24
Giant Giant Magnetoresistance Magnetoresistance Kómár Péter Kómár Péter Solid state physics Solid state physics seminar seminar 25/09/ 25/09/ 2008 2008

Giant Magnetoresistance Kómár Péter Solid state physics seminar 25/09/2008

Embed Size (px)

Citation preview

Giant Giant MagnetoresistanceMagnetoresistance

Kómár PéterKómár PéterSolid state physics seminarSolid state physics seminar

25/09/25/09/20082008

2

Types of Types of magnetoresistancemagnetoresistance

OOrdinary rdinary MMagnetoagnetoRResistanceesistance

AAnisotropic nisotropic MRMRGGiant iant MRMRTTunneling unneling MRMRCColossal olossal MRMRBBallistic allistic MRMREExtraordinary xtraordinary MRMR

3

First achievementsFirst achievements

1856 Thomson (Lord Kelvin)1856 Thomson (Lord Kelvin) (AMR)(AMR)

B B ║║ II → → Increase of resistanceIncrease of resistance

B B ┴ ┴ II → → Decrease of resistanceDecrease of resistance (max (max.. 5%) 5%)

1886 Boltzmann, 1886 Boltzmann, 1911 Corbino1911 Corbino Corbino-Corbino-diskdisk (OMR)(OMR)

4

OrdinaryOrdinary MR MR

LorentzLorentz force force → → change of mobilitychange of mobility:: LorentzLorentz force force::

velocity of charged particlesvelocity of charged particles::

Corbino-Corbino-diskdisk:: Effective mobilityEffective mobility::

vFΒvE /ee

EBΒΒEEv 2221

B

ΒE 22eff 1 B

5

Corbino-Corbino-diskdisk

IρI’

B 0

I

B = 0

6

Anisotropic MRAnisotropic MR

Angle betweenAngle between II andand BB R R = max. = max. at parallel alignmentat parallel alignment B B ┴┴ II →→ OMR OMR

ApplicationApplication: : magnetic sensorsmagnetic sensors electronic compasselectronic compass traffic sensorstraffic sensors non-galvanic non-galvanic

current meter current meter

B

I

7

AMR and Hall-effectAMR and Hall-effect

Ohm’s law: Ohm’s law: jj = = σσ EE ,where ,where σσ is a is a matrixmatrix

Diagonal elements: conductivity + AMRDiagonal elements: conductivity + AMR

Off-diag. elements: Hall-effect (Off-diag. elements: Hall-effect (jj ┴┴ BB ┴┴ EEHH))

Bss

ss

ss

B

zxy

xyz

yzx

HH

HH

HH

σ

BB zyxzyx //0

//

jrE HH

8

Barber’s pole Barber’s pole magnetic magnetic sensorsensor

Barber’s pole:Barber’s pole:

The sensorThe sensor:: permalloy permalloy basebase (Fe (Fe2020NiNi8080)) Au-Al Au-Al stripsstrips

current flows incurrent flows in 45° → R(B) 45° → R(B) linear near linear near 00

(2 a,b) Dr. Andreas P. Friedrich, Helmuth Lemme, "The Universal Current Sensor” , Sensors weekly (May 1, 2000)

(2a)

(2b)

9

Giant MRGiant MR

1988 Fert 1988 Fert & & GrünbergGrünberg (2007 Nobel(2007 Nobel prizeprize)) Multilayered samplesMultilayered samples (Fe-Cr-Fe) (Fe-Cr-Fe) FerromagneticFerromagnetic. – Antiferrom. – Antiferromaagn. gn.

couplingcoupling Decrease in resistance of Decrease in resistance of 10%10% and and

5050%%

Photos: U. Montan (http://nobelprize.org/nobel_prizes/physics/laureates/2007/)

Albert Albert FertFert

Peter Peter GrünbergGrünberg

10

Manufacturing Manufacturing multilayered samplesmultilayered samples

19701970ss epitaxial growth epitaxial growth technology technology:: laser evaporationlaser evaporation molecular beammolecular beam sputteringsputtering chemical depositionchemical deposition

FeaturesFeatures:: Si, SiOSi, SiO22, , semiconductorsemiconductor basebase compatible lattice parameters(!)compatible lattice parameters(!) good reproductivitygood reproductivity

11

Results of Results of Grünberg Grünberg et et al. al. II..

Fe-Cr-Fe Fe-Cr-Fe samplesample:: GaAs GaAs basebase (epitxial growth (epitxial growth, bcc, bcc)) AF AF coupling between Fe-scoupling between Fe-s [100] easy-[100] easy- (EA)(EA), , [110][110] hardhard axisaxis (HA)(HA)

CheckingChecking:: MOKE (Magneto-MOKE (Magneto-

opticaloptical Kerr effectKerr effect)) light scattering on light scattering on

spin-wavesspin-waves

EA:EA:

G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn (1989) „Enhanced magnetoresistance is layered magnetic structures with antiferromagnetic interlayer exchange” Pys. Rev.

B Vol 39. No. 7

12 12

1

[nm]

EA

HA

12

Results of Results of Grünberg Grünberg et et al. al. III.I.

Change of resistanceChange of resistance (T = T(T = TRTRT)) BB║EA: GMR (-1.5%)║EA: GMR (-1.5%) BB║HA: AMR (-0.13%*) és GMR (-1.5%)║HA: AMR (-0.13%*) és GMR (-1.5%) d(Fe) = 8 nm → d(Fe) = 8 nm → ΔΔR/R = 3%R/R = 3% * 25 * 25 nmnm Fe Fe plateplate

G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn (1989) „Enhanced magnetoresistance is layered magnetic structures with antiferromagnetic interlayer exchange” Pys. Rev.

B Vol 39. No. 7

EA:EA: HA:HA:

13

Results of Results of Fert Fert et al.et al. I I..

[Fe-Cr][Fe-Cr]nn sample sample:: GaAs GaAs basebase 5 – 60 5 – 60 layerslayers changing changing d(Cr) (6, 3, 1.8, 1.2, 0.9 nm)d(Cr) (6, 3, 1.8, 1.2, 0.9 nm)

→ → change in coupling of Fe layerschange in coupling of Fe layers::FerromagneticFerromagnetic (6 nm) (6 nm)

AntiAntiferromagneticferromagnetic (0.9 (0.9 nm)nm)

(T = 4.2 (T = 4.2 K)K)M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988)

„Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice” Pys. Rev. Letters Vol. 61, No. 21

14

Results of Results of Fert Fert et al.et al. I II.I.

Change of resistanceChange of resistance (T = (T = 4.2 K4.2 K)) ΔΔR/R R/R (-50%) (-50%) andand HHS S (2 T) (2 T) was was

measuredmeasured influence of temperatureinfluence of temperature (T (TRT RT : -25%, : -25%,

1.4 T)1.4 T) EA-HA EA-HA differencedifference, , number of layersnumber of layers, ,

d(Cr)d(Cr)

M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff (1988) „Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice” Pys. Rev. Letters Vol. 61, No. 21

HA

EA60 (0.9nm)

35 (1.2nm)

30 (1.8nm)

EA

15

Theory of Theory of GMRGMR I. I.

RKKY RKKY interactioninteraction ( Ruderman, Kittel (1954), Kasuya (1956), Yosida (1957) )( Ruderman, Kittel (1954), Kasuya (1956), Yosida (1957) )

Coupling between atomic and Coupling between atomic and conducting electronsconducting electrons ( (exchangeexchange intint..,, 22ndnd order perturb. order perturb.))

Based on the Bloch wavefunctionBased on the Bloch wavefunction

applies only for periodic structuresapplies only for periodic structures F-NF-F F-NF-F arrangementarrangement::

couplingcoupling oscillates! oscillates!

Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

16

Theory of Theory of GMRGMR II. II.SpinSpin-dependent-dependent resistance resistance

scattering in FM, and at FM/NM scattering in FM, and at FM/NM interlayerinterlayer

RR-1-1 ~~ σσ ~ N ~ N((EEFF)) Fermi-Fermi-surface changes as an effect ofsurface changes as an effect of

BB

Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

RR↓↓ == RR↑↑

NN↓↓ ((EEFF)) == NN↑↑ ((EEFF))

RR-- = = RR↓↓ << RR↑↑ = = RR++

B

NN↓↓ ((EEFF)) >> NN↑↑ ((EEFF))

17

Theory of Theory of GMRGMR III. III.

SpinSpin-valve-valve d(Nd(NMM) < ) < λλee → → the spin of the spin of ee---s-s is is

constantconstant ↓ ↓ andand ↑ ↑ parallel conduction channelsparallel conduction channels

RR

RRR

2

2

1

Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

B

18

Theory of Theory of GMRGMR IV. IV.

Half metalsHalf metals ↓↓ - - conductingconducting, , ↑↑ - - insulatorinsulator ( (eg. eg.

CrOCrO22)) spin polarization: spin polarization: 100%100%

Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

19

ApplicationApplication – – HDD HDD read read headsheads

ConstructionConstruction layers withlayers with

differingdiffering coercivitycoercivity + AFM + AFM layer layer ((Bruce GurneyBruce Gurney)) RR measuringmeasuring

EfficiencyEfficiency 1991. MR1991. MR 1997. GMR1997. GMR

(Stuart Parkin)(Stuart Parkin)

Magnet Academy, (http://www.magnet.fsu.edu/education/tutorials/magnetacademy/gmr/),IBM Research, (http://www.research.ibm.com/research/gmr.html)

20

Tunneling MRTunneling MR

FerromFerromaagn. – gn. – insulatorinsulator– ferrom– ferromaagn.gn. 19751975:: 14%/ - 14%/ - 19821982:: - / - / fewfew%% 19951995:: 30% / 18% 30% / 18% 20072007:: >200% >200%

ApplicationApplication:: spintronicsspintronics magnetic sensorsmagnetic sensors

Class for physics of the Royal Swedish Academy, “Discovery of the Giant Magnetoresistance” (9 October 2007)

21

Colossal MRColossal MR

1993 von Helmolt et al.1993 von Helmolt et al. perovskitperovskitee--like like La-Ba-Mn-OLa-Ba-Mn-O annealingannealing, T = 300 K , B = 7 T, T = 300 K , B = 7 T ||ΔΔRR||//R R > 60% (> 60% (steep startsteep start, , no no

saturationsaturation))

R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer (1993) „Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films”, Pys. Rev. Letters Vol. 71,

No. 14

22

SpintroniSpintronicscs I. I.

Manipulating both charge and spinManipulating both charge and spin Spin Spin sourcessources: GMR, TMR : GMR, TMR

(C (Current urrent IIn n PPlanelane, C, C PPerpendicular erpendicular P)P) ManipulationManipulation: Spin Torqe Transfer: Spin Torqe Transfer

( (spin of currentspin of current → → magnetization of magnetization of layerlayer))

Reading Reading ((in semiconductorsin semiconductors):): light scatteringlight scattering, , electroluminescenceelectroluminescence, ,

spin valve spin valve, , ballistic spin filteringballistic spin filtering

23

SpintroniSpintronicscs II. II.

ApplicationApplication: : MRAM (NVM) MRAM (NVM) transistortransistor laserlaser

Thank you for the Thank you for the attention!attention!