27
A. Introduction VI-194 1. Example of a Property Change at 7" g Vl-194 2. 7 g : A "Non-Equilibrium" Transition VI-195 B. Ta Measurement Methods VI-195 1. Data Interpretation Vl-195 2. Oscillating Load Methods VI-196 C. Other Factors Affecting 7 g VI-196 1. Structure VI-196 2. Crystallinity/Crosslinking Vl-196 3. Diluents VI-197 4. Molecular Weight VI-197 5. Thermal History VI-197 6. Pressure VI-197 D. Estimation Methods for the Glass Transition Temperature VI-197 E. Classification, Nomenclature, and Abbreviations VI-197 1. Naming Conventions VI-198 2. Abbreviations VI-198 F. Tables of Glass Transition Temperatures of Polymers VI-198 Table 1. Main-Chain Acyclic Carbon Polymers VI-198 1.1. Poly(acrylics) and Poly(methacrylics) Vl-198 1.1.1. Poly(acrylic acid) and Poly(acrylic acid esters) VI-198 1.1.2. Poly(acrylamides) VI-201 1.1.3. Poly(methacrylic acid) and Poly(methacrylic acid esters) VI-201 1.1.4. Poly(methacrylamides) VI-205 1.1.5. Other oc- and P-Substituted Poly(acrylics) and Poly(methacry I ics) VI-205 1.2. Poly(alkenes) VI-205 1.3. Poly(dienes) VI-207 1.4. Poly(styrenes) VI-209 1.5. Poly(vinyl alcohol) and Poly(vinyl ketones) VI-212 1.6. PoIy(VinyI esters) VI-213 1.7. Poly(vinyl ethers) and Poly(vinyl thioethers) VI-214 1.8. Poly(vinyl halides) and Poly(vinyl nitriles) VI-215 1.9. Others VI-216 Table 2. Main-Chain Carbocyclic Polymers VI-218 2.1. Poly(phenylenes) VI-218 2.2. Others VI-218 Table 3. Main-Chain Acyclic Heteroatom Polymers VI-219 3.1. Main-Chain - C - O - C Polymers VI-219 3.1.1. Poly(anhydrides) VI-219 3.1.2. Poly(carbonates) VI-219 3.1.3. Poly(esters) VI-221 3.1.4. Poly(ether ketones) VI-226 3.1.5. Poly(oxides) VI-226 3.1.6. Poly(urethanes) VI-229 3.2. Main-Chain O-Heteroatom Polymers VI-231 3.2.1. Nitroso-polymers VI-231 3.2.2. PoIy(Siloxanes) VI-231 3.2.3. Poly(sulfonates) VI-233 3.3. Main-Chain -C-(S) n -C- and -C-S-N- Polymers VI-233 3.3.1. Poly(su If ides) VI-233 3.3.2. Poly(sulfones) and Poly(sulfonamides) VI-234 3.3.3. Poly(thioesters) VI-235 3.4. Main-Chain - C - N - C Polymers VI-235 3.4.1. Poly(amides) VI-235 3.4.2. Poly(anilines) VI-241 3.4.3. Polyimides VI-241 3.4.4. Poly(imines) VI-241 3.4.5. Poly(ureas) VI-242 3.5. Poly(phosphazenes) VI-242 3.6. Poly(silanes) and PoIy(Si lazanes) VI-243 Table 4. Main-Chain Heterocyclic Polymers VI-243 4.1. Carbohydrates VI-243 4.2. Liquid Crystals VI-244 4.3. Natural Polymers VI-244 4.4. Poly(acetals) VI-244 Glass Transition T e m p e r a t u r e s of Polymers Rodney J. Andrews, Eric A. Grulke Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA

Glass Transition Temperatures of Polymersnguyen.hong.hai.free.fr/EBOOKS/SCIENCE AND ENGINEERING...Glass Transition Temperatures of Polymers Rodney J. Andrews, Eric A. Grulke Chemical

  • Upload
    dangque

  • View
    276

  • Download
    2

Embed Size (px)

Citation preview

A. Introduction VI-1941. Example of a Property Change at 7"g Vl-1942. 7g: A "Non-Equilibrium" Transition VI-195

B. Ta Measurement Methods VI-1951. Data Interpretation Vl-1952. Oscillating Load Methods VI-196

C. Other Factors Affecting 7g VI-1961. Structure VI-1962. Crystallinity/Crosslinking Vl-1963. Diluents VI-1974. Molecular Weight VI-1975. Thermal History VI-1976. Pressure VI-197

D. Estimation Methods for the GlassTransition Temperature VI-197

E. Classification, Nomenclature, andAbbreviations VI-1971. Naming Conventions VI-1982. Abbreviations VI-198

F. Tables of Glass Transition Temperatures ofPolymers VI-198Table 1. Main-Chain Acyclic Carbon Polymers VI-198

1.1. Poly(acrylics) andPoly(methacrylics) Vl-1981.1.1. Poly(acrylic acid) and

Poly(acrylic acid esters) VI-1981.1.2. Poly(acrylamides) VI-2011.1.3. Poly(methacrylic acid)

and Poly(methacrylicacid esters) VI-201

1.1.4. Poly(methacrylamides) VI-2051.1.5. Other oc- and P-Substituted

Poly(acrylics) andPoly(methacry I ics) VI-205

1.2. Poly(alkenes) VI-2051.3. Poly(dienes) VI-2071.4. Poly(styrenes) VI-2091.5. Poly(vinyl alcohol) and

Poly(vinyl ketones) VI-2121.6. PoIy(VinyI esters) VI-2131.7. Poly(vinyl ethers) and

Poly(vinyl thioethers) VI-214

1.8. Poly(vinyl halides) andPoly(vinyl nitriles) VI-215

1.9. Others VI-216Table 2. Main-Chain Carbocyclic Polymers VI-218

2.1. Poly(phenylenes) VI-2182.2. Others VI-218

Table 3. Main-Chain Acyclic HeteroatomPolymers VI-2193.1. Main-Chain - C - O - C Polymers VI-219

3.1.1. Poly(anhydrides) VI-2193.1.2. Poly(carbonates) VI-2193.1.3. Poly(esters) VI-2213.1.4. Poly(ether ketones) VI-2263.1.5. Poly(oxides) VI-2263.1.6. Poly(urethanes) VI-229

3.2. Main-Chain O-HeteroatomPolymers VI-2313.2.1. Nitroso-polymers VI-2313.2.2. PoIy(Siloxanes) VI-2313.2.3. Poly(sulfonates) VI-233

3.3. Main-Chain -C-(S)n -C- and- C - S - N - Polymers VI-2333.3.1. Poly(su If ides) VI-2333.3.2. Poly(sulfones) and

Poly(sulfonamides) VI-2343.3.3. Poly(thioesters) VI-235

3.4. Main-Chain - C - N - CPolymers VI-2353.4.1. Poly(amides) VI-2353.4.2. Poly(anilines) VI-2413.4.3. Polyimides VI-2413.4.4. Poly(imines) VI-2413.4.5. Poly(ureas) VI-242

3.5. Poly(phosphazenes) VI-2423.6. Poly(silanes) and

PoIy(Si lazanes) VI-243Table 4. Main-Chain Heterocyclic Polymers VI-243

4.1. Carbohydrates VI-2434.2. Liquid Crystals VI-2444.3. Natural Polymers VI-2444.4. Poly(acetals) VI-244

G l a s s T r a n s i t i o n T e m p e r a t u r e s o f P o l y m e r s

R o d n e y J. A n d r e w s , Er ic A . G r u l k eChemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA

4.5. Poly(anhydrides) VI-2444.6. Poly(benzimidazoles) VI-2454.7. Poly(benzothiazinopheno-

thiazines) VI-2454.8. Poly(benzothiazoles) VI-2454.9. Poly(benzoxazlnes) VI-2454.10. Poly(benzoxazoles) VI-2454.11. Poly(carboranes) VI-2454.12. Poly(dibenzofurans) VI-2464.13. Poly(dioxoisoindolines) VI-2464.14. Poly(fluoresceins) VI-2474.15. Poly(furan tetracarboxylic

acid diimides) VI-2474.16. Poly(oxabicyclononanes) VI-2474.17. Poly(oxadiazoles) VI-2484.18. Poly(oxindoles) VI-2484.19. Poly(oxoisoindolines) VI-2484.20. Poly(phthalazines) VI-2484.21. Poly(phthalides) VI-2484.22. Poly(piperazines) VI-2484.23. Poly(piperidines) VI-2494.24. Poly(pyrazinoquinoxalines) VI-2494.25. Poly(pyrazoles) VI-2494.26. Poly(pyridazines) VI-2494.27. Poly(pyridines) VI-2494.28. Poly(pyromellitimides) VI-2494.29. Poly(pyrrolidines) VI-2504.30. Poly(quinones) VI-2504.31. Poly(quinoxalines) VI-2504.32. Poly(triazines) VI-2524.33. Poly(triazoles) VI-252

Table 5. Copolymers VI-252G. References VI-253

A. INTRODUCTION

Amorphous (noncrystalline) polymeric solids are eitherglasses or rubbers. A glassy polymer lacks long range order,and is below the temperature at which molecular motionstake place on the time scale of the experiment. A rubberypolymer is above the temperature at which molecularmotions take place on the time scale of the experiment. Theglass transition temperature, Tg, is the critical temperaturethat separates glassy behavior from rubbery behavior. Manyamorphous solids, including polymers, organic liquids,biomaterials, some metals and alloys, and inorganic oxideglasses, exhibit glass transition temperatures.

The dramatic change in the local movement of polymerchains at Tg leads to large changes in a host of physicalproperties. These properties include density, specific heat,mechanical modulus, mechanical energy absorption, dielec-tric coefficients, acoustical properties, viscosity, and therate of gas or liquid diffusion through the polymer, to namea few. Any of these properties can be used, at least in acrude manner, to determine Tg.

TemperatureFigure 1.

1 . Example of a Property Change at Tg

A classic method for determining Tg is dilatometry, inwhich the specific volume of the polymer is measured as afunction of temperature. Figure 1 compares the specificvolume vs. temperature curves for two idealized samples: a100% amorphous material and a 100% crystalline material.Both materials follow the same path as their liquids arecooled from the melt. At the melting temperature, Tm, thecrystallizing material orders into its crystal habit andexhibits a discontinuous decrease in specific volume. Belowrm , this solid has a reduction in specific volume withdecreasing temperature, but the slope of this line, thevolumetric thermal expansion coefficient, is less than theslope of the liquid line.

The amorphous material does not crystallize as thetemperature falls below Tm, but continues to contract with athermal expansion coefficient similar to the molten liquid: itacts as a supercooled liquid. At Tg, large-scale molecularmotion (often considered to be the movement of 20-50carbon atoms along a chain) becomes greatly reduced, thechain segments no longer rearrange rapidly in experimentaltime, and further cooling does not result in a similar volumechange. Below Tg, the thermal expansion coefficient issimilar to that of the crystalline solid. Tg can be defined asthe temperature at the intersection of the two line segments.The specific volume is not discontinuous at Tg, as would bethe case for the melting point, but the slope dV/dT, is.Therefore, Tg is sometimes referred to as a second-ordertransition, as compared to the melting point, which is afirst-order transition. Both the primary property, specificvolume, and its differential, the volumetric thermalexpansion coefficient, change at Tg and can be used toidentify the event.

Most polymer samples are either completely amorphousor partially crystalline. Figure 2 shows the specific volumevs. temperature curve for a semicrystalline polymer. Thecrystallizable fraction becomes ordered as it cools to Tm.Below the melting point, the amorphous materialcontinues to contract as though it were a subcooled liquid,while the crystalline portion has a smaller thermal

Spe

cific

vol

ume

Liquid

Crystallizationvolume change

Crystal

Super-cooled liquid

Glass

Temperature

Figure 2.

expansion coefficient and contributes less to the volumetricdecrease. Rapid amorphous phase motion stops at the glasstransition temperature, and both solid components havesimilar thermal expansion coefficients below this tempera-ture.

2. 7g: A "Non-Equilibrium" Transition

The glass transition temperature is not a fundamentalthermodynamic property like the melting point because it isnot thermodynamically stable, it is not defined by statevariables, and its measurement is highly dependent on thetime scale of the experiment used to determine its value.For example, experiments in which temperature or adeforming force is changed rapidly give higher Tg valuesthan experiments in which conditions are changed slowly.Sample age and history affect the measurements as well.

The thermodynamic transition issue has been studied bya number of researchers. Staverman (1210) and Breuer andRehage (1211) have concluded that Tg is not a true second-order transition because the glassy state is not completelydefined by the normal state variables, p, V and T. Ehrenfest(1212) derived the following relationship that should holdfor a true second-order transition:

where Tg is the glass transition temperature, p is thepressure, V(Tg) is the molar volume at Tg, Aa is thethermal expansion coefficient difference (rubber to glass) atrg , ACp is the molar heat capacity difference, and AK, isthe compressibility difference. Available data for a numberof polymer systems show large deviations from the aboveequation for well-studied polymers, including polystyrene(1211), poly(isobutylene), poly(vinyl acetate), poly(vinylchloride) and poly(methyl methacrylate) (1213,1214). Theglass transition temperature is thought to be a kineticallycontrolled phenomenon (1215-1218).

B. 7g MEASUREMENT METHODS

The classical method of mercury dilatometer requiresmoderate amounts of sample, and time to permit thermalequilibrium to be achieved. Instruments that are easier touse and require only milligram quantities of sample are thethermal mechanical analyzer (TMA), the dynamic mechan-ical analyzer (DMA), and the differential scanningcalorimeter (DSC). A TMA deforms a sample under astatic load as the temperature is changed. At very low loads,it measures the specific volume change of the sample. ADMA measures the response of the material to anoscillating deformation. A DSC measures the change insample enthalpy with time, dH/dt, for a known temperatureprogram, dT/dt. The ratio of these two quantities givesdH/dT (also the specific heat capacity), which is aderivative measurement for Tg. (Experimental heat capacitycurves of amorphous and semicrystalline polymers aregiven in the Heat Capacity chapter of this Handbook.) DSCis the most commonly used method for measuring the glasstransition temperature of non-crosslinked polymers. All ofthese instruments can be interfaced to computers for dataacquisition, test control, data reduction, and analysis.

The interpretation of Tg data can be controversial(1069-1071). The rate at which the sample is cooled orheated will affect the result. If the specific volumeexperiment of Fig. 2 was repeated for various coolingrates, Tg would occur at lower temperatures as the coolingrate is lowered, the transition region would become sharper,and a denser polymer would be produced. When a sample isallowed to remain below its glass transition temperatureover a long period of time (aging), its density will increase.This process is called annealing; the rate of densificationincreases with annealing temperature.

1. Data Interpretation

The previous history of a sample will affect the measure-ment of rg , unless the material's "memory" is erased byheating it well above the transition. The sample is heatedwell above its expected Tg, cooled to the originaltemperature, and reheated along a temperature profile tofind the glass transition temperature of the material withminimal history. Some information can be inferred from thefirst heat, including residual stresses in the material, thepresence of low-boiling diluents, etc.

The process of heating a polymer solid to find Tg oftengives a curve similar to Fig. 1 and will produce a melt withthe same density as that of the cooling experiment.However, in heating experiments, chain motions dominatethe change in properties, and sudden property changes canoccur near the transition temperature. At temperaturesmuch higher than Tg, the property response once againbecomes linear with temperature. In DSC measurements,sudden expansions can lead to an endothermic peak past therg . This endothermic peak has also been called enthalpyovershoot, and is thought to relate to the difference betweenthe rate of temperature increase and the rate of increase of

References page VI - 253

Spec

ific

volu

me

Glass

Crystallizationvolume change

Liquid

chain mobility around Tg. The size of this overshootdepends on the annealing of the sample and the heatingrate.

In a direct property measurement experiment (Fig. 1 isan example), it is common practice to ignore the kineticeffects of the transition region and to define Tg as theintersection of the two straight lines. For this case, the sameTg is found both on heating and cooling at a given polymerdensity. In an experiment that measures the differential of aproperty (DSC for example), integrating the curve gives thechange in enthalpy from before to after the transitionregion, to which the simple intersection method of Fig. 1can be applied, giving a Tg that is independent of heatingrate (1079-1081). This method is well-known withinorganic glasses.

In DSC experiments, Tg is usually determined either bythe onset point, the intersection of the initial straight lineand the transition region straight line, or by the midpoint ofthe transition region (inflection point). The integrationmethod's Tg is the same as the midpoint Tg if there is noendotherm, and is closer to the onset Tg if there is anendotherm. Moreover, it is common to measure Tg uponheating without any mention of previous thermal history orthe heating rate. Because of these practices, the Tg valuesreported in this article should be considered as approximateby the reader. Authors reporting Tg should describe thethermal history of their measurements and also consider theintegration method of determining Tg.

The classical methods of Tg measurement discussedpreviously can be quite insensitive for some polymers, e.g.,highly crosslinked polymers. A penetration probe, on theother hand, is very sensitive and can determine Tg even on athin film. But this method depends on the force of thepenetrator and does not measure Tg in a fundamental way.Softening temperature methods are popular and are part ofvarious ASTM standards.

2. Oscillating Load Methods

The measurement of the material response to an oscillatingload gives a direct measure of the sample's modulus. Themeasurement of the lag of the material response (phaseshift) to the mechanical forcing function gives a measure ofthe damping, or loss factor, of the sample. This last quantityis called the tan 6 peak value. Dielectric thermal analysis isdone by using an oscillating electric field as the forcingfunction. At Tg, there is often an order of magnitude changein the modulus and a large maximum in tan 6. This oc-transition is distinguished from other thermal transitions (P,y, etc.) by being the most dominant and occurring at thehighest temperature. An onset point, a midpoint, or achange in modulus by a certain amount have all been usedto mark the glass transition temperature. The tan 6maximum clearly specifies a thermal transition. However,it is necessary to independently determine that it is a glasstransition and not another of the many transitions thatappear in oscillating deformation methods. A classical Tg

measured at a low programmed temperature rate (1 deg/

min) may correspond to a tan 6 measurement at a lowfrequency of measurement (1 Hz). The "loading rate" of aDMA experiment is the oscillating frequency, and Tg

increases with frequency (analogous to the increase in Tg

with heating rate in a DSC experiment). It is possible tomeasure a tan 6 maximum at constant temperature while thefrequency is being scanned and there is an inverserelationship between temperature and frequency. Even ata reasonably low frequency (10 Hz), a tan 6 Tg can easily be20-300C greater than a classical one.

C. OTHER FACTORS AFFECTING 7g

Though the factors that govern Tg have been known forsome years, there is still a wide variation in values forparticular polymers. Polymer Tgs are sensitive to para-meters which may or may not have been evaluated by theauthors. Published values should be reviewed consideringall the factors which affect Ta. The main factors affectingTg values are polymer structure, sample crystallinity,diluent types and concentrations, molecular weight dis-tributions, previous thermal history of the sample, andsystem pressure. More detailed treatments are given inreviews (6,48,49,1241-1249).

1. Structure

Within families of similar polymers, increasing chainstiffness and interchain cohesion increase the glass transi-tion temperature. Copolymers may have one or multipleTg 's, depending on the ordering of monomers along thechain. The glass transition temperatures of copolymers maybe higher, lower, or in between those of the homopolymersof their comonomers.

Most polymer structures are idealized and presumedfrom the characteristics of the reactants rather than provenby chemical and structural analysis. Structural uncertaintiescan arise both from the multiplicity of chemical reactionsoccurring during polymerization (especially those taken tohigh conversions), downstream processing, and from thestructure of the reactants themselves. For example, apolymer with an asymmetric in-chain tetravalent atom canproduce several stereoregular forms.

Alternatively, a polymer containing a residual doublebond in the repeating unit could be in a cis, or transconformation. Polymers of 1,3-dienes can have variouscombinations of cis, trans, 1,2- or 1,4-structures. Variationsin these structural features can greatly effect the Tg values.Despite these uncertainties, the data are often useful if theycan be regarded as pertaining to a polymer withreproducible properties.

2. Crystallinity/Crosslinking

Some workers suggest that the presence of crystallinitydoes not appreciably affect Tg. However, steric constraintsimposed by crystalline regions on neighbouring amorphouspolymer segments might result in an increase in Tg because

of the reduced mobility of these segments. In samples withcrystallinity and moderate fractions of high molecularweight chains, tie molecules (long chains that havesegments in more than one crystallite) provide physicalcrosslinking and increase Tg.

Some polymer families, such as the methacrylates anda-chloroacrylates, show high dependencies of Tg ontacticity. Intermolecular bonding can affect Tg either byincreasing the cohesive energy of chain segments, or bydecreasing the backbone degrees of freedom of chainsegments. This last concept has been used (1240) to aidgroup contribution models.

As crystallinity increases, polymer Tg's may be littleaffected (50), may increase (51,52) (at least for isothermalcrystallization (53)) or may decrease (51,54). Tg valuesselected in this work are the highest quoted on the samplewith the lowest degree of crystallinity, other factors beingequal.

In general, the presence of crosslinks in a sampleincreases its Tg relative to an uncrosslinked sample. Thiseffect can be independent of the chemical composition ofthe crosslinking agent, caused by the restricted motion ofchain segments near crosslinking sites. However, thecrosslinking agent can behave similarly to a secondmonomer, inducing either an increase or a decrease in Tg

due to the copolymer effect.

3. Diluents

Much of the variation in published Tg data is caused by theuse of impure samples. Common impurities are unpolymer-ized monomer, low molecular weight polymer, solvents,and water. Great care should be taken to remove suchimpurities. Their presence in small concentrations can leadto a shift (48,98-103) in Tg of over 400C and sometimesthe occurrence of "diluent transitions", for example "waterpeaks". Preferred values are from publications that describethe precautions taken to exclude diluents and the residuallevels of these diluents. Few references contain thisinformation and most values should be regarded as onlyprovisional.

4. Molecular Weight

The Tg of a homopolymer generally increases withincreasing molecular weight up to a limiting value, knownas the limiting or persistent Tg value (48,104,105). Thereverse may hold for polymers with particular end-groups(106), or where crystallinity decreases with increasingmolecular weight (107). For some polymers, Tgs areindependent of molecular weight (108).

Many data, especially on condensation polymers, are forpolymers of rather low molecular weight and it seems likelythat higher Tg values would be obtained if higher molecularweight samples were tested. Many polymers are notproperly characterized with respect to molecular weightand few have reported molecular weight distributions. Inmany cases, the only measure of molecular weight is a

viscosity value, which itself can be very dependent onsolvent-polymer interactions and, to some extent on thetemperature. Usually, the highest viscosities and the highestmolecular weight polymers are associated with the mostreliable data.

The classical model for the effect of molecular weight onTg is (1219-1226)

This model suggests that the glass transition temperaturereaches a limiting value when the number average molecularweight of the polymer is large. Cowie and Toporowski(1220) have shown that there is no further increase in Tg

when the molecular weight is above a critical value, whichis similar to the critical molecular weight for viscosity.

5. Thermal History

We have previously discussed in detail how thermal history(cooling rate, annealing time, and temperature), as well asthe method of Tg measurement affects the reported Tg.

6. Pressure

Increasing pressure increases Tg in a linear relationship. Asimple model is (Refs. 1227-1230)

where Tg(p) is the glass transition temperature as a functionof pressure, p is pressure, and s is the linear pressurecoefficient. This coefficient is 0.2K/MPa for flexiblealiphatic chains, and 0.55K/MPa for semirigid aromaticchains (1231-1233). The effect of pressure on Tg can beimportant in some processing applications, such as injectionmolding. A different method for modeling the effect oftemperature takes into account pVT data near Tg (1235-1237), giving an equation that includes the bulk modulus ofthe polymer glass.

D. ESTIMATION METHODS FOR THE GLASSTRANSITION TEMPERATURE

Several researchers have developed group contributionmethods for correlating polymer properties, including theglass transition temperature (1238-1240). These techni-ques emphasize quantitative modeling of the various effectsof polymer structure on Tg, and are a valuable aid tointerpreting experimental data and estimating glass transi-tion temperatures for new materials.

E. CLASSIFICATION, NOMENCLATURE,AND ABBREVIATIONS

Over 10000 papers contain glass transition data (43). Thissection of Polymer Handbook represents a fraction of these

References page VI - 253

data. Most of the data in the tables are for linearhomopolymers. In general, the polymers contain noadditives or diluents, and are thought to have low or nobranching.

Polymers are subdivided into principle classes by thecomposition of their repeating chain segment: acycliccarbon polymers, carbocyclic polymers, acyclic heteroatompolymers, heterocyclic polymers, and copolymers. Allentries are placed in the most senior class their structurecommands (109,110) and appear in only one class. Thesubclasses and their entries are organized in alphabeticalorder.

1. Naming Conventions

With the exception of common polymers with acceptedtrivial names, the polymers are named substantiallyaccording to the ACS recommendations for polymernomenclature (110) in conjunction with IUPAC rules(109); less common polymers are cross-referencedfrom the trivial to the systematic name. Systematic namesare not given for all the polymers in order to save space.Substitutive nomenclature is generally used for simpleradicals, but for long combinations of radicals replace-ment nomenclature has been used to provide a muchshorter name (as for some fluorocrylates with ether sidechains).

When sequences of radicals have repeated, the repeatingsequence has been written once and prefixed "di", "tri",etc. as appropriate, for example, di(oxyethylene) for thesequence - 0 - C H 2 - C H 2 - O - C H 2 - C H 2 - . Note that thediradical "di(oxyethylene)" must be distinguished from thediradical "dioxyethylene" which has the structure, - O - O -CH 2 -CH 2 - , and also the diradical "ethylenedioxy" whichhas the structure, - 0 - C H 2 - C H 2 - O - (IUPAC ruleC205.2). The principle underlying the last-named diradicalhas not generally been extended to the naming of polymersin this section, i.e., diradicals of structure - X - Y - X - arenot named YdiX, with the exception of alkanedioyldiradicals, because of the difficulty of locating indexedpolymer names in which the diradicals are not named fromleft to right. Many polymers are derivatives of the diradical"propylene" -CH(CH3)-CH2-; the substituted diradical

"propylene" is used in naming polymers instead of " 1 -methylethylene" which could be preferred.

Polymer names are tabulated in alphabetical order withineach subsection, but

1. prefixes like sec-, tert-, including designated atomsand the numbers showing locations of substituents areignored except as secondary and tertiary indicators oforder. For example, poly(ethylene 2,6-naphthalate)appears before poly(ethylene 1,4-terephthalate);poly(4-/?-anisoylstyrene) appears before poly(4-ben-zoylstyrene).

2. multiplying prefixes for various substituents, such asdimethyl or trimethyl, are observed in alphabeticalordering rather than being grouped together as in the3rd edition of this Handbook.

3. the locations of substituents in otherwise identicalpolymers are taken as tertiary indicators of order: thenumbers are arranged in increasing order at the firstpoint of difference. Thus, 2,3,8- comes before 2,4,1-.

Comments may include information as to the instrument ofmeasurement and, whenever possible, information regard-ing the method of DSC measurement (e.g., onset),conditions of measurement, thermal history, and whethermeasurements were made as a function of a particularvariable such as molecular weight (/(MW)).

2. Abbreviations

HR Heating rateCR Cooling rateOCR Zero cooling rateXp ExtrapolateTH Thermal historyDSC Differential scanning calorimeterTMA Thermal mechanical analyzerDTA Differential thermal analysisDMA Dynamic mechanical analyzerMW Molecular weight/( ) Function of a variableMdpt MidpointIntg Integration

F. TABLES OF GLASS TRANSITION TEMPERATURES OF POLYMERS

TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS

Polymer CAS No. Tg (K) Remarks Refs.

1.1. POLY(ACRYLICS) AND POLY(METHACRYLICS)

1.1.1. POLY(ACRYLIC ACID) AND POLY(ACRYLIC ACID ESTERS)

Poly(acrylic acid) 9003-01-4 379 720,811-818348 1293

PoIy(I-adamantyl acrylate) 426 1401,1349Poly(adamantyl crotonate) 507 1349Poly(adamantyl sorbate) 388 1349Poly(benzyl acrylate) 279 746,1447

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(4-biphenylyl acrylate) ~383 819Poly(4-butoxycarbonylphenyl acrylate) 286 746Poly(butyl acrylate) 9003-49-0 219 Mechanical method 1, 23,634,775,

802-822224 1401

PolyO<?c-butyl acrylate) conventional 251 823,824253 1401

syndiotactic 253isotactic 250

Poly(terf-butyl acrylate) 380, 316 Conflicting data 746,824,825,1401346304 1432

Poly(2-tert-butylphenyl acrylate) 345 826Poly(4-teJt-butylphenyl acrylate) 344 826Poly (cesium acrylate) 447 Extrapolated from DSC data 817

on water plasticized samplesPoly[3-chloro-2,2-bis(chloromethyl)propyl acrylate] 319 746Poly(2-chlorophenyl acrylate) 326 746Poly(4-chlorophenyl acrylate) 331 826Poly(2,4-dichlorophenyl acrylate) 333 746Poly(4-cyanobenzyl acrylate) 317 746Poly(2-cyanobutyl acrylate) 25154-80-7 384-396 Dilatomer, lOdeg/minHR, 1088

DTA, /(polymerization)Poly(2-cyanoisobutyl acrylate) 26809-38-1 324 Dilatomer, 10 deg/min HR 1089Poly(4-cyanobutyl acrylate) 233-238 No experimental details 827Poly(2-cyanoethyl acrylate) 25067-30-5 277 746,820

388 Dilatomer, 10 deg/min HR 1090Poly(2-cyanoheptyl acrylate) 26936-29-8 389 DTA 1092Poly(2-cyanohexyl acrylate) 26877-39-4 358 Dilatomer, 10 deg/min HR 1093Poly(cyanomethyl acrylate) 433 Dilatomer, 10 deg/min HR, 1087

DTA, /(polymerization)Poly(2-cyanomethyl acrylate) 296 No experimental details 820Poly(5-cyano-3-oxapentyl acrylate) 250 No experimental details 820Poly(4-cyanophenyl acrylate) 363 746Poly(2-cyanoisopropyl acrylate) 25931-02-6 339 Dilatomer, 10 deg/min HR 1091Poly(4-cyano-3-thiabutyl acrylate) 249 828Poly(6-cyano-3-thiahexyl acrylate) 215 828Poly(6-cyano-4-thiahexyl acrylate) 215 828Poly(8-cyano-7-thiaoctyl acrylate) 214 828Poly(5-cyano-3-thiapentyl acrylate) 223 828Poly(cyclododecyl acrylate) 56710-66-8 310 DSC, onset, HR, 32 deg/min, 1086

quenchedPoly(cyclohexyl acrylate) conventional 292 824

syndiotactic 289isotactic 285

PoIy(1,2:3,4-di-O-isopropylidene-a-D-galactopyranos- 371 11,8426-O-yl acrylate)

Poly(3,5-dimethyladamantyl acrylate) 379 DSC heating rate; data 849,850corrected (sci)

378 1401,1349Poly(3,5-dimethyladamantyl crotonate) 432 1349Poly(3-dimethylaminophenyl acrylate) 320 746PoIy(1,3-dimethylbutyl acrylate) 258 Brittle point 823Poly[2,2-difluoro-2-(2-heptafluorotetrahydrofuranyl) 275 Brittle temperature 830

ethyl acrylate]Poly(dodecyl acrylate) 270 Brittle point 821,829Poly(2-ethoxycarbonylphenyl acrylate) 303 746Poly(3-ethoxycarbonylphenyl acrylate) 297 746Poly(4-ethoxycarbonylphenyl acrylate) 310 746Poly(2-ethoxyethyl acrylate) 223 830Poly(3-ethoxypropyl acrylate) 218 830,831Poly(ethyl acrylate) conventional 249 23,634,775

9003-32-1 251 1401syndiotactic 249 820,821,824isotactic 248 832, 833

References page VI-253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(2-ethylbutyl acrylate) 223 Brittle point 823

Poly(2-ethylhexyl acrylate) 9003-77-4 223 Brittle point 821Poly(ferrocenylethyl acrylate) 430 No experimental details 834Poly(ferrocenylmethyl acrylate) 470-483 DSC heating rate 835Poly(3-fluoroalkyl a-fluoroacrylate) 398 1263Poly(4-fluoroalkyl a-fluoroacrylate) 368 1263Poly(5-fluoroalkyl a-fluoroacrylate) 374 1263Poly(8-fluoroalkyl a-fluoroacrylate) 338 1263PoIy(17-fluoroalkyl a-fluoroacrylate) 388 1263Poly(fluoromethyl acrylate) 288 Estimated Tg 838Poly(furfuryl acrylate) 321 1279PoIy(IH, lH-heptafluorobutyl acrylate) 243 155,836,837Poly(5,5,6,6,7,7,7-heptafluoro-3-oxaheptyl acrylate) 228 830Poly(2,2,3,3,5,5,5-heptafluoro-4-oxapentyl acrylate) 218 830,837Poly(heptafluoro-2-propyl acrylate) 278-283 No details on sample 839

or measurementPoly(heptyl acrylate) 213 Brittle point 821,1401Poly(2-heptyl acrylate) 235 Brittle point 823Poly(hexadecyl acrylate) 308 Brittle point 23,821,840,841Poly(lH,lH,3H-hexafluorobutyl acrylate) 251 836Poly(hexyl acrylate) 216 Brittle point 823

1401Poly(3-hydroxyalkanoate) 293 1451Poly(isobornyl acrylate) conventional 367 824

syndiotactic 369isotactic 363

Poly(isobutyl acrylate) 249 Brittle point 823230 1401

Poly(isopropyl acrylate) conventional 267-270 746,823,824syndiotactic 271-284isotactic 262

Poly (magnesium acrylate) 673 Estimated from copolymer data 843Poly(3-methoxybutyl acrylate) 217 844Poly(2-methoxycarbonylphenyl acrylate) 319 746Poly(3-methoxycarbonylphenyl acrylate) 311 746Poly(4-methoxycarbonylphenyl acrylate) 340 746Poly(2-methoxyethyl acrylate) 223 830Poly(4-methoxyphenyl acrylate) 324 826Poly(3-methoxypropyl acrylate) 198 830Poly(methyl acrylate) conventional 9003-21-8 283 18,22,23,81

284 Dilatomer 1094290 1343282 1401,1432

head to tail 278 576,720,775-777head to head 304 821,824,831,841,

845-848Poly(2-methylbutyl acrylate) 241 Brittle point 823,1401Poly(3-methylbutyl acrylate) 228 Brittle point 823Poly(2-methyl-7-ethyl-4-undecyl acrylate) 253 Brittle point 823Poly(2-methylpentyl acrylate) 235 Brittle point 823Poly(2-naphthyl acrylate) 358 826Poly(neopentyl acrylate) 295 746,1401PoIy(I H, lH-nonafluoro-4-oxahexyl acrylate) 224 830PoIy(I H, lH-nonafluoropentyl acrylate) 236 836Poly(nonyl acrylate) 215 Brittle point 821

184 1401Poly(octyl acrylate) 25266-13-1 208 Brittle point 821,841,1401Poly(2-octyl acrylate) 228 Brittle point 823Poly(lH,lH,5H-octafluoropentyl acrylate) 238 836Poly(pentabromobenzyl acrylate) 453 1447Poly(pentachlorophenyl acrylate) 420 746PoIy(I H, lH-pentadecafluorooctyl acrylate) 256 Crystalline 836Poly(lH,lH-pentafluoropropyl acrylate) 247 836Poly(/2-pentyl acrylate) 216 1401

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(3-pentyl acrylate) 267 746,823Poly(phenyl ethyl)acrylate 270 746Poly(phenyl acrylate) 330 746,826Poly(potassium acrylate) 467 Extrapolated from data on 817

water plasticized samplesPoly(propyl acrylate) 236 Brittle point 23,592,832,836,

851, 852228 1401

Poly (sodium acrylate) 503 Estimated from 817,843copolymer data

Poly(tertural acrylate) 321 1279Poly(tetradecyl acrylate) 297 Brittle point; probably 23,821

1st order transitionPoly(7,7,8,8-tetrafluoro-3,6-dioxaoctyl acrylate) 233 830Poly(4,4,5,5-tetrafluoro-3-oxapentyl acrylate) 251 830Poly(3-thiabutyl acrylate) 213 831Poly(4-thiahexyl acrylate) 197 831Poly(5-thiahexyl acrylate) 203 831Poly(3-thiapentyl acrylate) 202 831Poly(4-thiapentyl acrylate) 208 831Poly(m-tolyl acrylate) 298 826Poly(o-tolyl acrylate) 325 826Poly(/?-tolyl acrylate) 316 826Poly(2,2,2-trifluoroethyl acrylate) 263 836Poly(5,5,5-trifluoro-3-oxapentyl acrylate) 235 830Poly(3,3,5-trimethylcyclohexyl acrylate) 288 1401PoIy(I H, lH-tridecafluoro-4-oxaoctyl acrylate) 205 830PoIy(IH,lH-undecafluorohexyl acrylate) 234 836Poly(lH,lH-undecafluoro-4-oxahexyl acrylate) 205 830Poly (zinc acrylate) 694 1261

1.1.2. POLY(ACRYLAMIDES)

Poly(acrylamide) 9003-05-8 438 No experimental details 820Poly(A/r-butylacrylamide) 319 Mechanical method 853Pory(Ar-seobutylacrylamide) 390 No experimental details 820Poly(A^-^rr-butylacrylamide) 401 No experimental details 820Poly(AyV-dibutylacrylamide) 333 Softening point, amorphous 854Poly(7V,7V-diisopropylacrylamide) ~ 393 Softening point, almost 854

amorphousPolyWiV-dimethylacrylamide) 26793-34-0 362 746Poly(N-dodecylacrylamide) 198-320 Conflicting data, 198 K more 820,853

probable in amorphoussample

Poly(isodecylacrylamide) 313 No experimental details 820Poly(isohexylacrylamide) 344 No experimental details 820Poly(isononylacrylamide) 325 No experimental details 820Poly(isooctylacrylamide) 339 No experimental details 820Poly(AMsopropylacrylamide) 25189-55-3 358, 403 Conflicting data 820,855Poly([AKl-methylbutyl)acrylamide) 380 No experimental details 820Poly(Af-methyl-Af-phenylacrylamide) ~ 453 Softening point, amorphous 854Poly(morpholylacryamide), [Poly(morpholinocarbonylethylene)] 420 9,856Poly(A^-octadecylacrylamide) 162 Mechanical method 853Poly(N-octylacrylamide) 220 853Poly(piperidylacrylamide) 381 9,856

1.1.3. POLY(METHACRYLIC ACID) AND POLY(METHACRYLIC ACID ESTERS)

Poly(acrylonitrile methacrylate) 383 1362Poly(adamantyl methacrylate) 414 DSC heating rate 849

456 1349456/532 1401

Poly(benzyl methacrylate) 25085-83-0 327 746Poly(2-bromoethyl methacrylate) 325 746Poly(2-tert-butylaminoethyl methacrylate) 306 746,857

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(4-tert-butylcyclohexyl methacrylate) 34903-89-4 356 DSC,/(HR) 1096403-451 1286

Poly(butyl methacrylate) 9003-63-8 293 -286 to 308 K 22,69,272,695,720,775,822,824,

847,858-862,1359,1367

300 1272307 1254328 298 K elsewhere 1342297 1401294 1255299 1413

isotactic 249 824syndiotactic 328 1342,1555

Polype-butyl methacrylate) 333 746,863,1401Pory(te/t-butyl methacrylate) atactic 391 Maximum value 746,847,864

395 1254380 1401

syndiotactic 387 Maximum valueisotactic 280

Poly(4-terr-butylphenyl methacrylate) 29696-27-3 371 DSC, /(HR) 1104Poly(2-chloroethyl methacrylate) ~ 365 Likely to be slightly high 262Poly(2-cyanoethyl methacrylate) 364 746,865Poly(4-cyanomethylphenyl methacrylate) ~401 746Poly(4-cyanophenyl methacrylate) 428 746Poly(cyclobutyl methacrylate) 351 1401Poly(cyclodecyl methacrylate) 331 1401Poly(cyclododecyl methacrylate) 329 1401Poly(cyclohexyl methacrylate) atactic 356 263,353,820,824

25768-50-7 377 1401406 1254

isotactic 324 847,862Poly(cyclooctyl methacrylate) 346 1401Poly(cyclooctylmethyl methacrylate) 326 1401Poly(cyclopentyl methacrylate) 348 1401Poly(2-decanhydronapthyl methacrylate) 418 1401Poly(decyl methacrylate) 203 23,821,840,846Poly(diethylaminoethyl methacrylate) ~ 289-297 857PoIy(1,2:3,4-di-O-isopropylidene-a-D-galactopyranos- 399 11,842

6-0-yl methacrylate)Poly(3,5-dimethyladamantyl methacrylate) 469 Temperature reported as 849,850

corrected467 1401,1349

Poly(dimethylaminoethyl methacrylate) 292 746Poly(3,3-dimethylbutyl methacrylate) - 318 Vicat softening point 332 K 863

318 1401Poly(3,3-dimethyl-2-butyl methacrylate) —381 Vicat softening poing 396 K 863

381 1401Poly(lH,lH,7H-dodecafluoroheptyl methacrylate) 286 Mechanical method 876Poly(dodecanidiol dimethacrylate) 277 1528Poly(dodecyl methacrylate) 208 Conflicting data 1,821,858,866,

867Poly(2-ethylhexyl methacrylate) 25719-51-1 263 Brittle point 821Poly(ethyl methacrylate) 9003-42-3 - DSC, onset, 16deg/min HR, 1095

quenched,/(MW)atactic 338 Data covers range 22,69,286,352,

320-343 K 353,521,695,821,824,857,858,860,

862,868-874,1342,1401,1363,

1545,1432339 1315352 1552362 1254

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

331 1359330 1360344 1413359 with 25% wt. of chromaphore 1418

I-doped polymer378 with 25% wt. of chromaphore 1418

II-doped polymer348 1438347 DSC 1484

isotactic 285 824syndiotactic 339 847

Poly(2-ethylsulfinylethyl methacrylate) 298 746Poly(ferrocenylethyl methacrylate) 482 No experimental details 834Poly(ferrocenylmethyl methacrylate) ~ 458-468 DSC heating rate 835Poly(3-fluoroalkyl methacrylate) 355 1263Poly(4-fluoroalkyl methacrylate) 353 1263Poly(5-fluoroalkyl methacrylate) 350 1263Poly(8-fluoroalkyl methacrylate) 320 1263Poly(17-fluoroalkyl methacrylate) 310 1263Poly(glycidyl methacrylate) 347 1269

336 1360Poly( 1H, lH-heptafluorobutyl methacrylate) syndiotactic ~330 875PoIy(I H, lH,9H-hexadecafluorononyl methacrylate) 258 Mechanical method 876Poly(hexadecyl methacrylate) 25986-80-5 288 Brittle point, sample probably 821,866

crystalline-may be Tm

Poly(hexyl methacrylate) 25087-17-6 268 695,846,858,877,

1251,1443273 1401

DSC 1484270 1416274 1413

Poly(2-hydropropyl methacrylate) 25249-16-5 328, 359 Conflicting data 746,878-88080% isotactic 311 DSC, dry Xp 109858% syndiotactic 393 DSC, dry Xp 1199

Poly(2-hydropropyl methacrylate) 349 846,878Poly(2-hydroxyethyl methacrylate) 358 1279Poly(D,L-isobornyl methacrylate) 396/464/443 1401Poly(isobornyl methacrylate) 64114-51-8 383 824

423 1508Poly(isobutyl methacrylate) random 326 746,821,824

isotactic 281 846,88180% syndiotactic, 20% isotactic 326

Poly(isobutyl methacrylate) 9011-15-8 326 1401337 1438

Poly(isopropyl methacrylate) atactic 354 746,824,86226655-94-7 358 1401

isotactic 300syndiotactic 358

Poly(2,3-O-isopropylidene-D,L-glyceritol-l-O-yl 335 Heating rate: 20K/min 842methacrylate)

Poly(magnesium methacrylate) ~ 763 Xp value 843Poly(methacrylic acid) 54193-36-1 501 Xp data from plasticized 882

samplesPoly(methacrylic anhydride) see Section 4.27Poly(4-methoxycarbonylphenyl methacrylate) 379 746Poly(methacrylate) 9003-21-8 273 1255Poly(methyl methacrylate) 9011-14-7 1102,1112,1101,

1107,1108DSC, onset, 16deg/min HR, 1101

quenched,/(MW)Dilatomer, CR 3 deg/h; 1109

creep relaxation, quenched378 1432,1315,

1401,1288,1318

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

379 1320,1300400 1343387 1365

Aldrich chemicals 1547391 1552384 DSC 1277373 1359,1508,1531390 1363,1545367 1413,1457382 DSC 1489423 1533395 1254

atactic 378 11061,17,22,25-27,

69,78,79,81,190,201,263,286,287,

317,318,352-354,400,614,684,698,

720,775,777-779,789,804,821,824,846,858,860,862,

880,883-895379 1271380 1255

isotactic 311 6,122,720,824,847,884,886,890,

895-901323 1255325 1271319 1432373 1254

syndiotactic 378 122,720,824,847,890,895,896,898,

900,901414 1256403 1254

heterotactic 372 DSC, rapid cooling, 10 deg/min 1103HR, onset point, M™

plasticized with 5% dibutylphthalate 363 1254plasticized with 10% dibutylphthalate 355 1254plasticized with 25% dibutylphthalate 373 1254with bis(2-ethylhexyl phthalate) 200-398 DS 1557

252-373 PCS 1557Poly[(2-nitrosoethyl) methacrylate] 328 903Poly(octadecyl methacrylate) 25639-21-8 173 1,720,904PoIy(I H, lH,5H-octafluoropentyl methacrylate) 309 Mechanical method 876Poly(octyl methacrylate) 203, 253 Conflicting data 23,695,821,840,

846,858253 1401

Poly(3-oxabutyl methacrylate) 289 846,857Poly(3-oxa-5-hydroxypentyl methacrylate) 278-280 Mechanical method 880Poly(pentyl methacrylate) 268 Brittle point 821

1401Poly(neopentyl methacrylate) 34903-87-2 299-312 DSC,/(HR) 1105

299 1401Poly(phenethyl methacrylate) 299 746Poly(phenyl methacrylate) 383 353,746,820,847,

863,875,1334407 1254

Poly(propyl methacrylate) 308 Conflicting data, 22,262,272,821,308-345 K reported 847,857,

858,860,1432

308 1401332 1254

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

319 1413DSC 1484

Poly(sodium methacrylate) ~583 Xp value 410,547,616Poly(3-tetracyclododecyl methacrylate) 477 1401Poly(tetradecyl methacrylate) 201-264 Conflicting data 843Poly(l,l,l-trifluoro-2-propyl methacrylate) 354 Vicat softening temperature 863Poly(3,3,5-trimethylcyclohexyl methacrylate) 398 1401Poly(3,5,5-trimethylhexyl methacrylate) 274 867Poly(trimethylsilyl methacrylate) isotactic 341 Heating rate: 15 K/min 902

syndiotactic 400 Weak Tg for syndiotacticpolymer

Poly(2,3-xylenyl methacrylate) 398 1334Poly(2,6-xylenyl methacrylate) 440 1334

1.1.4. POLY(METHACRYLAMIDES)

Poly(4-butoxycarbonylphenylmethacrylamide) 401 Softening point 905Poly(Af-te7t-butylmethacrylamide) 433 No experimental details 820Poly(4-carboxyphenylmethacrylamide) 473 Softening point 905Poly(4-ethoxycarbonylphenylmethacrylamide) 441 Softening point 905Poly(4-methoxycarbonylphenylmethacrylamide) 453 Softening point 905

1.1.5. OTHER a-AND ^-SUBSTITUTED POLY(ACRYLICS) AND POLY(METHACRYLICS)

Poly(butyl butoxycarbonylmethacrylate) 298 906Poly(butyl chloroacrylate) 330 Vicat softening point 863Poly(seobutyl chloroacrylate) 347 Vicat softening point 863Poly (butyl cyanoacrylate) 358 907Poly(cyclohexyl chloroacrylate) 387 Vicat softening point 863Poly(dibutyl itaconate) see Poly(butylbutoxy-

carbonylmethacrylate)Poly(ethyl chloroacrylate) 366 Vicat softening point 832,863,

908,90910% isotactic 308 Calculated for infinite Mn;

heating rate: 20 K/min100% syndiotactic 404 Calculated for infinite Mn;

heating rate: 20 K/minPoly(ethyl ethoxycarbonylmethacrylate) 325 Intrinsic vicosity only 0.24 dL/g 906Poly(ethyl ethacrylate) 300 746Poly (ethyl fluoromethacrylate) 316 910Poly(hexyl hexyloxycarbonylmethacrylate) 269 Intrinsic vicosity only 0.24 dL/g 906Poly[(l-heptoxycarbonyl-l- 28451-56-1 188, 250 DSC, onset, 20deg/min HR 1110

heptoxycarbonylmethylene)ethylene]Poly(isobutyl chloroacrylate) 363 832,911Poly(isopropyl chloroacrylate) 363 Vicat softening point 832,863Poly[(l-methoxycarbonyl-l- 372 DSC, onset, 20 deg/min HR 1110

methoxycarbonylmethylene)ethylene]Poly(methyl chloroacrylate) 413 Vicat softening point 863Poly (methyl p-chloroacrylate) 416 No measurement details 820Poly (methyl fluoroacrylate) 404 No details on samples or 820,912

measurementPoly (methyl fluoromethacrylate) 357 No experimental details 820,910Poly(methyl phenylacrylate) atactic 391 913

isotactic 397Poly(propyl chloroacrylate) 344 Vicat softening point 832,863

1.2. POLY(ALKENES)

Poly(butene-l) see Poly(ethylethylene) 9003-28-5Poly(butylethylene) 223 1,272,574,

629-633Pory(teTt-butylethylene) 337 Softening point, highly 631

crystalline samplePoly(cyclohexylethylene) atactic 393 634-639

isotactic 406 Dynamic method 640Poly(2-cyclohexylethylene) 313 Mechanical method 634

References page VI-253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly[(cyclohexylmethyl)ethylene] 348 Mechanical method 634Poly(3-cyclohexylpropylethylene) 248 Softening point, comparative 631

data reportedPoly(cyclopentylethylene) 348 Dynamic method 634Poly[(cyclopentylmethyl)ethylene] 333 Mechanical method 634Poly(decylethylene), poly(l-decene) 25189-70-2 237 629,632,641Poly(3,3-dimethylbutylethylene) 326 Softening point 631Poly(U-dimethylethylene), poly(isobutane) 9003-27-4 200 1,23,24,58,61,

216,223,695-704205 Volumetric measurements 1252195 1255202 1288

170-370 1540203 1549199 1432

Poly(4,4-dimethylpentene-l) see Poly(neopentylethylene)Poly(4,4-dimethylpentylethylene) 313 Softening point, crystalline 631

samplePoly(l,l-dimethyltetramethylene) 253 Dynamic method 706PoIy(1,1-dimethyltrimethylene) 263 Dynamic method 706-709Poly(dodecylethylene), poly(l-dodecene) 25067-08-7 241 629,632,641,1078Poly(ethylene) 9002-88-4

195 1255275 1254190 1287148 Conflicting interpretations 1,6,16,28,

of data; branch point 61,80,191,transition at 252 K 223,238,261,

262,272,317,318,344,349,395,396,469,

521-523,574,589,592,608,629,

641-676About 148 DSC,10/deg/minHR 1080222-240 WLF fit of volume relaxation 1076

- C - 163 1432- C - and - C - C - 248 1432

Poly(ethylene) [Poly(methylene)] 9002-88-4 155 489,897,598,574,694

Poly(ethyl ethylene) 235-240 Calorimeter 1073249 Wide spread in 1,61,67,273,349,

reported values 395,397,574,629,632,641,645,646,

677-680522 1541

Poly(1 -ethyl-1 -methyltetramethylene) ~ 250 DTA heating rate 681Poly(ethyl-2-propylene) 268 Dynamic method 682Poly(furylene ethylene) 293 1477Poly(heptylethylene), poly(l-heptene) 25511-64-2 226 Dynamic method 629PoIy(I-hexene) 25067-06-5 About 215 Calorimeter 1072Poly(hexyldecylethylene) 328 Dynamic method, 629,641,683

stereoregular sample; maybe first-order transition

Poly(hexylethylene) 208-228 Conflicting data 1,574,629,632Poly(hydroxymethylene) 407 DSC, onset, 6deg/min HR, 1085

dry, /(water)Poly(isobutylene) see PoIy(1,1-dimethylethylene) 9003-27-4Poly(isobutylethylene) 302 Reported values 1,51,675,684-692

range from 297 to 333 K313 1330

300 ± 1 1356302 1432573 1451

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(isohexylethylene) 239 Softening point 631Poly(isopentylethylene) 259 Softening point 631Poly(isopropylethylene) atactic 323 Dynamic method 634,641,685,691,

692isotactic 367 Dilatometry; suggested 693

transition crystal/crystal typePoIy(I-methyloctamethylene) 215 Heating rate: 4-8K/min 705Poly(4-methylpentene-l) see Poly(isobutylethylene) 25068-26-2Poly(neopentylethylene) 332 Softening point, crystalline 631

samplePoly(nonylethylene) 236 632Poly(octylethylene), poly(l-octene) 25511-67-5 232 629,632,641Poly(pentene-l) 238 1356

511 1541Poly(pentylethylene) 242 Dynamic method 629Poly(propylene) atactic 9003-07-0 - 1084

238 1320-260 Conflicting data; 1,6,15,80,122,

most values reported 191,223,range 258 to 270 K 261,272,

273,282,318,326,394_397,469,574,615,629,632,641,645,640,659,666,668,675,677,678,

684,710-726,1255266 DSC, onset,/(MW) 1082253 1271267 Light scattering under terminal 1452

modeLight scattering under 1452

segmental mode170-370 1540

243 1432263 1499

isotactic 25085-53-4 - 1083~ 265 Most values range 238 to 260 K

272 DSC, onset, quenched,/(MW) 1081syndiotactic (c) ~ 265 Most values range 263 to 267 K

Poly(propylethylene) ~233 Conflicting data 1,272,574,595,629,630,632,645,

685,727Poly(propyl-2-propylene) 300 Dynamic method 682Poly(tetradecylethylene) 246 629,632,641Poly(2,5-thienylene ethylene) 298 1477

353 1477Poly (1,1,2-trimethyltrimethylene) 310 682

1.3. POLY(DIENES)

EPDM, maleated 236 1455Natural rubber see Poly(isoprene) cisNeoprene see PoIy(I-chloro-1-butenylene)PoIy(I-bromo-1-butenylene) 241 DSC, annealed 1077Poly(butadiene)s see PoIy(I-butylene)s and Poly(vinylethylene)PoIy(1,2-butadiene) 293 1432

258 1337ionically-terminated 273 1337

Poly(l,3-butadiene) cis 170-370 1540Poly(l,4-butadiene) 9903-17-2 218 1432

cw 170 1285PoIy(I-butenylene) cis 164 DSC, onset, HR 20deg/min, 1075

quenched171 26,61,574-597

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

trans 215 Wide spread in 580,583,585-587,published data 589,594,595,598,

599PoIy(I-butyl- 1-butenylene) 192 Dynamic method 600Poly (1 -terf-butyl-1 -butenylene) 293 80,348,601,602Poly(2-chloro-l,3-butadiene) see PoIy(I-chloro-

1-butenylene)PoIy(I-chloro- 1-butenylene) as 253 603

trans 233 1,24,604-611Poly(2-chloro-l,4,4-trifluoro-1-butenylene) 256 No experimental details 587Poly(chloroprene) 9010-98-4 227 1360PoIy(I-decyl- 1-butenylene) 220 1Poly(endo-dicyclopentadiene) 370 1486Poly(exo-dicyclopentadiene) 339 1486Poly (1,2-dimethyl-1 -butenylene) 262 576Poly(l-ethyl-l-butenylene) 197 600,612Poly (1 -heptyl-1 -butenylene) 190 80,601Poly(isoprene) cis 9003-31-0, 200 349,388,394,464,

104389-31-3 469,574,591,594,595,613-623

203 1255,1271204 1432,1309

trans 104389-32-4 266 1255206-218 DSC, Mdpt,/(HR9TH) 1079

207 DSC, onset, 20deg/min HR 1074215 514,581,589,594,

608,617,624,1329protonated 215 1495

Poly(isoprene), gutta percha 311 1323Poly (1 -isopropyl-1 -butenylene) 221 600,601,612Poly(4-methoxy-1-butenylene) 256 591Poly(4-methoxycarbonyl-3-methyl-1-butenylene) 326 Dynamic method 625Poly(methyl sorbate) see Poly(4-methoxycarbonyl-

3-methyl-1 -butenylene)Poly(norbornene) 25038-76-0 304 1295

337-313 With increase in spacer length 1405Poly(octafluoro-4-methyl-1-butenylene) 270 DSC heating rate 97PoIy(I-pentenylene) cis 159 Heating rate: 16 K/min 626

trans 183 DTA heating rate 594PoIy(I-phenyl- 1-butenylene) ~283 Low molecular weight 584PoIy(I-propyl- 1-butenylene) 196 600Poly[5-(l,l,3,3-tetramethyl-l,3-disilabutyl)norbornene] 297 1295Poly(1,4,4-trifluoro-1-butenylene) 238 Slightly crystalline 587Poly(5-trimethylsilylnorbornene) 386 1295Poly(vinylethylene) atactic 269 Published values 585,586,592,597,

range from 245 to 283 K 627,6289003-17-2 304-294 With increase in spacer length 1405

258 DSC 1354249 ± 1 1356

261 Volumetric measurements 1252276 1329

cis 40022-03-5 171 1255deuterated 186 1495diol 205 1258diol (crosslinked) 199 1326

diol 50%, Polypropylene oxide) diol 50% 211 1258diol 80%, Polypropylene oxide) diol 20% 213 1258

high 250 DSC 1559258 DSC 1559264 DSC 1559274 DSC 1354,1559

low 268 DSC 1354,1559261 DSC 1559

protonated 182 1495PVE-O 272 1550

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

PVE-5 276 1550PVE-Il 279 1550PVE-22 282 1550PVE-44 285 1550PVE-66 287 1550trans 25038-44-2 215 1255

1.4. POLY(STYRENES)

Poly(4-acetylstyrene) 389 Mechanical method 728Poly(4-/?-anisoylstyrene) 376 Mechanical method 728Poly(4-benzoylstyrene) 371 Mechanical method 728Poly[(2-benzoyloxymethyl)styrene] 345 Mechanical method 729Poly[3-(4-biphenylyl)styrene] ~ 471 Softening point 730poly[4-(4-biphenylyl)styrene] 593 Softening point 730Poly(5-bromo-2-butoxystyrene) 320 Mechanical method 731Poly(5-bromo-2-ethoxystyrene) 353 Mechanical method 731Poly(5-bromo-2-isopentyloxystyrene) 310 Mechanical method; 731

low viscosityPoly(5-bromo-2-isopropoxystyrene) 308 Mechanical method 731Poly(5-bromo-2-methoxystyrene) 359 Mechanical method 731Poly(5-bromo-2-pentyloxystyrene) 322 Mechanical method; 731

low viscosityPoly(5-bromo-2-propoxystyrene) 327 Mechanical method; 731

low viscosityPoly(4-bromostyrene) 24936-50-3 391 732-734

414-430 DSC, Mdpt,/(TH) 1124Poly(2-butoxycarbonylstyrene) 339 Mechanical method 735Poly(4-butoxycarbonylstyrene) 349 Mechanical method 728Poly(-[(2-butoxyethoxy)methyl]styrene) < 235 736Poly(2-butoxymethylstyrene) 340 Mechanical method 729Poly(4-butoxymethylstyrene) < 283 736Poly[4-(sec-butoxymethyl)styrene] 313 Dynamic method 736Poly(4-butoxystyrene) ~ 320 Mechanical method 736,737Poly(5-tert-butyl-2-methylstyrene) 360 732Poly(4-butylstyrene) 279 736,738,739Poly(4-^c-butylstyrene) 359 Softening point 739Poly(tert-butylstyrene) 422 1523Poly(4-tert-butylstyrene) 26009-55-2 399-404 DSC, Mdpt, X. 1 deg/min,/(CR) 1122Poly(4-butyrylstyrene) 347 Mechanical method 728Poly(2-carboxystyrene) 450 Mechanical method 742Poly(4-carboxystyrene) 386 Mechanical method 728Poly(4-chloro-3-fluorostyrene) 395 732Poly(4-chloro-2-methylstyrene) 418 732Poly(4-chloro-3-methylstyrene) 387 732Poly(2-chlorostyrene) 392 732Poly(3-chlorostyrene) 363 732Poly(4-chlorostyrene) 24991-47-7 383 83,732-734

388-401 DSC, Mdpt,/(TH) 1123298 1423

Poly(4-cyanostyrene) 393 Sample thought to be 746crosslinked

Poly(4-decylstyrene) 208 738Poly(2,4-dichlorostyrene) 406 732,743Poly(2,5-dichlorostyrene) 379 44,732,744Poly(2,6-dichlorostyrene) 440 83,569,745Poly(3,4-dichlorostyrene) 401 732,744Poly[4-(2-diethylaminoethoxycarbonyl)styrene 347 Mechanical method 728

hydrochloride]Poly(4-diethylcarbamoylstyrene) 375 Mechanical method 728Poly(2,5-difluorostyrene) 374 Softening point 83Poly(2,4-diisopropylstyrene) ~ 435 Softening point 83Poly(2,5-diisopropylstyrene) 441 Softening point 83

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(2-dimethylaminocarbonylstyrene) 463 Mechanical method; 742low viscosity

Poly(4-dimethylaminocarbonylstyrene) 398 Mechanical method 728Poly[2-(2-dimethylaminoethoxycarbonyl)styrene] 342 Mechanical method 735Poly[4-(2-dimethylaminoethoxycarbonyl)styrene] 373 Mechanical method 728Poly[4-(2-dimethylaminoethoxycarbonyl)styrene 355 Mechanical method 728

hydrochloride]Poly(2,4-dimethylstyrene) 385 122,732,739,749,

768Poly(2,5-dimethylstyrene) 416 DTA heating rate 732Poly(3,4-dimethylstyrene) 384 DTA heating rate 732Poly(3,5-dimethylstyrene) 377 749Poly(4-dodecylstyrene) 221 738Poly(2-ethoxycarbonylstyrene) 391 Mechanical method 735Poly(4-ethoxycarbonylstyrene) 367 Mechanical method 728Poly[4-(2-ethoxymethyl)styrene] 273 Dynamic method 736Poly(2-ethoxymethylstyrene) 347 Mechanical method; 729

low viscosityPoly(4-ethoxystyrene) ~ 359 Mechanical method 737Poly [4-( 1 -ethylhexyloxymethyl)styrene] 250 736Poly(2-ethylstyrene) 376 Softening point 739Poly(3-ethylstyrene) ~ 303 Softening point 739Poly(4-ethylstyrene) 300, <351 Conflicting data 736,738,739Poly(2-fluoro-5-methylstyrene) 384 Mechanical method 748Poly(4-fluorostyrene) 368 732-734,749-751Poly(4-hexadecylstyrene) 278 738Poly(4-hexanoylstyrene) 339 Mechanical method 728Poly(2-hexyloxycarbonylstyrene) 318 Mechanical method 735Poly(4-hexyloxycarbonylstyrene) 339 Mechanical method 728Poly(4-hexyloxymethylstyrene) 253 Dynamic method 736Poly(4-hexylstyrene) 246 738Poly[4-(4-hydroxybutoxymethyl)styrene] 293 Dynamic method 736Poly[4-(2-hydroxybutoxymethyl)styrene] 319 Dynamic method 736Poly[4-(l-hydroxyiminoethyl)styrene] 407 Mechanical method 728Poly(4-[(l-hydroxyimino)-2-phenethyl]styrene) 384 Mechanical method 728Poly[4-(l-hydroxy-3-dimethylaminopropyl)styrene] 316 Mechanical method; 754

low viscosityPoly[4-(l-hydroxy-l-methylbutyl)styrene] ~ 403 Softening point 754Poly[4-(l-hydroxy-l-methylethyl)styrene] ~438 Softening point 754Poly[4-(l-hydroxy-l-methylhexyl)styrene] ~364 Softening point 754Poly[4-(l-hydroxy-l-methylpentyl)styrene] ~356 Softening point 754Poly[4-(l-hydroxy-l-methylpropyl)styrene] ~459 Softening point 754Poly(2-hydroxymethylstyrene) 433 1Poly(3-hydroxymethylstyrene) 398 Dynamic method 1Poly(4-hydroxymethylstyrene) 413 1Poly[4-(l-hydroxy-3-morpholinopropyl)styrene] 323 Mechanical method; 754

low viscosityPoly[4-(l-hydroxy-3-piperidinopropyl)styrene] 327 Mechanical method; 754

low viscosityPoly(4-hydroxystyrene) 433 1423Poly(4-iodostyrene) 429 733,734Poly(2-isobutoxycarbonylstyrene) 400 Mechanical method 735Poly(4-isobutoxycarbonylstyrene) 363 Mechanical method 728Poly(2-isopentyloxycarbonylstyrene) 341 Mechanical method 735Poly(2-isopentyloxymethylstyrene) 351 Mechanical method; 729

low viscosityPoly(4-isopentyloxystyrene) ~ 330 Mechanical method 737Poly(2-isopropoxycarbonylstyrene) 419 Mechanical method 735Poly(4-isopropoxycarbonylstyrene) 368 Mechanical method 728Poly(2-isopropoxymethylstyrene) 361 Mechanical method; 729

low viscosityPoly(4-isopropylstyrene) 306 Softening point 739Poly(2-methoxycarbonylstyrene) 403 Mechanical method; 742

low viscosityPoly(4-methoxycarbonylstyrene) 386 Mechanical method 728

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(2-methoxymethylstyrene) 362 Mechanical method; 729low viscosity

Poly(4-methoxymethylstyrene) 350 Dynamic method 736Poly(4-methoxy-2-methylstyrene) ~ 358 Softening point 755Poly(2-methoxystyrene) ~ 348 Softening point 755Poly(4-methoxystyrene) ~362 Mechanical method 737,755-757Poly(2-methylaminocarbonylstyrene) 462 Mechanical method 742Poly(oc-methylstyrene) 25014-31-7 293 DSC, onset, 20 deg/min HR 1130

371-375 DSC, Mdpt, 20 deg/min HR, 1135/(TH)

453 1549,1432443 1324455 DSC 1277

Poly(2-methylstyrene) 409 63,732,739,749,755Poly(3-methylstyrene) 370 DTA heating rate 732,739,749,766Poly(4-methylstyrene) 24936-41-2 366, 374 Conflicting data 732,739,756,766,767

382 1423Poly(4-methoxystyrene) 24936-44-5 386 DSC, Mdpt, 320 deg/min CR, 1 1140

deg/min HR, /(TH, HR, Mn)Poly(4-morpholinocarbonylstyrene) 400 Mechanical method 728Poly[4-(3-morpholinopropionyl)styrene] 314 Mechanical method 754Poly(4-nonadecylstyrene) 305 1Poly(4-nonylstyrene) 220 738Poly(4-octadecylstyrene) 305 738Poly(4-octanoylstyrene) 323 Mechanical method 728Poly[4-(octyloxymethyl)styrene] 231 Dynamic method 736Poly(2-octyloxystyrene) 286 769Poly(4-octylstyrene) 228 738Poly[4-(pentadexafluoroheptyl)styrene] 320 Heating rate 32 K/min, /(TH) 747Poly(2,3,4,5,6-pentafluorostyrene) 378 Heating rate: 5-20K/min 97Poly(2-pentyloxycarbonylstyrene) 365 Mechanical method 735Poly(2-pentyoxymethylstyrene) 320 Mechanical method 729Poly(perfluorostyrene) 467 Heating rate: 5-20 K/min 97Poly(2-phenethyloxymethylstyrene) 336 Mechanical method; 729

low viscosityPoly(2-phenoxycarbonylstyrene) 397 Mechanical method; 742

low viscosityPoly(4-phenoxystyrene) ~ 373 Softening point 83Poly(4-phenylacetylstyrene) 351 Mechanical method 728Poly(2-phenylaminocarbonylstyrene) 464 Mechanical method; 742

low viscosityPoly(4-phenylstyrene) 434 Extrapolated to zero rate 763, 770Poly(4-piperidinocarbonylstyrene) 387 Mechanical method 728Poly[4-(3-piperidinopropionyl)styrene] 311 Mechanical method 754Poly(4-propionylstyrene) 375 Mechanical method 728Poly(2-propoxycarbonylstyrene) 381 Mechanical method 735Poly(4-propoxycarbonylstyrene) 365 Mechanical method 728Poly(2-propoxymethylstyrene) 370 Mechanical method; 729

low viscosity• Poly(4-propoxymethylstyrene) 295 Dynamic method 736

Poly(4-propoxystyrene) 343 Mechanical method 737Poly(4-propoxysulfonylstyrene) isotactic 490 DTA heating rate 771Poly(styrene) alkylated 356 1521

amorphous 373 1506crosslinked 373 1352deuterated PS 378 1495isotactic and atactic 9003-53-6 373 9,17,21,22,25,47,51,

57,63,64,72,78,79,188,190,191,261,263,317,318,

344,350-352,394,397,399,469,524,569,576,619,628,630,635,637,640,646,

647,684,699,731-734,746,750,766,768,

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. T% (K) Remarks Refs.

772-810,1125,1133,1138,1139,1141,

1254,1276,1288,1308,1318,1324,1423,1432,1523,1549,1255

DSC 1489DSC, onset, 16deg/min HR, 1126

quenched, /(MW)DSC, Mdpt, 20 deg/min HR, 1129

/(MW)DSC, Intg, /(HR, CR, MW) 1143DSC, Intg,/(HR, CR) 1144Dilatometer, CR 3 deg/h; creep 1148

relaxation, quenched368 Dilatometer, 2.5 deg/min CR 1145371 DSC, onset, HR 32 deg/min, 1132

quenched371 DTA, DSC, onset, 1 deg/min 1147

HR,/(HR)371-377 DSC, penetration, onset MP, 1146

zero HR373 DSC, Intg, OHR, 10 deg/min 1142

CR376 DSC, Mdpt, 1 deg/min X HR, 1128

TH,/(MW)377 DSC, onset, 20 deg/min HR 1149

after similar cool, /(MW)382 DSC, onset, 20 deg/min HR 1130364 1271374 GPC 1284377 PCS 1309378 NR and SE 1319380 1433374 1437400 1530401 DSC 1530

170-370 1540p-cyanobenzyl 365 1253/7-cyanobiphenyl 370 1253sulfonated syndiotactic 433-463 1322

Poly(4-tetradecylstyrene) 237 738Poly(4-/?-toluoylstyrene) 372 Mechanical method 728Poly(a, p, P-trifluorostyrene) 475 Heating rate: 83,97,114,752,

5-20K/min; values up to 753513 K reported

Poly{3-[bis(trimethylsiloxy)boryl]styrene} 308 Refractive index 1136Poly{4-[bis(trimethylsiloxy)boryl]styrene} 357 Refractive index 1136Poly(2,4,5-trimethylstyrene) ~ 409 Softening point 83Poly(2,4,6-trimethylstyrene) ~435 Softening point 83Poly (4- [bis(trimethylstannyl)methyl] styrene) 413 1556,1347Poly(4-valerylstyrene) 343 Mechanical method 728

1.5. POLY(VINYL ALCOHOL) AND POLY(VINYL KETONES)

Poly( 1 -acetyl-1 -fluoroethylene) 415 923Poly(benzoylethylene) 314, 347 Conflicting data 924,925Poly(4-bromo-3-methoxybenzoylethylene) 317 Mechanical data 924Poly(4-terf-butylbenzoylethylene) 377 925Poly(4-chlorobenzoylethylene) 310, 362 Conflicting data 924,925Poly(3,4-dimethylbenzoylethylene) 315 Mechanical data 924Poly(4-ethylbenzoylethylene) 325 924,925Poly(4-isopropylbenzoylethylene) 336 925Poly(4-methoxybenzoylethylene) 319 Mechanical data 924Poly(phenyl vinyl ketone) see Poly(benzoylethylene) 26742-84-7Poly (4-propy lbenzoy lethylene) 317 925

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(p-toluoylethylene) 344 924,925Poly(vinyl alcohol) [Poly(hydroxyethylene)] 9002-89-5 358 Dynamic method 1,191,202,216,

230,261,573,926,927

From hydrolysis of poly(vinyl 1424acetate)

308 1498350 1513

1.6. POLY(VINYL ESTERS)

Poly[(2-acetoxybenzoyloxy)ethylene] 333 29,925Poly(4-acetoxybenzoyloxyethylene) ~ 349 29,925Poly(acetoxyethylene) [Poly(vinyl acetate)] 9003-20-7 305 1,9,12,19,22,62,

187,216,223,230,286,352,354,399,400,573,593,695,775,777,792,816,840,845,888,926,

928,932,1016,1034-1044,1121,

1302,1320,1288302 1432590 1317315 1339,1516304 1513303 1255311 1437,1468313 DSC 1489

Poly[(l-acetylindazol-3-ylcarbonyloxy)ethylene] 423 Heating rate: 20 K/min-"onset" 1045value

Poly(4-benzoylbutyryloxyethylene) 318 DTA heating rate 1046Poly(benzoyloxyethylene) 344 29,354,755,820,

925,1047,1048Poly(3-bromobenzoyloxyethylene) 331 29,925Poly(4-bromobenzoyloxyethylene) 365 29,925,1047,1048Poly[(^rf-butoxycarbonylamino)ethylene] 393 DTA heating rate 1049Poly(4-tert-butylbenzoyloxyethylene) 374 29,925,1050Poly(4-butyryloxybenzoyloxyethylene) 334 29,925Poly(2-chlorobenzoyloxyethylene) 335 29,925,1048Poly(3-chlorobenzoyloxyethylene) 338 29,925,1048Poly(4-chlorobenzoyloxyethylene) 357 29,925,1047,1048Poly(cyclohexanoyloxyethylene) 349 Mechanical method, heating 1043

rate: 30K/hPoly(cyclohexylacetoxyethylene) 298 Mechanical method, heating 1043

rate: 30K/hPoly(4-cyclohexylbutyryloxyethylene) ~ 263 Mechanical method, heating 1043

rate: 30K/hPoly(cyclopentanoyloxyethylene) 309 Mechanical method, heating 1043

rate: 30K/hPoly(cyclopentylacetoxyethylene) 270 Mechanical method, heating 1043

rate: 30K/hPoly(3,3-dimethyl-3-phenylpropionyloxyethylene) 293 Mechanical method, heating 1043

rate: 30K/hPoly[(2,2-dimethylvaleryloxy)ethylene] 283 Mechanical method 1043Poly(4-ethoxybenzoyloxyethylene) 343 29,925Poly(4-ethylbenzoyloxyethylene) 326 29,925Poly(2-ethyl-2-methylpropylene terephthalate) 340 1532

328-338 1532Poly[(2-ethyl-2,3,3-trimethylbutyryloxy)ethylene] 388 Mechanical method 1043Poly(formyloxyethylene) 310 ~ 60% syndiotactic diads 593

306 50% syndiotactic diadsPoly[(heptafluorobutyryloxy)ethylene] 300 1051Poly(3-hydroxybutyrate) 277 1262

278 ± 2 1536223 1494

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(isonicotinoyloxyethylene) 372 From polyvinyl alcohol 29,288,1053Poly(4-isopropylbenzoyloxyethylene) 342 29,925Poly[(2-isopropyl-2,3-dimethylbutyryloxy)ethylene] 393 Mechanical method 1043Poly[(2-methoxybenzoyloxy)ethylene] 338 29,925Poly[(3-methoxybenzoyloxy)ethylene] ~ 317 29,925Poly[(4-methoxybenzoyloxy)ethylene] 360 29,757,925,

1047,1048Poly[(2-methylbenzoyloxy)ethylene] 321 29,820,925,1048Poly[(3-methylbenzoyloxy)ethylene] 324 29,925,1048Poly[(4-methylbenzoyloxy)ethylene] 343 29,925,1047,1048Poly[(1-methyIcyclohexanoyloxy)ethylene] 359 Mechanical method, heating 1043

rate: 30K/hPoly(nicotinoyloxyethylene) 360 From polyvinyl alcohol 29,1053Poly(nitratoethylene) 307 903Poly[(3-nitrobenzoyloxy)ethylene] 366 29,925Poly[(4-nitrobenzoyloxy)ethylene] 395 29,925Poly(nonadecafluorodecanoyloxy)ethylene] 253-255 1051Poly[(nonafluorovaleryloxy)ethylene] 288-293 1051Poly (octamethylene/?,/?'-dibenzoate) 315 1519Poly[(pentadecafluorooctanyloxy)ethylene] 258-263 1051Poly[(pentafluoropropionyloxy)ethylene] 315 1051Poly[(4-phenylbenzoyloxy)ethylene] 358 29,925Polyl(pivaloyloxyethylene) 359 Mechanical method 1043Poly[(4-propionyloxybenzoyloxy)ethylene] 346 29,925Poly(propionyloxyethylene) 283 Mechanical method 1043Poly[(2,2,3,3-tetramethylvaleryloxy)ethylene] 363 Mechanical method 1043Poly[(2,2,3,4-tetramethylvaleryloxy)ethylene] 323 Mechanical method 1043Poly[(2,2,4,4-tetramethylvaleryloxy)ethylene] 328 Mechanical method 1043Poy[(4-/?-toluoylbutyryloxy)ethylene] 313 DTA heating rate 1046Poly(triethylene glycol/?,/?'-dibenzoate) 293 Annealed 1505Poly[(trifluoroacetoxy)ethylene] ~319, <348 Conflicting data 1051,1052Poly[(3-trimethylsilylbenzoyloxy)ethylene] 353 DTA heating rate 1054Poly[(4-trimethylsilylbenzoyloxy)ethylene] 408 DTA heating rate 1054,1055Poly[(undecafluorocyclohexylcarbonyloxy)ethylene] 327 1051Poly[(undecafluorohexanoyloxy)ethylene] 264 Plasticizer may be present 1051Poly (vinyl acetate) see Poly(acetoxyethylene) 9003-20-7Poly(vinyl formate) see Poly(formyloxyethylene)Poly(vinyl-4-isopropylbenzoate) see Poly(4-isopropyl

benzoyloxyethylene)Poly (4-( 11 -(vinyloxy)undecyloxy)-4-cyanophenylbenzoate) 310 1548Poly(4-(1 l-(vinyloxy)undecyloxy)-4-ethoxyphenylbenzoate) 310 1548

1.7. POLY(VINYL ETHERS) AND POLY(VINYL THIOETHERS)

Poly(butoxyethylene) 218 1,832,866,914-918217 1432

Poly(seobutoxyethylene) 253 866,914Poly(tert-butoxyethylene) 361 1,918Poly(butylthioethylene) 253 866Poly(butyl vinyl ether) see Poly(butoxyethylene)Poly(chlorotrifluoroethylene) 9002-83-9 325 1470Poly(cyclohexyloxyethylene) 354 Softening point 918Poly(decyloxyethylene) ~ 183, 211 Conflicting data, 866,914,916,917

independent DSC datasupports higher value

Poly(2,2-dimethylbutoxyethylene) 282 Mechanical method 918Poly(l,l-difluoro-2-trifluoromethoxyethylene) 263-273 Estimated from copolymer data 457Poly(l,2-difluoro-l-trifluoromethoxyethylene) 263-273 Estimated from copolymer data 457Poly(dodecafluorobutoxyethylene) 263-273 Tg estimated from copolymer 457

dataPoly(ethoxyethylene) 230 1,223,521,573,

832,866,914-92025104-37-4 240 1432

Poly [(2-ethylhexyloxy)ethylene] 207 866,915Poly(ethylthioethylene) 266 Viscosity only 0.2 dl/g 866

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(2-furyloxirane) 288 1419Poly[(heptafluoro-2-propoxy)ethylene] ~ 328-338 839Poly(hexafluoromethoxyethylene) 268 DTA heating rate 457Poly (hexyloxyethylene) 199 866,914-918,1432Poly(isobutoxyethylene) 254 1,223,573,832,

866,914,916-918,920,922

Poly(isopropenyl methyl ether) see Poly(2-methoxy propylene)Poly (isopropoxyethylene) 270 832,866,914,918

261 1432Poly(methoxyethylene) 242 1,223,805,866,

914-918,920,1255NR and SE 1319

246 GPC 1284228 1300245 1308248 1348251 1495,1432191 1502199 1502247 1516

Poly(2-methoxypropylene) 340 866Poly(methylthioethylene) 272 866Poly(neopentyloxyethylene) ~424 Softening point 918Poly(octyloxyethylene) 194 866,914-917Poly(pentyloxyethylene) 207 866,915Poly(propoxyethylene) 224 832,915Poly(2,2,2-trifluoroethoxytrifluoroethylene) 308 DTA heating rate 457,921PoIy[I,l-bis(trifluoromethoxy)difluoroethylene] 213 Poorly defined DTA 457

endothermsPoly(vinyl methyl ether) see Poly(methoxyethylene) 9003-09-2Poly(4-vinyl phenol) 24979-70-2 429 1457Poly(p-vinyl phenol) 428 1552

1.8. POLY(VINYL HALIDES) AND POLY(VINYL NITRILES)

PoIy(I-acetoxy-1-cyanoethylene) 420 Heating rate: 8 K/min 255Poly(acrylonitrile) [poly(cyanoethylene)] 25014-41-9 398 Dielectric, 1 Hz,/(Hz) 1113

370 1,7,26,80,191,202,393,400,521,525,576,752,772,779,787,928-941

355-413 1382Poly(chlorotrifluoroethylene) 9002-83-9 -325 By "static" methods 66,80,191,261,

349,355373 By mechanical 396,401,521,647,

methods even at low 893,945-961frequencies

PoIy(1,1-dichloroethylene), poly(vinylidene chloride) 255 1,6,62,80,216,521,524,648,942-944

Poly(1,1 -dichloro-2-fluoroethylene) ~ 320 [77] only 0.035 dl/g 962Poly( 1,2-dichloro-1,2-difluoroethylene) 350 Heating rate: 5-20 K/min, high 97

pressure, radiation synthesisPoly( 1,1 -difluoroethylene), poly(vinylidene fluoride) 24937-79-9 - 1118

~233 401,963-970223 1321235 DSC 1333

Poly( 1,2-difluoroethylene) 371 DTA heating rate 114,457,9719002-84-0 200 1287

Poly(ethylene), chlorinated 63231-66-3, 281 48 wt.% Cl 1325110028-31-4

Poly(hexafluoropropylene) 425 Heating rate: 5-20 K/min 97,984,1006Poly[(heptafluoropropyl)ethylene] 331 Heating rate: 5-20 K/min, high 97

pressure, radiation synthesis

References page VI - 253

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(2-iodoethylethylene) 343 Dynamic method 1009Poly(9-iodononylethylene) 267 Dynamic method 1009Poly(3-iodopropylethylene) ~ 303 Dynamic method 1009Poly(methacrylonitrile) 393 1Poly[(pentafluoroethyl)ethylene] 314 Heating rate: 5-20K/min, high 97

pressure, radiation synthesisPoly(tetradecafluoropentylethylene) 503? Heating rate: 5-20 K/min, high 97

pressure, radiation synthesis,value uncertain

Poly(tetrafluoroethylene) [poly(difluoromethylene)] 9002-84-0 390 1117160, 400 Much data, some 1,6,66,190,191,

conflicting 253,261,355,256,296,521,522,641,651,659,891,893,

914,921,952,972-1005

Poly(2,3,3,3-tetrafluoropropylene) 315 Heating rate: 5-20 K/min, high 97pressure, radiation synthesis

Poly(trifluoroethylene) 304 Quoted value, DTA? 457Poly(3,3,3-trifluoropropylene) 300 97,914,1007,1008Poly (vinyl chlorate) 347 1271Poly(vinyl chloride) 9002-86-2 - 1112,1115,1116

Dilatometer, CR 3 deg/h; creep 1119relaxation, quenched

354 Increasing syndiotactic 1,21,52,78,80,content increases 104,188,191,Tg to 371 K 230,286,349,

353,354,356,469,608,696,720,772,777,787,798,861,926,942,944,

972,1010-1031366 Dekryptonation, /(MW) 1114371 DSC, 20 deg/min HR, Mn 1120

infinity, onset,varied annealing

359 1325357 1335363 1432342 1398353 1255347 1288361 1489

chlorinated 68648-82-8 408 67 wt.% Cl 1325with Poly(butyl methacrylate) (30/70) 313 Semi-IPNs 1359with Poly(butyl methacrylate) (50/50) 315 Blend 1359with Poly (butyl methacrylate) (50/50) 323 Semi-IPNs 1359with Poly(ethyl methacrylate) (30/70) 343 Semi-IPNs 1359with Poly(ethyl methacrylate) (50/50) 325 Blend 1359with Poly(ethyl methacrylate) (50/50) 343 Semi-IPNs 1359with Poly(methyl methacrylate) (30/70) 370 Semi-IPNs 1359with Poly(methyl methacrylate) (50/50) 363 Blend 1359with Poly(methyl methacrylate) (50/50) 366 Semi-IPNs 1359with Poly(methyl methacrylate) (80/20) 364 1446

H-H Poly(vinyl chloride) 348 DSC 1299352 DMA 1299

Poly(vinyl fluoride) 24981-14-4 314 Mechanical method 521,1032,1033Poly(vinylidene chloride) see PoIy(1,1-dichloroethylene) 9002-85-1

1.9. OTHERS

Poly( 1,1 -bis[( 1 -adamantyloxy)carbonyl]-2-vinylcyclopropane) 307 1492Poly(benzylethylene) 333 631,634,1056

TABLE 1. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(N-carbazolylethylene) 25067-59-8 500 DSC, lOdeg/min HR, X to 1127infinite MW

500 1330357,423, Conflicting values 1,272,573,845

481 reportedPoly[dimethylamino(ethoxy)phosphinylethylene] 305 1057Poly[dimethylamino(phenoxy)phosphinylethylene] 300 1057Poly(4,4-dimethyl-oxazolonylethylene) 365 DTA heating rate; low viscosity 1058Poly(4,4-dimethyl-oxazolonyl-2-propylene) 380, 438 Conflicting data 1058,1059Poly(2,4-dimethyl-1,3,5-triazinylethylene) 350 820Poly(diphenylphosphinylethylene) 453 1065Poly(ferrocenylethylene) 457-467 DSC heating rate 835Poly(P-hydroxyvalerate) 257 1355

262 1355Poly(indazol-2-ylethylene) 331, 298 Two values for different 1045

preparations, heatingrate: 20K/min

Poly(isopropyl benzene) 126 1271Poly(indene) 473 1501Poly(3-methyl hexane) 90 1271Poly(3-methyl pentane) 80 1271Poly(2-methyl pentane) 76 1271Poly[(2-methyl-5-pyridyl)ethylene] 403 Mechanical method 1060-1062Poly[(2-methyl-6-pyridyl)ethylene] 365 Heating rate 20K/min 1061PoIy(I-naphthylethylene) 432 Values range from 83,755,

323 to 453 K 763,1063Poly(2-naphthylethylene) 424 Extrapolated to zero heating 770

ratePoly(phenethylethylene) 283 Crystalline sample 631,634,1056,1064Poly(phenethylmethylethylene) 245 Softening point 631PoIy(I, l-bis(phenoxycarbonyl)-2-vinylcyclopropane) 349-357 1535Poly(phenylacetylene) see Poly(phenylvinylene)Poly(phenylvinylene) 393 Crystalline 1066Poly(phthalimidoethylene) 497 No experimental details 820Poly(2-pyridylethylene) 377 1061,1062,1067Poly (4-pyridylethylene) 9017-40-7 415 1061,1062,1272

433 Molar concentration 5% 1305456 Molar concentration 10% 1305

Poly(N-pyrrolidinylethylene) 9003-39-8 327 573359 1,4,907448 DSC, onset, Xp to dry 1150

Poly(tf-terphenyl) 233 1271243 1271

Poly(m-tolylmethylethylene) 313 Crystalline sample 1056Pory(otolylmethylethylene) 353 Crystalline sample 1056Poly(/?-tolylmethylethylene) 338 Crystalline sample 1056Poly(2,4,6-tribromophenyl acetate) 423 1269Poly(vinyl carbazole) see Poly(iV-carbazolylethylene)Poly(vinyltrimethylgermanium) 463 Mechanical method 1068Poly(vinylpyridine) see Poly(pyridylethylene)Poly(vinyl pyrrolidine) see Poly(iV-pyrrolidinylethylene)

References page VI - 253

TABLE 2. MAIN-CHAIN CARBOCYCLIC POLYMERS

Polymer CAS No. Tg (K) Remarks Refs.

2.1. POLY(PHENYLENES)

Poly(3,3'-biphenylylenehexafluorotrimethylene) 324 Heating rate: 32 K/min, ?7inh only 5630.05 dl/g

Poly(2-bromo-l,4-phenylene ethylene) 353 Mechanical method 564Poly(2-chloro-l,4-phenylene ethylene) 343 Mechanical method, 300,564,565

heating rate: 1.5 K/minPoly(2-cyano-l,4-phenylene ethylene) 363 Mechanical method 564Poly(2,5-dichloro-l,4-phenylene ethylene) 613 Softening point, no 565

measurement detailsPoly(2,5-dimethyl-l,4-phenylene ethylene) 373 Mechanical method, heating 566

rate: 1.5 K/minPoly(2-ethyl-l,4-phenylene ethylene) 298 Mechanical method 564Poly(2 ',3 ',6 ',2 '",3 '",5 '"-hexaphenyl- 453 Heating rate: 20 K/min, 568

/?,p,m,p,/?-quinquephenyrylenedecamethylene) structure may containmore m-links

Poly(2',3',6',2'",3'",5'"-hexaphenyl- 508 Heating rate: 20K/min, 5684, 4""-/?-quinquephenylylenedecamethylene) structure may contain

more m-linksPoly(2',3 ',6',2"',3 '",5 '"-hexaphenyl- 488 Heating rate: 20 K/min, 568

p,p,m,p,p, quinquephenylylenehexamethylene) structure may containmore m-links

Poly(2',3',6/,2"',3'",5"'-hexaphenyl- 523 Heating rate: 20K/min, 5684, 4""-/?-quinquephenylylenehexamethylene) structure may contain

more m-linksPoly(2',3',6',2'",3'",5'"-hexaphenyl- 433 Heating rate: 20K/min, 568

/?,/?,m,/?,/?-quinquephenylylenetetradecamethylene) structure may containmore m-links

Poly(2',3',6',2'",3'",5'"-hexaphenyl- 458 Heating rate: 20K/min, 5684,4""-/?-quinquephenylylenetetradecamethylene) structure may contain

more m-linksPoly(2',3 ',6',2'",3 '",5 "'-hexaphenyl- 453 Heating rate: 20 K/min, 568

/?,/?,m,p,/?-quinquephenylylenetetramethylene) structure may containmore m-links

Poly(2',3',6',2'",3'",5'"-hexaphenyl- 478 Heating rate: 20K/min, 5684, 4'"-/?-quinquephenylylenetetramethylene) structure may contain

more m-linksPoly(2 ',3 ',6',2'",3 '",5 '"-hexaphenyl- 513 Heating rate: 20 K/min, 568

/?,p,m,p,/?-quinquephenylylenetrimethylene) structure may containmore m-links

Poly(2',3',6',2'",3'",5'"-hexaphenyl- 563 Heating rate: 20K/min, 5684,4"'-quinquephenylylenetrimethylene) structure may contain

more m-linksPoly(2-methyl-l,4-phenylene ethylene) 328 Mechanical method, 564,565

heating rate: 1.5K/minPoly(l,4-phenylenetrichloroethylene) 433 Polymer contains small amount 565

of different structure,mechanical method; heatingrate: 1.5 K/min

Poly(l,4-phenylene ethylene) ~353 Mechanical method, 300,564,variable data 565,567

PoIy(1,3-phenylenehexafluorotrimethylene) 303 Heating rate: 32K/min, 77inh only 1480.1 dl/g

Poly(l,4-phenylene-l-phenylethylene) 428 Softening point, no 565experimental details

Poly(trimethyl-phenylene ether) 483 1432

2.2. OTHERS

Poly(acenaphthylene) 25036-01-5 487-618 Conflicting data 31,83,566,reported 569-571

628-649 DSC, onset, 32 deg/min HR 1151after cooling from above Tg

Poly(5-chlorononafluoro-l,3-cyclohexylene- 420 Heating rate: 5-20K/min, high 97difluoromethylene) pressure, radiation synthesis,

ring structure unproven

TABLE 2. cont'd

Polymer CAS No. Tg (K) Remarks Refs.

Poly(cyclobutene) erythro di-isotactic 293 Degree of polymerization 150 572erythro di-syndiotactic 273 Degree of polymerization 15

Poly(decafluoro-l,3-cyclohexylenedifluoromethylene) 374? Heating rate: 5-20K/min 97Poly(dodecafluoro-l,3-cycloheptylenedifluoromethylene) 471? Heating rate: 5-20K/min, high 97

pressure, radiation synthesis,data queried in original paper,ring structure unproven

Poly(hexafluoro-l,3-cyclobutylenedifluoromethylene) 395 Heating rate: 5-20K/min, high 97pressure, radiation synthesis,ring structure unproven; [77] only0.03 dl/g

Poly(indenylene) 358 573Poly(octafluoro-l,3-cyclohexylenedifluoromethylene) 390 Heating rate: 5-20K/min, high 97

pressure, radiation synthesis,ring structure unproven

Poly(l,4-naphthyleneethylene) 433 Mechanical method 565

TABLE 3. MAIN-CHAIN ACYCLIC HETEROATOM POLYMERS

Polymer CAS No. Tg (K) Remarks Refs.

3.1. MAIN-CHAIN - C - O - C - POLYMERS

3.1.1. POLY(ANHYDRIDES)

Poly (oxy carbonyl-1,4-phenylenehexafluorotrimethylene- 271 4331,4-phenylenecarbonyl)

Poly(oxycarbonyl-l,4-phenyleneisopropylidene- 333 2471,4-phenylenecarbonyl)

Poly(oxycarbonyl-l,4-phenylenemethylene- 395 2471,4-phenylenecarbonyl)

Poly (oxy carbonyl-1,4-phenylenepentamethylene- 321 Amorphous 2471,4-phenylenecarbonyl)

319 CrystallinePoly (oxycarbonyl-1,4-phenylenetetramethylene- 319 247

1,4-phenylenecarbonyl)Poly (oxycarbonyl-1,4-phenylenethiotetramethy lenethio- 335 247

1,4-phenylenecarbonyl)Poly(oxyisophthaloyl) 403 Dynamic mechanical method 398,444

3.1.2. POLY(CARBONATES)

Bisphenol A + 2,2-(fm-biphenyl carboxylate) 421 1432Bisphenol A + Carboxylate 420 1432Bisphenol A + Terephthalate + Isophthalate 50/50 468 1432Bisphenol A of 4,4/-(2,2/-propylidene)-diphenol 313 1431Bisphenol AP + 2,2-(fm-biphenyl carboxylate) 445 1432Bisphenol AP + Carboxylate 460 1432Bisphenol AP + Terephthalate + Isophthalate 516 1432Bisphenol A-based homopoly(formal) 361 Elsewhere 367 K 1311Bisphenol AF-based homopoly(formal) 396 1311Cyclohexane-bisphenol-poly (carbonate) 458 1353Norbanane-bisphenol-poly(carbonate) 506 1353Poly(l,4-cyclohexanecarbonate) 411 1393Poly(2-hydroxypropyl ether Bisphenol A) 370 1516Polyarylate of Bisphenol A (1 mol), isophthalic acid 472 1254

(0.5 mol) and terephthalic acid (0.5 mol)Polyarylate of Bisphenol A(I mol), isophthalic acid 466 1254

(0.7 mol) and terephthalic acid (0.3 mol)Polyarylate of Bisphenol A and isophthalic acid 457 1254

References page VI - 253

Next Page