70
Geometric phases and spin-orbit effects Alexander Shnirman (KIT, Karlsruhe) Lecture 2

Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Geometric phases and spin-orbit effects

Alexander Shnirman (KIT, Karlsruhe)

Lecture 2

Page 2: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Outline

• Geometric phases (Abelian and non-Abelian)

• Spin manipulation through non-Abelian phases a) Toy model; b) “Moving” quantum dots

• Spin decay due to random geometric phase

• Spin pumping

Page 3: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Geometric spin manipulations

Page 4: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

We look for alternative ways to manipulate spin

Question:

Can one manipulate spin with electric fields only, at B=0?

Answer:

Yes, provided strong spin-orbit coupling

Motivation

Page 5: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin-orbit interaction in a 2DEG

Page 6: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

A: Spin-orbit interaction ↔ momentum dependent ‘magnetic

field’ (Bext=0)

B: Semiclassical picture: electron moves a distance dr

in time dt the spin is rotated by U[dr], independent of dt (‘geometric’)

W. A. Coish, V. N. Golovach, J. C. Egues, D. Loss.Physica Status Solidi (b) 243, 3658 (2006)

Rashba Dresselhaus

Semiclassical description of geometric spin drift

Page 7: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin-orbit interaction in a quantum dot

H =p2

2m+ V (r) + HSO

Page 8: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Effect of SO on quantum dot orbitals:

spin textureEffective spin-orbit strength:

Spin-orbit interaction in a quantum dot

H =p2

2m+ V (r) + HSO

Page 9: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin-orbit coupling

• Eigenstates are spin-textures• For B=0 the basis is two-fold

degenerate (Kramer’s theorem)• The lowest doublet will be labeled

by τ

Spin-orbit interaction in a quantum dot

H =p2

2m+ V (r) + HSO

Page 10: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

H =p2

2m+ V (r) + HSO + e r · E(t)

Parabolic dot in a 2DEG subject to electric field

Effect of electric field in parabolic dot

Page 11: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

H =p2

2m+ V (r) + HSO + e r · E(t)

Parabolic dot in a 2DEG subject to electric field

Effect of electric field in parabolic dot

Page 12: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

H =p2

2m+ V (r) + HSO + e r · E(t)

Parabolic dot in a 2DEG subject to electric field

Effect of electric field in parabolic dot

Page 13: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

H =p2

2m+ V (r) + HSO + e r · E(t)

Parabolic dot in a 2DEG subject to electric field

Position shift

Effect of electric field in parabolic dot

Page 14: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Evolution in the instantaneous basis

Page 15: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

1. Choose at each time the basis that instantaneously diagonalizes H(t)

Dot displacement

Evolution in the instantaneous basis

Page 16: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

1. Choose at each time the basis that instantaneously diagonalizes H(t)

Dot displacement

This sets a ‘reference frame’ for the description of the electron state at each moment/position

Evolution in the instantaneous basis

Page 17: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

1. Choose at each time the basis that instantaneously diagonalizes H(t)

Dot displacement

This sets a ‘reference frame’ for the description of the electron state at each moment/position

2. Compute Heff(t) that governs the dynamics in the instantaneous basis

Evolution in the instantaneous basis

Page 18: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

1. Choose at each time the basis that instantaneously diagonalizes H(t)

Dot displacement

This sets a ‘reference frame’ for the description of the electron state at each moment/position

2. Compute Heff(t) that governs the dynamics in the instantaneous basis

Evolution in the instantaneous basis

Page 19: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

1. Choose at each time the basis that instantaneously diagonalizes H(t)

Dot displacement

This sets a ‘reference frame’ for the description of the electron state at each moment/position

2. Compute Heff(t) that governs the dynamics in the instantaneous basis

Exact evolution in the instantaneous basis

Evolution in the instantaneous basis

Page 20: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Adiabatic theory

Page 21: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Adiabatic theorem: A system prepared initially in a degenerate subspace τ(0) of energy Eτ(0) and driven infinitely slowly will remain within the subspace τ(t) of instantaneous

eigenenergy Eτ(t).

Adiabatic theory

Page 22: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Adiabatic theorem: A system prepared initially in a degenerate subspace τ(0) of energy Eτ(0) and driven infinitely slowly will remain within the subspace τ(t) of instantaneous

eigenenergy Eτ(t).

Adiabatic theory

Page 23: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Adiabatic theorem: A system prepared initially in a degenerate subspace τ(0) of energy Eτ(0) and driven infinitely slowly will remain within the subspace τ(t) of instantaneous

eigenenergy Eτ(t).

Adiabatic evolution within subspace τ

Adiabatic theory

Page 24: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Adiabatic theorem: A system prepared initially in a degenerate subspace τ(0) of energy Eτ(0) and driven infinitely slowly will remain within the subspace τ(t) of instantaneous

eigenenergy Eτ(t).

Adiabatic evolution within subspace τ

Adiabatic theory

Page 25: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin dressing

Page 26: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

What is the explicit dependence on the spin-orbit coupling strength λso?

Spin dressing

Page 27: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

What is the explicit dependence on the spin-orbit coupling strength λso?

Spin dressing

Page 28: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

What is the explicit dependence on the spin-orbit coupling strength λso?

Spin dressing

P. San-Jose, B. Scharfenberger, G. Schön, A.S., G. Zarand, PRB 77, 045305 (2008)

Page 29: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin-orbit coupling is modified due to spin dressing

What is the explicit dependence on the spin-orbit coupling strength λso?

Spin dressing

P. San-Jose, B. Scharfenberger, G. Schön, A.S., G. Zarand, PRB 77, 045305 (2008)

Page 30: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin-orbit coupling is modified due to spin dressing

(dressed spin)

What is the explicit dependence on the spin-orbit coupling strength λso?

Spin dressing

P. San-Jose, B. Scharfenberger, G. Schön, A.S., G. Zarand, PRB 77, 045305 (2008)

Page 31: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin-orbit coupling is modified due to spin dressing

(dressed spin)

What is the explicit dependence on the spin-orbit coupling strength λso?

Spin dressing

P. San-Jose, B. Scharfenberger, G. Schön, A.S., G. Zarand, PRB 77, 045305 (2008)

Page 32: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

What is the explicit dependence on the spin-orbit coupling strength λso?

Final result

Spin dressing

P. San-Jose, B. Scharfenberger, G. Schön, A.S., G. Zarand, PRB 77, 045305 (2008)

Page 33: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

O(3)

Rotation of a sphere of radius R0 rolling on a surface

Rotation of electron spin due to spin-orbit interaction

SU(2)isomorphism

(double covering)

Geometrical interpretation

Page 34: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Can one use this effect to manipulate spin effectively?

Page 35: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Can one use this effect to manipulate spin effectively?

Problem: displacements should be comparable to spin-orbit length

Page 36: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Can one use this effect to manipulate spin effectively?

Problem: displacements should be comparable to spin-orbit length

Miller, Zumbhül, Marcus, et al. Phys. Rev. Lett 90, 076807

Different measurements agree onin GaAs/AlGaAs heterostructres

Page 37: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Can one use this effect to manipulate spin effectively?

Problem: displacements should be comparable to spin-orbit length

Miller, Zumbhül, Marcus, et al. Phys. Rev. Lett 90, 076807

Different measurements agree onin GaAs/AlGaAs heterostructres

Other materials? Recent measurements suggest that other semiconductors such as InAs could have

Fasth, Fuhrer, Samuelson, et al., cond-mat/0701161

Page 38: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Can one use this effect to manipulate spin effectively?

Problem: displacements should be comparable to spin-orbit length

Miller, Zumbhül, Marcus, et al. Phys. Rev. Lett 90, 076807

Different measurements agree onin GaAs/AlGaAs heterostructres

Is it possible to perform arbitrary manipulations with realistic (small) displacements?

Other materials? Recent measurements suggest that other semiconductors such as InAs could have

Fasth, Fuhrer, Samuelson, et al., cond-mat/0701161

Page 39: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Can one use this effect to manipulate spin effectively?

Problem: displacements should be comparable to spin-orbit length

Miller, Zumbhül, Marcus, et al. Phys. Rev. Lett 90, 076807

Different measurements agree onin GaAs/AlGaAs heterostructres

Is it possible to perform arbitrary manipulations with realistic (small) displacements?

Other materials? Recent measurements suggest that other semiconductors such as InAs could have

Fasth, Fuhrer, Samuelson, et al., cond-mat/0701161

Yes.

Page 40: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Purely electrical spin control in GaAs/AlGaAs dots

Page 41: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Purely electrical spin control in GaAs/AlGaAs dots

Page 42: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Purely electrical spin control in GaAs/AlGaAs dots

Page 43: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Many repetitions = spinning motion!

Purely electrical spin control in GaAs/AlGaAs dots

Page 44: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Observation 2: Optimal path for a spin flip without spinning = straight line Optimal path for a spin flip with uniform spinning = curved line!

Many repetitions = spinning motion!

Purely electrical spin control in GaAs/AlGaAs dots

Page 45: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Observation 2: Optimal path for a spin flip without spinning = straight line Optimal path for a spin flip with uniform spinning = curved line!

Many repetitions = spinning motion!

Observation 3: A spin flip is possible without straying far from the origin if there is a constant spinning component

Purely electrical spin control in GaAs/AlGaAs dots

Page 46: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Observation 2: Optimal path for a spin flip without spinning = straight line Optimal path for a spin flip with uniform spinning = curved line!

Many repetitions = spinning motion!

Observation 3: A spin flip is possible without straying far from the origin if there is a constant spinning component

Optimal path: Two-component path. Fast component = spinning motion. Slow component = spin flip Optimal relative frequency given by size

Purely electrical spin control in GaAs/AlGaAs dots

Page 47: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Observation 1: moving a dot around a ‘small’ closed path results in a z-axis rotation

Observation 2: Optimal path for a spin flip without spinning = straight line Optimal path for a spin flip with uniform spinning = curved line!

Many repetitions = spinning motion!

Observation 3: A spin flip is possible without straying far from the origin if there is a constant spinning component

Optimal path: Two-component path. Fast component = spinning motion. Slow component = spin flip Optimal relative frequency given by size Spyrograph

Purely electrical spin control in GaAs/AlGaAs dots

Page 48: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Electrical manipulation: large displacements

Page 49: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Another possibility: a multiple dot pump in GaAs/AlGaAs

Electrical manipulation: large displacements

Page 50: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Another possibility: a multiple dot pump in GaAs/AlGaAs

Transporting a single electron around the ring can result in a more general rotation depending on the tunneling amplitudes

Electrical manipulation: large displacements

Page 51: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Experimental realization: electronic conveyor belt

Page 52: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Stotz, Hey, Santos, Ploog. Nature Materials 4, 585 (2004)

Experimental realization: electronic conveyor belt

Page 53: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Many electron moving quantum dots are created by the piezoelectric potential of interfering surface sound waves

Stotz, Hey, Santos, Ploog. Nature Materials 4, 585 (2004)

Experimental realization: electronic conveyor belt

Page 54: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Many electron moving quantum dots are created by the piezoelectric potential of interfering surface sound waves

A spin polarization is created in each dot by exciting with circularly polarized laser

Stotz, Hey, Santos, Ploog. Nature Materials 4, 585 (2004)

Experimental realization: electronic conveyor belt

Page 55: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Many electron moving quantum dots are created by the piezoelectric potential of interfering surface sound waves

A spin polarization is created in each dot by exciting with circularly polarized laser

The total spin polarization at each position/time is indirectly measured by pholuminiscence (recombination rate)

Stotz, Hey, Santos, Ploog. Nature Materials 4, 585 (2004)

Experimental realization: electronic conveyor belt

Page 56: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Many electron moving quantum dots are created by the piezoelectric potential of interfering surface sound waves

A spin polarization is created in each dot by exciting with circularly polarized laser

The total spin polarization at each position/time is indirectly measured by pholuminiscence (recombination rate)

Stotz, Hey, Santos, Ploog. Nature Materials 4, 585 (2004)

Experimental realization: electronic conveyor belt

Page 57: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

• Usual spin decay theory through electric fields:

• Spin decay rate (piezoelectric ph.)

Spin decay through noisy electric fields

�B ωB

Relaxation mechanism:phonons + spin-orbit + magnetic field

T−1 ∝ ω2Bρph(ωB) ∝ B5

Khaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005)

Vanishing decay rates at

B → 0

Page 58: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Geometric spin dephasing

Multiple (N)circles with random direction

Moving a dot around a ‘small’ closed path results in a z-axis rotation

Many repetitions = spinning motion!

“Area diffusion”

Page 59: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

The dominant sources to electric noise:

• Piezo-electric longitudinal phonons:

• Ohmic charge fluctuations:

Weak electric fields: (x0=dot size)

(Dominant at high fields)

(Dominant at low fields)

These vanish at B=0

Geometric contribution

Coupling to electric field

Page 60: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Derivation

Needed: Time evolution operator projected onto lowest spin doublet subspace (n=0)

perturbation

P. San-Jose et al. Phys. Rev. Lett. 97 , 076803 (2006)

Page 61: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Time evolution operator projected onto lowest spin doublet subspace (n=0)

Adiabatic expansionexpansion in ω/ε

Page 62: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Integrating out higher Zeeman doublets (poor man)

Full evolution operator

Evolution operator projected on the lowest (ground state) doublet

Look for effective coupling that would give such evolution

Page 63: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

General theory (beyond Born-Oppenheimer)

- Hamiltonian of slow orbital env. (phonons)

Page 64: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Adiabatic expansion

one ‘phonon’

two ‘phonon’, dynamic, survives at B=0

two ‘phonons’, ‘static’, Van Vleck cancellation

Page 65: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin decay results

Phys. Rev. B 77, 045305 (2008)Physica E 40, pp. 76-83 (2007)Phys. Rev. Lett. 97 , 076803 (2006)

Page 66: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Spin pumping at B=0

QL = − e

� T

0Im

�Tr

�(ΛL ⊗ σ0)

dSdtS†

��dt

�SL = − �2π

� T

0Im

�Tr

�(ΛL ⊗ �σ)

dSdtS†

��dt

Brower’s formulae

Hd =

�ε1 σ0 −i�α · �σi�α · �σ ε2 σ0

Pumping via:�1(t), �2(t)

v1,L(t), v2,L(t)v1,R(t), v2,R(t)

Minimal model: two orbital levels + SO coupling

S(t)Scattering

matrix

Previous works: Sharma, Brouwer 2003Governale, Taddei, Fazio 2003

Page 67: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Scattering matrix

Uo =�

eiφL 00 eiφR

�⊗ σ0 Us =

�UL 00 UR

�T =

�−√

1− T0√

T0√T0

√1− T0

�⊗ σ0 Transmission

Charge phases Spin rotations

S = UoUs T U†s U†

o convenient representation

QL =e

� T

0

�(1− T0)

�φ̇R − φ̇L

��dt

�SL =i�2π

� T

0T0 Tr

��U†

L �σ UL

� �U†

LU̇L − U†RU̇R

��dt

J. Avron et al., 2000

“peristaltic” pumpingT0 → 0

[UL,UR] �= 0→ �SL + �SR �= 0 non-conservation of spin

Page 68: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Minimal model

Sσ =�−eiφ

√1− T0 eisσ θ

√T0

e−isσ θ√

T0 e−iφ√

1− T0

�S = ei(φL+φR)S↑ ⊕ S↓

Bs = ∂r1T0∂r2θ − ∂r2T0∂r1θ

SL = −SR =�4π

�d2r Bs

Pumped spin = flux of effective “magnetic field”

In eigenbasis of �αSO�σ

tan(θ) =|�αSO| (v1Lv2R − v2Lv1R)ε1 v2Lv2R + ε2 v1Lv1R

Geometric effect

φ = φL − φR

Page 69: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

Effective magnetic field SL = −SR =

�4π

�d2r Bs(r1, r2)

r1 = ε1 + ε2 r1 = ε1 + ε2

r2 = ε1 − ε2 r2 = ΓL = 2π|vL|2ρL

Page 70: Geometric phases and spin-orbit effects - uni-due.dekoenig/DPG_School_10/Shnirman_2.pdfKhaetskii, Nazarov (2001). Golovach, Khaetskii, Loss (2004). Stano, Fabian (2005) Vanishing decay

• Non-Abelian phases -> robust, timing-independent, spin manipulations at B=0 (strong spin-orbit interaction needed)

• Spin decay at low magnetic fields (saturation at B=0)

• Spin pumping at B=0

Summary