28
Global Solutions of the Landau-Lifshitz Equation S. Gustafson (UBC), Eva Koo (UBC) SIAM PDE, San Diego, Nov. 14, 2011 S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

Global Solutions of the Landau-Lifshitz Equation › SIAM11 › PDE › PDF › ...Nov 14, 2011  · S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Global Solutions of the Landau-Lifshitz Equation

    S. Gustafson (UBC), Eva Koo (UBC)

    SIAM PDE, San Diego, Nov. 14, 2011

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Landau-Lifshitz Equations: Dynamics of Maps

    Landau-Lifshitz (30s): ferromagnetism

    “magnetization vector” ~u(x , t) ∈ R3

    |~u(x , t)| ≡ const.~ut = ~u ×∆~u

    Broader context:

    maps: ~u(·, t) : R2 → S2 (~u ∈ R3, |~u| ≡ 1)energy: E(~u) = 12

    ∫R2 |∇~u|

    2dx

    heat-flow: ~ut = ∆~u + |∇~u|2~u (= −E ′(~u))wave maps: ~utt = ∆~u + (|∇~u|2 − |~ut |2)~uSchrödinger maps: ~ut = ~u ×∆~u (= JE ′(~u))

    J = −~u× = complex structure

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Landau-Lifshitz Equations: Dynamics of Maps

    Landau-Lifshitz (30s): ferromagnetism

    “magnetization vector” ~u(x , t) ∈ R3

    |~u(x , t)| ≡ const.~ut = ~u ×∆~u

    Broader context:

    maps: ~u(·, t) : R2 → S2 (~u ∈ R3, |~u| ≡ 1)energy: E(~u) = 12

    ∫R2 |∇~u|

    2dx

    heat-flow: ~ut = ∆~u + |∇~u|2~u (= −E ′(~u))wave maps: ~utt = ∆~u + (|∇~u|2 − |~ut |2)~uSchrödinger maps: ~ut = ~u ×∆~u (= JE ′(~u))

    J = −~u× = complex structure

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Landau-Lifshitz Equations: Dynamics of Maps

    Landau-Lifshitz (30s): ferromagnetism

    “magnetization vector” ~u(x , t) ∈ R3

    |~u(x , t)| ≡ const.~ut = ~u ×∆~u

    Broader context:

    maps: ~u(·, t) : R2 → S2 (~u ∈ R3, |~u| ≡ 1)energy: E(~u) = 12

    ∫R2 |∇~u|

    2dx

    heat-flow: ~ut = ∆~u + |∇~u|2~u (= −E ′(~u))wave maps: ~utt = ∆~u + (|∇~u|2 − |~ut |2)~uSchrödinger maps: ~ut = ~u ×∆~u (= JE ′(~u))

    J = −~u× = complex structure

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Landau-Lifshitz Equations: Dynamics of Maps

    Landau-Lifshitz (30s): ferromagnetism

    “magnetization vector” ~u(x , t) ∈ R3

    |~u(x , t)| ≡ const.~ut = ~u ×∆~u

    Broader context:

    maps: ~u(·, t) : R2 → S2 (~u ∈ R3, |~u| ≡ 1)energy: E(~u) = 12

    ∫R2 |∇~u|

    2dx

    heat-flow: ~ut = ∆~u + |∇~u|2~u (= −E ′(~u))wave maps: ~utt = ∆~u + (|∇~u|2 − |~ut |2)~uSchrödinger maps: ~ut = ~u ×∆~u (= JE ′(~u))

    J = −~u× = complex structure

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Landau-Lifshitz Equations: Dynamics of Maps

    Landau-Lifshitz (30s): ferromagnetism

    “magnetization vector” ~u(x , t) ∈ R3

    |~u(x , t)| ≡ const.~ut = ~u ×∆~u

    Broader context:

    maps: ~u(·, t) : R2 → S2 (~u ∈ R3, |~u| ≡ 1)energy: E(~u) = 12

    ∫R2 |∇~u|

    2dx

    heat-flow: ~ut = ∆~u + |∇~u|2~u (= −E ′(~u))wave maps: ~utt = ∆~u + (|∇~u|2 − |~ut |2)~uSchrödinger maps: ~ut = ~u ×∆~u (= JE ′(~u))

    J = −~u× = complex structure

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Regularity vs. Singularity: Energy Critical Problems

    All these equations are energy critical in R2 (E(~u) scale invariant).

    E =∫R2 |∇~u|

    2 ≥ 4π|degree(~u)| with = iff ~u a harmonic map.

    Emin := “ground state energy”= lowest energy of a non-trivial harmonic map ( = 4π).

    We expect a dichotomy:

    global existence below the ground state: E < Eminblow-up examples above the ground state: E > Emin

    heat-flow:

    E < 4π =⇒ global smooth solution [Struwe 85]E > 4π =⇒ singularities may form: [Chang-Ding-Ye 92]

    wave map:

    E < 4π =⇒ global solution [Sterbenz-Tataru 09]E > 4π =⇒ singularities may form [Krieger-Schlag-Tataru 08,Rodnianski-Sterbenz 09, Raphael-Rodnianski 09]

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Regularity vs. Singularity: Energy Critical Problems

    All these equations are energy critical in R2 (E(~u) scale invariant).

    E =∫R2 |∇~u|

    2 ≥ 4π|degree(~u)| with = iff ~u a harmonic map.

    Emin := “ground state energy”= lowest energy of a non-trivial harmonic map ( = 4π).

    We expect a dichotomy:

    global existence below the ground state: E < Eminblow-up examples above the ground state: E > Emin

    heat-flow:

    E < 4π =⇒ global smooth solution [Struwe 85]E > 4π =⇒ singularities may form: [Chang-Ding-Ye 92]

    wave map:

    E < 4π =⇒ global solution [Sterbenz-Tataru 09]E > 4π =⇒ singularities may form [Krieger-Schlag-Tataru 08,Rodnianski-Sterbenz 09, Raphael-Rodnianski 09]

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Regularity vs. Singularity: Energy Critical Problems

    All these equations are energy critical in R2 (E(~u) scale invariant).

    E =∫R2 |∇~u|

    2 ≥ 4π|degree(~u)| with = iff ~u a harmonic map.

    Emin := “ground state energy”= lowest energy of a non-trivial harmonic map ( = 4π).

    We expect a dichotomy:

    global existence below the ground state: E < Eminblow-up examples above the ground state: E > Emin

    heat-flow:

    E < 4π =⇒ global smooth solution [Struwe 85]E > 4π =⇒ singularities may form: [Chang-Ding-Ye 92]

    wave map:

    E < 4π =⇒ global solution [Sterbenz-Tataru 09]E > 4π =⇒ singularities may form [Krieger-Schlag-Tataru 08,Rodnianski-Sterbenz 09, Raphael-Rodnianski 09]

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Some Schrödinger Map Results

    For the Schrödinger map ~ut = ~u ×∆~u on R2:E small =⇒ global solutions:[Chang-Shatah-Uhlenbeck 00, Bejenaru-Ionescu-Kenig-Tataru 08]

    for equivariant maps of degree m ∈ Z (Emin = 4π|m|):I |m| ≥ 3: global existence for 0 ≤ E − Emin � 1 [G-Kang-Tsai 08,

    G-Nakanishi-Tsai 10]

    I |m| = 2: ??I |m| = 1: construction of singular solutions for E > 4π

    [Merle-Raphael-Rodnianski 11]

    I m = 0 (radially-symmetric): solutions are global [G-Koo 11]

    open: global existence for all E ≤ Emin without symmetryrestrictions

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Global Existence of Radial Schrödinger Maps

    Consider radially-symmetric Schrödinger maps: ~u(r , t), r = |x |:{~ut = ~u ×∆~u

    ~u(r , 0) = ~u0(r), ~u0 − k̂ ∈ H2(R2)(SM)rad

    There are no radially symmetric harmonic maps, so Emin =∞ .The generalized Hasimoto transform [Chang-Shatah-Uhlenbeck 00]

    T~uS2 3 ~ur = q1ê + q2Jê, D~ur ê ≡ 0

    transforms solutions of (SM)rad to solutions q(r , t) = q1 + iq2 of{iqt = −∆q + 1r2 q + (

    ∫∞r |q(ρ, t)|

    2 dρρ −

    12 |q|

    2)q

    q(r , 0) = q0(r)(nlNLS)

    Thm:[G-Koo 11]: (nlNLS) is globally well-posed for q0(r) ∈ L2(R2).

    Corollary: (SM)rad has a unique global solution ~u(t)− k̂ ∈ H2(R2).S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • L2-Critical NLS: Local vs. Non-local

    Compare our non-local NLS

    iqt = −∆q +1

    r2q +

    (∫ ∞r|q(ρ, t)|2 dρ

    ρ− 1

    2|q|2)q (nlNLS)

    with the well-studied local version{iqt = −∆q ± |q|2qq(r , 0) = q0(r)

    (NLS±).

    Common features:

    conservation of L2 norm:∫R2 |q(x , t)|

    2dx ≡ const.invariant under L2-critical scaling q(r , t) 7→ λq(λr , λ2t)local existence of a solution q = C ([0,T );Hs(R2)) with

    I 0 < T = T (‖q0‖Hs ) for s > 0I 0 < T 6= T (‖q0‖L2) for s = 0

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • L2-Critical NLS: Local vs. Non-local

    Compare our non-local NLS

    iqt = −∆q +1

    r2q +

    (∫ ∞r|q(ρ, t)|2 dρ

    ρ− 1

    2|q|2)q (nlNLS)

    with the well-studied local version{iqt = −∆q ± |q|2qq(r , 0) = q0(r)

    (NLS±).

    Common features:

    conservation of L2 norm:∫R2 |q(x , t)|

    2dx ≡ const.invariant under L2-critical scaling q(r , t) 7→ λq(λr , λ2t)local existence of a solution q = C ([0,T );Hs(R2)) with

    I 0 < T = T (‖q0‖Hs ) for s > 0I 0 < T 6= T (‖q0‖L2) for s = 0

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • L2-Critical NLS: Local vs. Non-local

    Compare our non-local NLS

    iqt = −∆q +1

    r2q +

    (∫ ∞r|q(ρ, t)|2 dρ

    ρ− 1

    2|q|2)q (nlNLS)

    with the well-studied local version{iqt = −∆q ± |q|2qq(r , 0) = q0(r)

    (NLS±).

    Common features:

    conservation of L2 norm:∫R2 |q(x , t)|

    2dx ≡ const.invariant under L2-critical scaling q(r , t) 7→ λq(λr , λ2t)local existence of a solution q = C ([0,T );Hs(R2)) with

    I 0 < T = T (‖q0‖Hs ) for s > 0I 0 < T 6= T (‖q0‖L2) for s = 0

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • L2-Critical NLS: Local vs. Non-local

    Compare our non-local NLS

    iqt = −∆q +1

    r2q +

    (∫ ∞r|q(ρ, t)|2 dρ

    ρ− 1

    2|q|2)q (nlNLS)

    with the well-studied local version{iqt = −∆q ± |q|2qq(r , 0) = q0(r)

    (NLS±).

    Common features:

    conservation of L2 norm:∫R2 |q(x , t)|

    2dx ≡ const.invariant under L2-critical scaling q(r , t) 7→ λq(λr , λ2t)local existence of a solution q = C ([0,T );Hs(R2)) with

    I 0 < T = T (‖q0‖Hs ) for s > 0I 0 < T 6= T (‖q0‖L2) for s = 0

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Review: global existence for local NLS

    Main difference: (NLS±) has a conserved energy

    H = 12

    ∫R2|∇q|2 ± 1

    4

    ∫R2.|q|4 ≡ const.

    So global existence for q0 ∈ H1(R2) follows from:(NLS+): ‖q‖2H1 ≤ ‖q0‖

    2L2 + 2H ≤ const.

    (NLS−): by Sobolev interpolation ‖q‖4L4 ≤ C‖q‖2L2‖∇q‖

    2L2 ,

    ‖∇q‖2L2 = 2H+12‖q‖

    4L4 ≤ 2H+

    12C‖q‖

    2L2‖∇q‖

    2L2 , so

    ‖q0‖L2 <√

    2

    C= ‖Q‖L2 =⇒ ‖∇q‖L2 ≤ const.

    where Q = ground state [Weinstein 83].

    If merely q0 ∈ L2(R2), the energy is unavailable, and globalexistence of radial solutions for (NLS+), and (NLS-) with‖q0‖L2 < ‖Q‖L2 , was proved by [Kilip-Tao-Visan 09] using much moresophisticated methods

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Virial and Morawetz Identities

    Back to (nlNLS) iqt = −∆q + 1r2 q +(∫∞

    r |q(ρ, t)|2 dρρ −

    12 |q|

    2)q

    It has no conserved energy. Is it “focusing” or “defocusing”?

    Solutions of (nlNLS) formally obey:

    virial-type identity:

    d2

    dt21

    2

    ∫ ∞0

    r2|q(r , t)|2rdr =∫ ∞0

    {4|qr |2 + 4

    |q|2

    r2+ 2|q|4

    }rdr > 0

    Morawetz-type identity:

    d2

    dt2

    ∫ ∞0

    r |q(r , t)|2rdr =∫ ∞0

    {3|q|2

    r3+

    3

    4

    |q|4

    r

    }rdr > 0

    So it looks defocusing!

    However, to actually use identities like these, we must

    cut off large (and small) r , and control errors

    control derivative terms (no energy, and anyway q ∈ L2 only)S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Reduction to a Minimal-Mass Blow-Up

    [KTV]’s proof of L2 global well-posedness for radial (NLS+) (and(NLS−) below the ground state) follows Kenig-Merle’s framework:

    if (GWP + scattering) fails, ∃ an L2-minimal “blow-up”solution q(r , t) with 1N(t)q(r/N(t), t) L

    2-pre-compact: ∀� > 0,∫|x |>C�/N(t)

    |q(x , t)|2dx < �,∫|ξ|>C�N(t)

    |q̂(ξ, t)|2dξ < �.

    3 possibilities:I N(t) ≡ 1 (“soliton”),I N(t) = 1/

    √t (“self-similar”),

    I lim inft→±∞ N(t) = 0 (“inverse cascade”)

    regularity: q(t) ∈ Hs for any seach case ruled out by conservation of energy (plus virialidentity for “soliton”)

    This “reduction to 3 enemies” + regularity extends to (nlNLS).But without conservation of energy, how do we rule them out?.

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Eliminating Enemies: Soliton-Type

    N(t) ≡ 1, q(r , t) compact, regular: ‖q(t)‖Hs . 1cut-off virial identity: consider IR(t) :=

    ∫ R0 r Im(qqr )rdr

    virial identity, compactness, and regularity give

    d

    dtIR = 2

    ∫ R0{|qr |2 +

    |q|2

    r2+

    1

    2|q|4}rdr [1 + o(1)] & N2(t) ≡ 1

    for fixed (sufficiently large) R

    while regularity =⇒ |IR | . R‖q‖L2‖qr‖L2 . Ra contradiction.

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Eliminating Enemies: Self-Similar-Type

    N(t) = t−1/2, so take R ∼ 1N(T ) = T1/2. Then the virial

    identity (as above) gives

    d

    dtIR & N

    2(t) =1

    t

    implies IR(T ) & logT .

    On the other hand, the [KTV] regularity theory gives

    |IR | . R‖qr‖L2 .1

    N(t)N(t) = O(1),

    a contradiction for T large.

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Eliminating Enemies: Inverse-Cascade-Type

    N(t)→ 0 as t → ±∞introduce a modifier ψ(r) ∼ r〈r〉 into the Morawetz-typeidentity for: P(t) :=

    ∫∞0 Im(qqr )ψ(r)rdr ,

    d

    dtP(t) ∼

    ∫ ∞0

    {|qr |2

    〈r〉+|q|2

    r2〈r〉+|q|4

    〈r〉

    }rdr > 0.

    Now N(t)→ 0 as t → ±∞ implies

    |P| . ‖q‖2‖qr‖2 → 0 t → ±∞,

    a contradiction.

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation

  • Conclusions

    2D radial Schrödinger maps into the sphere are global

    still open: GWP “below ground state” without symmetryrestriction

    other issues: dimensions 3, more physical versions of theLandau-Lifshitz equations, etc.

    S. Gustafson (UBC), Eva Koo (UBC) Global Solutions of the Landau-Lifshitz Equation