7 Project Eccoflow: www.eccoflow.org)

Busbar Coupling Transformer FeederBusbar Coupling Transformer Feeder

Zshunt

FCLFCLCB

HTSRHTSCBHTS

Zshunt

RHTS

CB normally closed

CB normally open

Unique features of Eccoflow (1005A,24kV):One resistive SCFCL design fits two different applications One resistive SCFCL design fits two different applications

Two field tests with the same FCL will be performed in different applications Five utilities participate in this project

ll l dM. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 68

A permanent installation is planned

Superconducting Fault Current LimitersApplication Example (FP7 Project Eccoflow www eccoflow org)Application Example (FP7 Project Eccoflow: www.eccoflow.org)

Air corereactor

x xCB1 HTS CB2

SFCL System

Arrangement

y

Container with HTS‐SFCL Standard MV Switchgear Air core reactors

Source: J Schramm et al Design and Production of the ECCOFLOW

First Field Installation in early 2013 at Endesa Grid in Majorca

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Source: J. Schramm et. al. „Design and Production of the ECCOFLOW resistive Superconducting Fault Current Limiter “, ASC Conference 2012, Portland USA

Superconducting Fault Current LimitersImpact of Energy Efficiency of SCFCLsImpact of Energy Efficiency of SCFCLs110 kV

T1 T2Sr=50 MVAPCU,r=300 kW

Sr=50 MVAPCU,r=300 kW

10 kV 10 kVIT1=0.9 Ir IT1=0.1 Ir

Type Without SCFCLLoss T1 243 kWLoss T2 3 kWLoss T2 3 kWTotal Loss 246 kWEnergy loss /a 2154 MWhCO i i 1) / 1120 6CO2 emission 1) /a 1120.6 to

Source: Karl‐Heinz Hartung, CIGRE WG A3.23

1) 1 kWh=520 g CO2 (actual German Energy Mix)

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 70

German Energy Mix)

Superconducting Fault Current LimitersImpact of Energy Efficiency of SCFCLsImpact of Energy Efficiency of SCFCLs110 kV 110 kV

T1 T2Sr=50 MVAPCU,r=300 kW

Sr=50 MVAPCU,r=300 kW

T1 T2Sr=50 MVAPCU,r=300 kW

Sr=50 MVAPCU,r=300 kW

10 kV 10 kVIT1=0.9 Ir IT1=0.1 Ir

10 kV 10 kVIT1=0.5 Ir IT1=0.5 Ir

SCFCL

Type Without SCFCL With SCFCL DifferenceLoss T1 243 kW 75 kW ‐ 168 kWLoss T2 3 kW 75 kW +72 kWLoss T2 3 kW 75 kW  +72 kWTotal Loss 246 kW 150 kW ‐ 96 kWEnergy loss /a 2154 MWh 1314 MWh ‐ 840 MWhCO i i 1) / 1120 6 683 2 437 4

1) 1 kWh=520 g CO2 (actual German Energy Mix)CO2 emission 1) /a 1120.6 to 683.2 to ‐ 437.4 to

Source: Karl‐Heinz Hartung, CIGRE WG A3.23

German Energy Mix)

Energy efficiency of SCFCLs has to be investigated on a case to case basisM. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 71

Energy efficiency of SCFCLs has to be investigated on a case to case basis.

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 72

Superconducting Magnetic Energy StorageMotivationMotivation

Fuel Generation Transmission Distribution Customer/LoadFuel Generation Transmission Distribution Customer/Load

Energy StorageLarge scale Small scaleEnergy StorageLarge scale Small scale

Power QualityStabilityHigher

UtilizationLoad

BalanceStore

Renewables

Benefits

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Superconducting Magnetic Energy StorageBenefitsBenefits

• Short reaction time (ms)

• Fast charge and discharge• Fast charge and discharge

• 0‐100 % charging possible

• Independent supply of active and reactive power 

• High efficiency 

• No degradation

• Environmentally friendly• Environmentally friendly

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Superconducting Magnetic Energy StorageConceptConcept

2I1Q 2IL21Q Stored Energy

IP LUPower

SMES E d it2

max BQSMES Energy density0

max 2B

VQ

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Superconducting Magnetic Energy StorageConcept

Converter Storage unit

Concept

U ddiLUL L

i~UL

ChargeStorage

arge

UL dtLL=

t

Cha

t

i~

ge DischargeL=St

orag

ii

~ge tLUL=

Dis

char

g

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

D

Superconducting Magnetic Energy StorageState of the ArtState‐of‐the‐Art

Lead Institution

Country Year Data Super-conductor

ApplicationInstitution conductorKIT D 1997 320 kVA, 203 kJ NbTi Flicker compensation

AMSC USA 2 MW, 2,6 MJ NbTi Grid stability

KIT D 2004 25 MW, 237 kJ NbTi Power modulator

Chubu J 2004 5 MVA, 5 MJ NbTi Voltage stability

Chubu J 2004 1 MVA 1 MJ Bi 2212 Voltage stabilityChubu J 2004 1 MVA, 1 MJ Bi 2212 Voltage stability

KERI Korea 2005 750 kVA, 3 MJ NbTi Power quality

Ansaldo I 2005 1 MVA, 1 MJ NbTi Voltage stability

Chubu J 2007 10 MVA, 19 MJ NbTi Load compensation

CAS China 2007 0,5 MVA, 1 MJ Bi 2223 -

KERI Korea 2007 600 kJ Bi 2223 Po er Voltage q alitKERI Korea 2007 600 kJ Bi 2223 Power-, Voltage quality

CNRS F 2008 800 kJ Bi 2212 Military application

KERI Korea 2011 2.5 MJ YBCO Power quality

BNL USA 2013 3 MJ YBCO Grid storage

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 77

Superconducting Magnetic Energy StorageState of the Art of HTS SMES DevelopmentState‐of‐the‐Art of HTS SMES Development

KERI, KoreaP lit

CNRS, FranceMilit li ti

Chubu, JapanB id i lt di Power quality Military applicationBridging voltage dips

bu Electric

KERI

Figure: C

hu

Figure: 

2.5 MJ YBCO tape, 22 km550 A

814 kJBi 2212 tape315 A

1 MJ , 1 MWBi 2212 tape500 A,

Figure: CNRS

550 A20 K conduction cooledBmaxII 6.24 TTest in 2011

315 A20 K conduction cooledDiameter : 300/814 mmH i ht 222

500 A, 5 K conduction cooledVoltage: 2.5 kV

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 78

Test in 2011 Height: 222 mm

Superconducting Magnetic Energy Storage25 T 20 kW 3 MJ HTS prototype (2010 2013)Project Partners: SuperPower, ABB, Brookhaven National Lab., U Houston

25 T, 20 kW, 3 MJ HTS prototype (2010‐2013)

Objective: Develop and field test a HTS SMES for integrating renewables

Parameter ValueEnergy storage 3 MJP 20 kWPower 20 kWMagnetic field 25 TSuperconductor YBCO tapeSuperconductor YBCO tapeWire length 7 kmTape width 12 mmTape width 12 mmMinimum Ic 600 A

Source: Superconducting Magnetic Energy Storage (SMES) Systems for GRIDSQiang Li, Drew W. Hazelton, Venkat Selvamanickam, Presented by Traute Lehner, Tenth EPRI Superconductivity Conference, Tallahassee, FL, Oct. 12, 2011

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy

Superconducting Magnetic Energy StorageTest Experience of HTS SMES for bridging instantanous voltage dipsTest Experience of HTS SMES for bridging instantanous voltage dips

Source: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. 2, JUNE 2005 1931Development of MVA Class HTS SMES System for Bridging Instantaneous Voltage DipsDevelopment of MVA Class HTS SMES System for Bridging Instantaneous Voltage DipsKoji Shikimachi, Hiromi Moriguchi, Naoki Hirano, Shigeo Nagaya, Toshinobu Ito, JunjiInagaki, Satoshi Hanai, Masahiko Takahashi, and Tsutomu Kurusu

SMES have demonstrated their technical feasibility many timesM. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 80

SMES have demonstrated their technical feasibility many times.

High Temperature Superconductor P A li tiPower Applications

MotivationConventional Power System Equipment• Cables, Rotating Machines, Transformers

New Power System Equipment• Current Limiters, SMES

Summary

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 81

Conclusions

HTS cables and SCFCL are very close to commercialization. HTS transformers, SMES and rotating machines will enter the market in the next decade.

HTS Material Research Directions for Power Applications

Higher production (Today a few 100 km/a for 2G) Lower cost (Less than 10 €/kA m)( / ) Stability of 2G wire Higher critical currents in low and high magnetic fieldsg g g

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy 82

Status of HTS Power Applications

Technology demonstration

Large scaleprototypes

First commercial

Fullmarket entryy

in field productsy

DC Cable

AC Cable

MV SCFCL

DC Cable

MV SCFCL

Power gen

HV SCFCL

Power gen.

Ship prop.

H d

LTS SMES

Hydro gen.

HTS SMES

Transformer

HTS SMES

M. Noe                            HTS Power Appllications, CERN Accelerator School , May 1st 2013, Erice, Italy