18
EJECT VALIDATION Trammell - EJECT PROJECT Page 1 Assessment of the Risk of Worsening an Injury to the Cervical Spine and or Spinal Cord during Helmet Removal PURPOSE The purpose of this document is to assess the risk of worsening and existing injury to the cervical spine and or spinal cord in a racing driver (participant) during removal of the helmet. INTRODUCTION The rate of occurrence of spinal injury in motor vehicle crashes and the incidence of cervical fracture are reviewed from the literature. The rates of specific levels of injury and the injury types are reviewed. This information forms the basis of assessment of risk of those types of injury that might occur in a motor vehicle accident (MVA) and the mechanisms through which a force might be applied that could potentially worsen the injury. This data provides insight into the types of injury that may be encountered in motorsports, and the frequency with which they are expected. Data regarding the incidence of cervical spinal fracture (CSF) and cervical spinal cord injury (SCI) in motorsports is addressed. The types of injuries recorded in motorsports help to define the risk of exacerbation of that injury during helmet removal. The forces applied to the head and neck during manual helmet removal have been investigated and are reported. A novel system (EJECT®) is introduced and the forces that it applies to the head and neck during pneumatically assisted helmet removal are evaluated and reported. The claimed benefit of the EJECT® system (Appendix 1) is that the forces generated by this device during mechanically assisted helmet removal are

Helmet Removal/Eject Assement

Embed Size (px)

Citation preview

Page 1: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 1

Assessment of the Risk of Worsening an Injury to the Cervical Spine and or Spinal

Cord during Helmet Removal

PURPOSE

The purpose of this document is to assess the risk of worsening and existing injury

to the cervical spine and or spinal cord in a racing driver (participant) during

removal of the helmet.

INTRODUCTION

The rate of occurrence of spinal injury in motor vehicle crashes and the incidence

of cervical fracture are reviewed from the literature. The rates of specific levels of

injury and the injury types are reviewed.

This information forms the basis of assessment of risk of those types of injury that

might occur in a motor vehicle accident (MVA) and the mechanisms through

which a force might be applied that could potentially worsen the injury. This data

provides insight into the types of injury that may be encountered in motorsports,

and the frequency with which they are expected.

Data regarding the incidence of cervical spinal fracture (CSF) and cervical spinal

cord injury (SCI) in motorsports is addressed. The types of injuries recorded in

motorsports help to define the risk of exacerbation of that injury during helmet

removal.

The forces applied to the head and neck during manual helmet removal have

been investigated and are reported.

A novel system (EJECT®) is introduced and the forces that it applies to the head

and neck during pneumatically assisted helmet removal are evaluated and

reported. The claimed benefit of the EJECT® system (Appendix 1) is that the

forces generated by this device during mechanically assisted helmet removal are

Page 2: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 2

less than those during manual removal and therefore less likely to exacerbate an

existing injury to the cervical spine and or spinal cord. This document reviews the

relevant literature, provides data and expert opinion in support of those claims.

INCIDENCE, PREVALENCE AND OCCURRENCE OF CERVICAL FRACTURES AND

SPINAL CORD INJURY IN MVA

There are more than 150,000 spinal fractures per year in the United States.

Injuries from Motor Vehicle Accidents (MVA) include spinal injury in 12.5% -

18.6%. MVA account for 39% - 60% of new spinal fractures from all causes

(Ref 1,2,3,4). Cervical spinal injury is relatively rare occurring in only 2% -

3% of patients with blunt trauma who undergo imaging studies (Ref 5).

Occurrence of Spinal Cord Injury (SCI) from all causes is 3.2 - 5.3 /

100,000 in the US and Canada. SCI is the result of spinal injury from MVA

in 33% - 56%. Fractures of the cervical spine account for 60% - 80% of

SCI from all causes of trauma. Cervical fractures sustained in a MVA are

responsible for 60% of reported cases of SCI (Ref 6,7,1,8,9).

OCCURRENCE BY LEVEL AND TYPE OF CERVICAL INJURIES SUSTAINED IN MVA

The American College of Surgeons reports that trauma that results in spinal

injury involves the cervical spine in 55%, thoracic spine in 15%,

thoracolumbar spine in 15% and the lumbosacral spine in 15%.

Injuries of the cervical spine are most prevalent at the C1 level followed by

C5 - 7 levels. The combination of injury to the upper cervical spine (occiput,

C1 C2) and the lower cervical spine (C3-T1) was thought to be unusual

(Ref 7) but is now recognized as occurring in 5 - 9 % (Ref 4). 42% of SCI

are the result of MVA and are associated with a second noncontiguous SCI

in 28% (Ref 6). Negative clinical and radiographic examinations do not

prove the absence of pathological lesions (Ref 10).

Subaxial (C3 -C7) cervical spinal fractures were classified according to a

mechanistic method by Allen and Ferguson (Ref 7) in 1982. This review

classified the fracture types into six major groups as defined by the

Page 3: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 3

application of the major injury vector (MIV) representing that percentage of

the total group.

1) Compressive Flexion (CF) -28% 2) Vertical Compression (VC) - 8.5% 3) Distractive Flexion (DF) - 37.0% 4) Compressive Extension (CE) - 24.2% 5) Distractive Extension (DE) - 5.5% 6) Lateral Flexion (LF) - 3.0%

In this study the mechanism of injury was confirmed in all of the cases included in the review. They noted that low stress rates produced fractures along the isocline stress line, while high stress rates resulted in comminuted fractures. This landmark study is important to this project in that it defines the MIV to be in compression in 54.5% and distraction in 42.5%. They further subdivided the fracture type by degree of severity. This established that the risk of spinal cord injury increased in each phylogeny as the severity of the injury increased. This is verified in subsequent studies that have shown that the rate of SCI increases with increasing rate of application and magnitude of force (Ref 11). The most common levels of injury in the lower cervical spine were at the C4/5 and C5/6, with involvement of C5 vertebra in 60.8% of cases (Ref 4). Complete SCI's were most commonly seen with burst fractures - 48% (CF and VC) and bilateral facet fracture dislocation (DF) (Ref 12). There were multiple levels of involvement in 28% at adjacent or at noncontiguous levels. Cervical injuries sustained by non constrained operators of ATV's resulted in cervical spinal injuries in 35.7% of those injured, 50% of whom sustained axial compression injuries. The norm for these in other series of constrained persons is 12% (Ref 13). This is of importance as it can be considered representative of the cervical injuries that would be expected in an unrestrained operator of a motorcycle, or go kart. Levels of injury as the result of MVA are most frequent at the C1 level followed by C5, 6 and C7 in that order (Ref 6, 8). 14.1% of those sustaining injury in a MVA sustain a spinal injury at the C1-2 level with 17.4% at C3 - 7 levels (Ref 14).

Page 4: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 4

The C1 - C2 level was involved in 9.7% of those with a spinal injury while the C3 - C7 levels were involved in 11.1%. The remaining 79% involved the remainder of the spine. The importance of location of injury within the cervical spine and the nature of the MIV (compression vs. distraction) is important in determining the risk of exacerbating a cervical spinal injury during helmet removal in that removal of a helmet is associated with the application of distractive force. A subset of injury production in MVA is rollover. This is the most hazardous type of MVA and the cervical spine is the 3rd most common location of injury in these crashes after the head and thorax. Cervical fractures are usually compressive in nature and are due to the inertia of the torso compression of the head into the roof / ground commonly referred to as the diving mechanism (Ref 11). The importance of this is that in a closed cockpit vehicle sustaining a rollover, the mechanism of cervical injury has a probability for compression and therefore is not likely to be adversely affected by a distraction force. UPPER CERVICAL SPINE Injuries of the upper cervical spine include injury to the base of the skull (basilar skull fracture or occipital atlanto dissociation), atlas (C1) and axis (C2) and their ligamentous attachments. They are more common in children (Ref 15). Traumatic occipital cervical dissociation is the most common fatal cervical spine injury (Ref 16). They account for 5 % - 12% of fatalities in MVA. Death from MVA where there is cervical injury is attributed to OC dissociation in 39% (Ref 17). The increased risk of this injury in children calls attention to the potential for it presence in youthful participants in motorsports, especially karting. In those surviving the initial traumatic insult the distribution of cervical fractures by level are 0.6% OAD, 23% C1 and / or C2 and C3 - C7 in 73.7% (Ref 18). OAD - can occur from multiple points of application of force to the head, with the neck in various positions. The final common pathway is one of tensile loading of the ligamentous structures. OAD was present in 35 - 39% of those fatalities from MVA where there was a cervical injury.

Page 5: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 5

C1 (Jefferson fractures) account for 10% of all cervical spinal fractures and they are associated with concomitant spinal injuries 50% of the time. This fracture type is the result of compressive force (Ref 4).

C2 - account for 20% of acute cervical fractures. The most common C2 lesion is traumatic spondylolisthesis (Hangman's fracture), which accounts for 15% of cervical fractures. 75% of these fractures are the result of MVA. This fracture results from varying mechanism but is most commonly associated with tension extension loading (Ref 4). Fractures of the odontoid process of C2 represent 7%-9% of cervical fractures (Ref 19, 20). This injury was studied and found to be due to MVA in 70% of cases. Type 2 fracture was present in 66.7% and type 3 in 33.3%. Type 2 fractures result from shear in the anterior posterior plane (Ref 4). This injury occurred in most cases at a ΔV of less than 56kph. These injuries are thought to be best stabilized with traction (Ref 21,22,23). A type 3 injury associated with gross ligamentous failure has been reported. In this case the application of only 5 # (22.2N) of cervical traction resulted in catastrophic neurological injury (Ref 19). This was in spite of the recommendation that the amount of traction for stabilization of these injuries is 12 - 15 lbs. The range of recommended weight varies for 4 - 15 lbs. Type 3 fractures result from application of combined anterior posterior and lateral shear loading (Ref 4). The importance in the context of helmet removal is that the C1 and C2 fractures are related to either compression extension (Ref 6) or to compression, or shear in fractures of the odontoid. These fractures are not likely to be worsened by distractive forces the result of helmet removal. This is however with exception as noted above. OAD injuries however are likely to be adversely affected by the application of distractive forces.

Page 6: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 6

FORCES APPLIED TO THE HEAD AND NECK REQUIRED TO PRODUCE INJURY

Forces applied to the cervical spine that result in failure of the vertebral

centrum or the spinal motion unit have been shown to have a mean of

3567N in compression, 1823N in flexion compression and 1089N in

extension compression (Ref 37).

Failures of the cervical spinal motion segment occur at 3.9Nm in extension

and 3.1Nm in flexion. Mean stiffness of the intact cervical segment is

1310N/mm. With occipital compression there were no significant motion

couplings observed. It was concluded that there is a wide variation in the

mechanical properties of connective tissues of the cervical region (Ref

24,25).

Side impacts have been studied and found to result in multiplanar injuries

at higher loads. The injury threshold was 6.5 gs with uniplanar injuries to

C4/5 through C7T1 in flexion, axial rotation or lateral bending. After 8g's

three plane injury was observed at C4/5, and C6/7, whereas two plane

injury occurred at C3/4 in flexion and lateral bending and C5/6 and C6/7 in

axial rotation and lateral bending. The conclusion of this study was that the

risk of neck injury was highest in rear impacts with the head rotated to the

side, followed by side and frontal impacts (Ref 26). This is of importance in

considering the possible adverse effects of extrication of an injured person

and the potential for worsening a cervical injury.

Although it would seem intuitive that the risk of injury would be related to

the forces of the accident this has been established in several studies and

it is recognized that impact velocity is the most important factor in

determining the risk of cervical spinal fracture (Ref 11). This was confirmed

in a recent study that reported that 43% of spinal fractures occurred in

MVA's where the ΔV exceeded the respective means for FMVC's (47.4kph)

and LMVC's (35.3kph) (Ref 2). There is one study that refutes this finding

and concludes that ΔV is not a conclusive predictor of cervical spine injury

(Ref 27). These studies may in fact be compatible in that the above

referenced works report the risk of spinal fracture at all levels vs. the risk of

cervical spinal fracture with respect to ΔV. This may in fact be the case as

Page 7: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 7

the occurrence of cervical spinal fracture as a result of MVA has been

shown to be related to the position of the head and neck and the degree of

muscular contraction at the time of force application, as well as the

direction, magnitude and rate of application of the force.

SPINAL INJURIES IN MOTORSPORTS

Spinal fractures in drivers of open cockpit open wheel race cars were studied

during the interval 1996 - 2005 in five racing series. There were 44 levels of

fracture in 38 occurrences of fracture in 36 drivers. There were 3 injuries at the

OC level, and 12 C3 - C7. Therefore the cervical fractures represented 34.1% of

the spinal fractures, which is consistent with that present in MVA's. The cervical

fractures involved the OC region in 6.8% of all spinal fractures, and represent 20%

of the cervical fractures with the remaining 80% involving the subaxial cervical

spine. All 3 of the OC injuries were fatal (REF 28).

It is thought that since the HANS has been compulsory in most all forms of

professional racing that the occurrence of axial distractive injuries has been

greatly reduced if not eliminated. There are no distractive basilar skull fractures or

upper cervical distractive injuries recorded in the IRL database since the HANS

was made compulsory. (Ref 29).

CURRENT RECOMMENDATIONS FOR ON SCENE MANAGEMENT OF SUSPECTED

CERVICAL SPINAL INJURY AND THE POTENTIAL CONSEQUENCES.

Field management of suspected cervical spine injuries is by immobilization

with a semirigid cervical collar, head immobilization, backboard, tape and

straps before, and during transfer to a definitive-care facility. If intubation is

required the neck should be maintained in a neutral position (Ref 30).

The issue here is that spinal immobilization has never been studied in

controlled randomized trials (Ref 31). Traditional thinking is being

challenged by emerging data. This data suggests that manual in line

stabilization may increase subluxation of unstable segments especially at

the occipital atlanto complex (Ref 18). Further there are reports that manual

in line stabilization does not limit the movement that occurs during

Page 8: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 8

intubation (Ref 32,33). There are several anecdotal reports that in the

presence of occiptocervical instability traction and collar immobilization can

reproduce displacement and precipitate neurological injury.

There is evidence that application of a cervical extrication collar can lead to

catastrophic neurological complication in patients with unstable cervical

injuries. The upper cervical spine seems particularly vulnerable. In a recent

cadaveric study application of a cervical collar caused grossly abnormal

increased separation at the site of a severely injured C1-C2 level. This

study was qualitative and did not report the distractive force generated by

the collar that resulted in distraction of the unstable injury. The preparation

of the cadavers did not allow for action of the cervical musculature, thus

representing an unconscious patient (Ref 34). In a review of 6 cases of

occiptocervical dissociation Ben - Galim et al commented that the amount

of protection afforded by active muscle control was remarkably substantial

(Ref 24).

There are no studies that define the degree of distraction force needed to

produce further separation of an unstable upper cervical distraction injury.

There is a clinical report of a longitudinal atlantoaxial dislocaton with type III

odontoid fracture that resulted in quadriplegia after application of 5# of

skeletal traction (22.2N) (Ref 19).

TECHNIQUE OF HELMET REMOVAL IN A PARTICIPANT WITH POSSIBLE CERVICAL

SPINAL INJURY

The technique of helmet removal in motorsports and all other helmeted

sports involves applying traction to the helmet by one responder while the

other supports the head in a neutral posture while providing manual

stabilization to the anterolateral neck through the mandible. (Appendix 1)

This method has been shown to result in a distractive force being applied to

the head neck complex.

Recent testing done at the Mayo Clinic (Appendix 3) show that manual

removal of a full face racing helmet generates distractive loads on the neck

of 209 lbs (929N) on average. This is significantly more than that reported

to produce neurologic injury an unstable upper cervical spinal injury.

Page 9: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 9

RISK OF EXACERBATION OF INJURY WITH THE CURRENTLY RECOMMENDED

TECHNIQUE

Injury of the OC Complex and Upper Cervical Spine

Distractive injuries to the occipitocervical complex and the upper cervical

spine are known to be at risk of exacerbation as a result of distractive force.

Although injuries of the occipitocervical complex were present in only 0.6%

of those admitted to hospital with cervical fractures (Ref 18) OCD is the

cause of death in 39% of fatalities from MVA. OCD represented 20% of the

injuries reported in open wheel racing all of which were fatal.

This injury is present 5 -10% of unconscious patients who sustain a cervical

injury. The cervical musculature provides stability to these injuries and

represents a significant protective mechanism (Ref 17). This coupled with

the fact that 33% of cervical injuries are not suspected at the scene (Ref 8)

require that the first responder have a high index of suspicion for the

presents of cervical injury.

As stated the traditional recommendations for stabilization of cervical

injuries are coming into question as potentially exacerbating and underlying

unstable injury.

Application of distractive force to this injury is known to result in axial

displacement with resultant neurological injury (Ref 15,16,34). The

application of an extrication collar can result in catastrophic neurological

complications in patients with unstable cervical injuries especially

dissociative injuries of the occipitocervical spine. Data that defines the

amount of force required to worsen this unstable distractive injury are

anecdotal with one case reported to have deteriorated from neurologically

normal to pentaplegia with the application of 5 lbs (22.2N).

Occipital Cervical Complex injuries are the most common cervical injury

resulting in death in MVA as proven post mortem. There are reports of

Page 10: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 10

survival following this injury (Ref 17). Clinically pure tensile neck injuries

are thought to be confined to the craniocervical junction and the base of the

skull (Ref 4).

Fracture at the C1 and or C2 level individually or in combination account for

9.7% of all traumatic spinal fractures and 14.1% of those occurring from

MVA and 20% of all cervical fractures (Ref 21,22,14). Lesions of C1 and

C2 are most frequently associated with compression extension

mechanisms and would not be adversely affected by a distractive force.

Therefore in motorsports the injury that would be most probably adversely

affected by the application of a distractive force is an occipital atlanto

dissociation, which is most commonly fatal but has been reported to be

survivable (Ref 17). This injury was present in 20% of those racing drivers

sustaining cervical injury in the series reported (Ref 28) and was uniformly

fatal. There were two cases OAD with survival not reported in that series

(Ref 29).

Unstable fractures of C1/2 have been reported where application of as little

as 5# of traction resulted in catastrophic neurological injury. Currently

recommended techniques for helmet removal (Appendix 2) have been

shown to generate distractive forces in excess of those required to

exacerbate an unstable injury. (Appendix 3)

Injury C3 - C7

Injuries of the lower cervical spine occur in 80% of racing drivers who

sustained cervical spinal injury. The injury that would be most at risk to

compressive loading that might occur during helmet removal would be a

cervical burst fracture most commonly involving the C5 vertebra. Cervical

burst fractures are present in 48% of those with SCI (Ref 12). Studies have

shown that spinal fractures are related to higher ΔV,s usually in excess of

those permissible un FMVSS208 (48kph). Spinal injuries were more

prevalent in frontal and lateral impacts when the ΔV was greater that 35.3

kph lateral or 47.4 kph frontal (Ref 2). Racing crashes frequently have ΔV

greater than this (Ref 35).

Page 11: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 11

The C5 level is the level of stress concentration in a compressive loading

scenario (Ref 36). Although there is no data with regard to the compressive

force required to exacerbate a cervical compression fracture the mean

compressive stiffness of the intact cervical segment has been reported to

be 1310N/mm. Compressive loads to failure of the cervical vertebra have

been reported to be mean of 3567N in compression, 1823N in flexion

compression and 1089 N in extension (Ref 37). Critical head velocity of

approximately 3.1m/s with the torso following is sufficient to produce neck

injury (diving model) (Ref 4). Further compressive force required to produce

additional neurological injury would be expected to be less but is not

known.

From data presented above developed as a result of a study at the Mayo

Clinic traction forces applied to the head and neck exceed those which

have been implicated in worsening cervical injuries. (35.8 - 57.7 lbs)

(Appendix 3)

There are no data with regard to compressive forces needed to precipitate

or worsen an existing spinal cord injury.

Injuries of the cervical spine that result from high energy vehicular

accidents are often unstable in multiple planes and are especially sensitive

to translation and rotation (Ref 36,24,25) and involve multiple levels that

may have multiple and or noncontiguous levels in 28% (Ref 12).

In view of the above there is essentially no method of manual removal of a

helmet, or of application of an extrication collar that will not exacerbate

some cervical injury and potentially result in neurological injury or

worsening of.

FORCES APPLIED TO THE NECK DURING EJECT DEPLOYMENT

The EJECT® device from Shock Doctor is a device that is reported to

provide a method of helmet removal that lessens the distractive and

compressive forces and moments on the neck (Appendix 3). This device

when deployed with the 16g CO2 cartridge resulted in a range of neck

loading from +0.7 lbs traction to -2.0 lbs of compression. This was for two

Page 12: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 12

sizes of two different motorsports helmet types each tested 6 times. This is

less than half of the traction force reported to have resulted in distraction of

an unstable upper cervical lesion (5#). There is no data of which we are

aware that defines the maximum acceptable compression loading that a

cervical spinal unit injured in compression can further withstand without

exacerbation of the injury. However based on the compressive loads to

failure quoted above, it is very unlikely that an additional 2.0 lbs of

compression would exacerbate any but the most severe and unstable of

injuries.

The worst-case scenario would be present in an individual with an unstable

compression injury in whom the EJECT® device was activated with the

helmet chinstrap still in place. If the helmet was constrained in that the

helmet was prevented from separating from the head then the energy in the

bladder could result in compressive load to the neck. In this scenario the

compression load applied to the neck was recorded to be a maximum of

9.4 lbs. This has the potential to worsen a grossly unstable compression

injury of the cervical spine.

In the case of attempted removal of a helmet with the chin strap tightly in

place, manual technique results in an average of 70.7 lbs of traction force

applied to the neck, while the EJECT® system deployed with the 16gCO2

cartridge generates only 1.0 lbs. Attempted manual removal results in a

flexion moment (-Mx) of 31.7 whereas deployment of the Eject system with

the 16gCO2 cartridge generates (+Mx) of 4.1 in lbs of extension, From the

preceding discussion unstable injuries to the upper cervical spine are most

commonly distractive in nature, while those of the lower cervical spine are

compressive. The forces generated by the EJECT® system are minimally

compressive and generate an extension moment. Care of the most

common injury in the lower cervical spine (C5 burst fracture) would

recommend immobilization with slight traction and neutral or slight

extension, both of which are accomplished in this worst case scenario with

helmet strap in place.

The other conceivable worst case scenario would be where there was

helmet damage associated with a depressed skull fracture. In this case

Page 13: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 13

inflation of the bladder could result in further depression of the fracture

without ejecting the helmet. In a case that resulted in injury of this

magnitude helmet damage would be evident and would suggest that

removal be done manually although this technique would expose the

injured to distractive loading on the neck and potential neurological injury

as pointed out. Even in this case if the skull were fractured and the helmet

intact the head load generated by deployment of the EJECT® system with

the 16gCO2 capsule would be 383.0 lbs of compression. This is

undesirable in that it would further depress a depressed skull fracture. This

data was generated from a bench model with and intact helmet and a rigid

skull. If there were sufficient damage to the helmet to allow a depressed

skull fracture to occur then it would follow that the helmet would not be

structurally intact and these compressive loads would not be generated on

the skull but would be mitigated by outward deformation of the helmet.

Tests have been conducted to show that placement of the EJECT system

into the helmet does not alter the helmet impact test specifications ( FIA

8860 - 2004). (Appendix 3-1)

CONCLUSIONS

Cervical spinal injuries are most frequently the result of motor vehicular

accidents. Spinal fractures account for 18.7% of injuries in open cockpit

open wheel racing car drivers. Cervical spinal fractures accounted for

42.9% of those.

Injuries to the basiocciput and upper cervical spine occurred in 20% of

those drivers who sustained cervical injury and were fatal in most cases.

Since the use of a head and neck restraint (HANS) was made mandatory in

these series, as well as others the incidence of injuries to the basiocciput

have been greatly reduced if not eliminated. Therefore the likelihood of

encountering such an injury in a racing driver wearing a HANR is minimal. I

In the presence of an unstable distractive injury to the basiocciput there is a

high probability that the application of traction to the head could result in

worsening of the injury and or neurological status. Manual helmet removal

Page 14: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 14

has been shown to generate an average of 26.9# of traction on the head

and 42.3# on the neck. The average moment in flexion (-Mx) was -13.2 in

lbs. Anecdotal data has shown that 5# of traction can result in catastrophic

neurological deterioration of such and injury.

The EJECT® system deployed with the 16g CO2 cartridge produces no

traction on the head on average, but rather applies compression loading to

the head of -21.5 #. There is no data available to show if this amount of

head compression could worsen a compressive injury of the upper cervical

spine. Although it is possible that it might, based on the forces needed to

produce such an injury, this small compressive load would be unlikely to do

so the opinion of our expert.

Compressive fractures of the cervical spine are clustered at the C5

vertebral body. Manual removal of the helmet results in average traction

forces on the neck of 42.3# with a flexion moment (-Mx) of 13.2 in lbs. The

most severe burst fractures result from a compressive flexion MIV thus it is

expected that applying a flexion moment to an injury where the MIV

included a flexion moment would be undesirable. Utilizing the Eject system

the traction force on the neck is 1.0 lbs on average and is accompanied by

an extension moment of +14.8 in lbs.

The EJECT® system for pneumatically assisted helmet removal results in

lower distractive forces on the head and neck than those produced by

manual removal and generate extension moments compared to flexion

moments for manual removal.

The only scenario in which the EJECT® system generated loads that might

exacerbate an existing injury would be in the case of a depressed skull

fracture where the helmet remained intact. This is a circumstance of

extremely low probability to the point of impossibility.

A subset of the data is that scenario in which the helmet strap is not

securely fastened and tightened (loose strap condition). In this situation

attempted manual removal of the helmet results in an average traction

force of 76.6 lbs and forward flexion moment (-Mx) of 10 in lbs. while use

Page 15: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 15

of the Eject system deployed using the 16gCO2 produced -1.8 lbs of

compression and an extension moment of 2.6 in lbs.

In this subset of data attempted removal of the helmet with the chin strap in

place and tight or securely fastened but not tight, resulted in high head

compressive loads on average of 383 lbs. This load is not transmitted from

the head through to the neck load cell so that a comparable compressive

load on the neck is not recorded. The clinical meaning of this is in

determinant.

There is also video evidence that use of the EJECT® system with the chin

strap removed results in a more fluid removal sequence with less

lengthening of the neck, and substantially less neck motion in flexion and

extension and anterior posterior displacement. This is consistently

accomplished. (REF 38)

Use of the EJECT® system for pneumatically assisted helmet removal

results in significantly less likelihood of injurious forces being applied to an

already injured cervical spine than does manual helmet removal even in the

most expert of hands. It would also result in uniformity and consistency in

the safe removal of helmets by first responders with a minimum of training.

Page 16: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 16

REFERENCES

1. Dvorak MF, Fisher CG, Fehlins MG. The surgical approach to subaxial cervical spine injuries. Spine 2007;32:2620-2629.

2. Smith JA, Siegel JH, Siddiqi SQ. Spine and spinal cord injury in motor vehicle crashes: a function of change in velocity and energy dissipation on impact with respect to the direction of crash. J Trauma 2005;59:117-131.

3. Wang MC, Pintar F, Yoganandan N. The continued burden of spine fractures after motor vehicle crashes. J Neurosurg Spine 2009;10:86-92.

4. Myers BS, Winkelstein BA. Epidemiology, classification, mechanism and tolerance of human cervical spine injuries. Crit Rev Biomed Eng 1995;23:307-409.

5. Lowery DW, Wald MM, Browser BJ. Epidemiology of cervical spine injury victims. Ann Emerg Med 2001;38:12-16.

6. Fife D, Kraus J. Anatomic location of the spinal cord injury: relationship to the cause of injury. Spine 1986;11:2-5.

7. Allen BL, Ferguson RL, Lehmann TR. A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine 1982;7:1-27.

8. Slucky AV, Eismont FJ. Treatment of acute injury of the cervical spine. JBJS 1994;76:1882-1896.

9. Prasad VS, Schwartz A, Bhutani R. Characteristics of injuries to the cervical spine and spinal cord in a polytrauma patient population: experience from a regional trauma unit. Spinal Cord 1999;37:560-568.

10. Uhrenholt L, Grunnet-Nilsson N, Hartvigsen J. Cervical spine lesions after road traffic accidents: a systematic review. Spine 2002;27:1934-1941.

11. Hu J, King YH, Chou CC. A numerical investigation of factors effecting cervical spine injuries during rollover crashes. Spine 2008;33:2529-2535.

12. Pickett GE, Campos-Benitez M, Keller JL. Epidemiology of traumatic spinal cord injury in Canada. Spine 2006;31:799-805.

13. Sanfilippo JA, Winegar CD, Harrop JS. All-terrain vehicles and associated spinal injuries. Spine 2008;33:1982-1985.

14. Leucht P, Fischer K, Muhr G. Epidemiology of traumatic spine fractures. Injury 2009;40:166-172.

15. Jackson RS, Banit DM, Rhyne AL. Upper cervical spine injuries. J Am Acad Orthop Surg 2002;10:271-280.

16. Dreiangel N, Ben-Galim P, Lador R. Occipitocervical dissociative injuries: common in blunt trauma fatalities and better detected with objective computer tomography based measurements. Spine J 2010;10:704-707.

17. Ben-Galim PJ, Sibaj TA, Hipp JA. Internal decapitation. Spine 2008;33:1744-1749.

Page 17: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 17

18. Bolmann HH. Acute fractures and dislocations of the cervical spine: an analysis of three hundred hospitalized patients and review of the literature. JBJS 1979;61:1119-1142.

19. Przybylski GJ, Welch WC. Longitudinal atlantoaxial dislocation with type III odontoid fracture. J Neurosurg 1996;84:666-670.

20. Green KA, Dickman CA, Marciano FF. Acute axis fractures: analysis of management and outcome in 340 consecutive cases. Spine 1997;22:1843-1852.

21. Clark CR, White AA, Fracture of the dens. a multicenter study. JBJS 1985;67:1340-1348.

22. Pryputniewicz DM, Hadley MN. Axis fractures. Neurosurgery 2010;66:A68-A82. 23. Yoganandan N, Pintar FA. Odontoid fracture in motor vehicle environments.

Accid Anal Prev 2005;37:505-514. 24. Moroney SP, Schultz AB, Miller JAA. Load-displacement properties of lower

cervical spine motion segments. J. Biomechanics 1988;21:769-7791. 25. Panjabi MM, Crisco JJ, Vasavada A. Mechanical properties of the human cervical

pine as shown by three-dimensional load – displacement curves. Spine 2001;26:2692-2700.

26. Maak TG, Ivancic PC, Tominaga Y. Side impact causes multiplanar cervical spine injuries. J Trauma 2007;63:1296-1307.

27. Elbel M, Kramer M, Huber-Lang M. Deceleration during “real life” motor vehicle collisions – a sensitive predictor for the risk of sustaining aa cervical spine injury. Patient Saf Surg 2009;3:5.

28. Trammell TR, Weaver CS, Bock H. Spine fractures in open cockpit open wheel race car drivers. SAE 2006 – 01 3630.

29. Personal Communication: Terry R Trammell MD. 30. ATLS Program for Doctors, 7th ed. American College of Surgeons, 2004. 31. Kwan I, Bunn F, Roberts I. Spinal immobilization for trauma patients. Cochrane

Database of Systematic Reviews 2001;Issue 2:CD002803. 32. Lennarson PJ, Smith DW, Sawin PD. Cervical spinal motion during intubation:

efficacy of stabilization maneuvers in the setting of complete segmental instability. J Neurosurg 2001;94:265-270.

33. Manoach S, Paladino L. Manual in-line stabilization for acute airway management of suspected cervical spine injury: historical review and current questions. Ann Emerg Med 2007;50:236-245.

34. Ben-Galim P, Dreiangel N, Mattox KL. Extrication collars can result in abnormal separation between vertebrae in the presence of a dissociative injury. J Trauma 2010;69:447-50.

35. IRL Database 36. Yoganandan N, Pintar FA, Arnold P. Continuous motion analysis of the head-neck

complex under impact. J Spinal Disord 1994;7:420-428. 37. White AA, Panjabi MM. Clinical Biomechanics of the Spine, 2nd ed. Philadelphia:

Lipincott-Raven, 1990. 38. http://www.youtube.com/watch?v=FtdYR_eobKA

Page 18: Helmet Removal/Eject Assement

EJECT VALIDATION

Trammell - EJECT PROJECT Page 18