71
Geodesics on GL(3) and nonlinear elasticity Robert Martin Chair for Nonlinear Analysis and Modelling, Faculty of Mathematics, University of Duisburg-Essen, Germany joint work with Patrizio Neff, Dumitrel Ghiba, Johannes Lankeit [email protected] http://www.uni-due.de/mathematik/ag neff/ October 3, 2014 Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universit¨ at Duisburg-Essen

Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Geodesics on GL(3) and nonlinear elasticity

Robert Martin

Chair for Nonlinear Analysis and Modelling,

Faculty of Mathematics,

University of Duisburg-Essen, Germany

joint work with Patrizio Neff, Dumitrel Ghiba, Johannes Lankeit

[email protected]

http://www.uni-due.de/mathematik/ag neff/

October 3, 2014

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 2: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Elasticity theory

We consider the deformation of an elastic body:

Ω ⊂ Rn, Ω bounded domain, the reference configuration

ϕ : Ω→ Rn the deformation mapping

ϕ(x) the new position of the material point x ∈ Ω

ϕ(x) = x + u(x), u displacement, ∇u displacement gradient

Ω ϕ(Ω)ϕ

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 3: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Basic Tensors in linear and nonlinear elasticity

Definitions

F = ∇ϕ (the deformation gradient)

U =√

F T F (the right Biot-stretch tensor)

C = F T F = U2 (the right Cauchy-Green deformation tensor)

V =√

FF T (the left Biot-stretch tensor)

B = FF T = V 2 (the Finger tensor)

ε = sym∇u (infinitesimal strain)

F = R U = V R , U,V ∈ PSym(n) , R ∈ SO(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 4: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The concept of strain

Strain tensor

A (material) strain tensor is a mapping PSym(n)→ Sym(n) , U 7→ E(U) with

E(QT UQ) = QT E(U)Q ∀ Q ∈ SO(n) ,

E(U) = 0 ⇔ U = 11 .

Note that U = 11 ⇔ F ∈ SO(n).

Strain measure

A strain measure is a mapping PSym(n)→ [0,∞) which measures how much adeformation gradient F deviates from a pure rotation.

The idea of a strain measure is closely related to energy functions in hyperelasticity.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 5: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The concept of strain

Strain tensor

A (material) strain tensor is a mapping PSym(n)→ Sym(n) , U 7→ E(U) with

E(QT UQ) = QT E(U)Q ∀ Q ∈ SO(n) ,

E(U) = 0 ⇔ U = 11 .

Note that U = 11 ⇔ F ∈ SO(n).

Strain measure

A strain measure is a mapping PSym(n)→ [0,∞) which measures how much adeformation gradient F deviates from a pure rotation.

The idea of a strain measure is closely related to energy functions in hyperelasticity.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 6: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy functions in isotropic hyperelasticity

Isotropic linear elasticity

The elastic energy for the isotropic linearised model of elasticity is

Wlin(F ) = µ ‖ devn ε‖2 +κ

n[tr ε]2 ,

where

F = ∇ϕ is the deformation gradient,

ε = sym(F − 11) is the infinitesimal strain,

µ > 0 is the shear (distortional) modulus,

κ > 0 is the bulk (compressional) modulus,

‖X‖ = tr X T X denotes the Frobenius matrix norm,

devn ε = ε− 1n

tr(ε) · 11 is the deviatoric (purely distortional) part of ε.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 7: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy functions in isotropic hyperelasticity

Energy functions

An isotropic energy (density) is a function W : GL+(n)→ [0,∞) with

W (QF ) = W (F ) (objectivity)

W (FQ) = W (F ) (isotropy)

W (F ) = 0 ⇔ F ∈ SO(n).

The corresponding energy I of a deformation ϕ is

I (ϕ) =

∫Ω

W (∇ϕ(x)) dx .

Common additional requirements on W :

smoothness

compatibility with linear elasticity

convexity conditions, coercivity, . . .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 8: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy functions in isotropic hyperelasticity

Examples

(Compressible) Neo-Hooke energy:

WNH(F ) =µ

2

⟨C − 11, 11

⟩+ κ h(det F ) ;

(Compressible) Mooney-Rivlin energy:

WMR(F ) = C1

⟨C − 11, 11

⟩+ C2

⟨Cof C − 11, 11

⟩+ κ h(F , det F ) ,

C1 =µ1

2, C2 =

µ2

2, µ = µ1 + µ2 ;

Ogden energy:

WOg(λ1, λ2, λ3) =N∑

p=1

µp

αp(λαp

1 + λαp

2 + λαp

3 − 3) ,

2µ =N∑

p=1

µp · αp , µp · αp > 0 ;

. . .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 9: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Uniaxial stress response for different energy functions

1 2 3 4 5λ

TBiot

Neo Hooke

Mooney-Rivlin

Ogden

Figure : Uniaxial stretch-stress-curve for different constitutive models

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 10: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The Hencky energy

Definition (Isotropic Hencky energy [Hencky 1929])

The isotropic Hencky energy is

WH (F ) = µ ‖ devn log U‖2 +κ

n[tr(log U)]2

where

F = ∇ϕ is the deformation gradient,

U =√

F T F is the symmetric right Biot-stretch tensor,

µ > 0 is the shear (distortional) modulus,

κ > 0 is the bulk (compressional) modulus,

log U is the principal matrix logarithm of U and

devn log U = log U − 1n

tr(log U) · 11 is the deviatoric (purely distortional) part oflog U.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 11: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The isotropic Hencky strain energy

Advantageous properties of the Hencky strain energy:

3 very good fit to experimental data for moderately large strains [Anand79]

3 fulfils Hill’s inequality: WH is a convex function of log U

3 fulfils the Baker-Ericksen inequality: (σi − σj )(λi − λj ) > 0 if λi 6= λj

3 only 2 Lame-constants, uniquely determined in infinitesimal range, but valid up tomoderate strains [Anand86]

3 describes nonlinear Poynting effect: a circular cylinder lengthens under torsion,with an increase in length proportional to the square of the twist [Bruhns00]

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 12: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The isotropic Hencky strain energy

Mathematical challenges associated with the Hencky strain energy:

7 WH is not polyconvex and not quasiconvex [Neff2000].

7 WH is not Legendre-Hadamard-elliptic:

D2WH (F ).(ξ ⊗ η, ξ ⊗ η) ≥ c+ · |ξ|2 · |η|2.

However, WH is LH-elliptic in a large neighbourhood of 11 (with admissiblestretches λi ∈ (0.21, 1.4)) [Bruhns2002].

7 WH has subquadratic growth for large deformations.

7 No coercivity: There is no q ≥ 1 such that WH (F ) ≥ c+1 ‖F‖q − c2 .

7 No general existence result is known for elasticity formulation based on WH ,apart from implicit function theorem in the neighbourhood of 11.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 13: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Characterisation of energy functions

Energy functions

An isotropic energy is a function W : GL+(n)→ [0,∞) with

W (QF ) = W (F ) (objectivity)

W (FQ) = W (F ) (isotropy)

W (F ) = 0 ⇔ F ∈ SO(n).

Strain measure

A strain measure is a mapping PSym(n)→ [0,∞) which measures how much adeformation gradient F deviates from a pure rotation.

General idea:Characterize energy functions or strain measures as the distance of F to the set ofrotations.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 14: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Characterisation of energy functions

Energy functions

An isotropic energy is a function W : GL+(n)→ [0,∞) with

W (QF ) = W (F ) (objectivity)

W (FQ) = W (F ) (isotropy)

W (F ) = 0 ⇔ F ∈ SO(n).

Strain measure

A strain measure is a mapping PSym(n)→ [0,∞) which measures how much adeformation gradient F deviates from a pure rotation.

General idea:Characterize energy functions or strain measures as the distance of F to the set ofrotations.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 15: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the linear case

In linearised elasticity, we consider ϕ(x) = x + u(x) with the displacement u : Ω→ Rn.

Infinitesimal rotations

The set of infinitesimal rotations is the set

so(n) = T11 SO(n) = A ∈ Rn×n |AT = −A

which is the set of all skew symmetric matrices in Rn×n.

dist(∇u, so(n)) = infS∈so(n)

dist(∇u, S) = ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 16: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The euclidean distance on matrix spaces

Frobenius norm:

‖X‖2 = 〈X ,X 〉 = tr(X T X ) = ‖ dev X‖2 +1

n[tr X ]2

Weighted Frobenius norm:

‖X‖2µ,κ = µ ‖ dev X‖2 +

κ

n[tr X ]2

Euclidean distance:

disteuclid(X ,Y ) = ‖X − Y ‖µ,κdisteuclid(X ,Y )

X

YRn×n

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 17: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the linear case

The euclidean distance of ∇u to the set of (infinitesimal) rotations is

dist2euclid(∇u, so(n)) := min

A∈so(n)‖∇u − A‖2

µ,κ = ‖ sym∇u‖2µ,κ ,

which corresponds to the isotropic elastic energy

W = µ ‖ε‖2 +κ

n[tr ε]2 = µ ‖ dev sym∇u‖2 +

κ

n[tr sym∇u]2 = ‖ sym∇u‖2

µ,κ .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 18: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the linear case

so(n)

Rn×n

∇u

0

sym∇u skew∇u

disteuclid(∇u, so(n))2 = ‖ sym∇u‖2µ,κ = µ ‖ dev sym∇u‖2 + κ

n[tr sym∇u]2

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 19: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the linear case

so(n)

Rn×n

∇u

0

sym∇u skew∇u

disteuclid(∇u, so(n))2 = ‖ sym∇u‖2µ,κ = µ ‖ dev sym∇u‖2 + κ

n[tr sym∇u]2

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 20: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the linear case

so(n)

Rn×n

∇u

0

sym∇u skew∇u

disteuclid(∇u, so(n))2 = ‖ sym∇u‖2µ,κ = µ ‖ dev sym∇u‖2 + κ

n[tr sym∇u]2

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 21: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the nonlinear case

In nonlinear elasticity, we consider the distance of the deformation gradientF = ∇ϕ ∈ GL+(n) to the set SO(n) of pure rotations.

The euclidean distance of F to the set of rotations is

dist2euclid(∇ϕ,SO(n)) : = min

Q∈SO(n)‖∇ϕ− Q‖2 = min

Q∈SO(n)‖QT∇ϕ− 11‖2

= ‖√∇ϕT∇ϕ− 11‖2 = ‖U − 11‖2

by a well known optimality result characterizing the polar decomposition [GiuseppeGrioli 1940]:

F = RU , R ∈ SO(n) , U ∈ PSym(n) =⇒ minQ∈SO(n)

‖QT F − 11‖2 = ‖U − 11‖2 .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 22: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the nonlinear case

In nonlinear elasticity, we consider the distance of the deformation gradientF = ∇ϕ ∈ GL+(n) to the set SO(n) of pure rotations.

The euclidean distance of F to the set of rotations is

dist2euclid(∇ϕ, SO(n)) : = min

Q∈SO(n)‖∇ϕ− Q‖2 = min

Q∈SO(n)‖QT∇ϕ− 11‖2

= ‖√∇ϕT∇ϕ− 11‖2 = ‖U − 11‖2

by a well known optimality result characterizing the polar decomposition [GiuseppeGrioli 1940]:

F = RU , R ∈ SO(n) , U ∈ PSym(n) =⇒ minQ∈SO(n)

‖QT F − 11‖2 = ‖U − 11‖2 .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 23: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the nonlinear case

In nonlinear elasticity, we consider the distance of the deformation gradientF = ∇ϕ ∈ GL+(n) to the set SO(n) of pure rotations.

The euclidean distance of F to the set of rotations is

dist2euclid(∇ϕ, SO(n)) : = min

Q∈SO(n)‖∇ϕ− Q‖2 = min

Q∈SO(n)‖QT∇ϕ− 11‖2

= ‖√∇ϕT∇ϕ− 11‖2 = ‖U − 11‖2

by a well known optimality result characterizing the polar decomposition [GiuseppeGrioli 1940]:

F = RU , R ∈ SO(n) , U ∈ PSym(n) =⇒ minQ∈SO(n)

‖QT F − 11‖2 = ‖U − 11‖2 .

G. Grioli. Una proprieta di minimo nella cinematica delle deformazioni finite.

Boll. Un. Math. Ital., 2:252–255, 1940.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 24: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Energy and strain measures: the nonlinear case

In nonlinear elasticity, we consider the distance of the deformation gradientF = ∇ϕ ∈ GL+(n) to the set SO(n) of pure rotations.

The euclidean distance of F to the set of rotations is

dist2euclid(∇ϕ, SO(n)) : = min

Q∈SO(n)‖∇ϕ− Q‖2 = min

Q∈SO(n)‖QT∇ϕ− 11‖2

= ‖√∇ϕT∇ϕ− 11‖2 = ‖U − 11‖2

by a well known optimality result characterizing the polar decomposition [GiuseppeGrioli 1940]:

F = RU , R ∈ SO(n) , U ∈ PSym(n) =⇒ minQ∈SO(n)

‖QT F − 11‖2 = ‖U − 11‖2 .

Thus

dist2euclid(∇ϕ, SO(n)) = ‖E1/2‖2

where E1/2 = U − 11 is the Biot strain tensor.

Note the similarity to the Saint Venant-Kirchhoff energy ‖E1‖2µ,κ, where

E1 = 12

(U2 − 11) is the Green-Lagrangian strain.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 25: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The euclidean distance on GL+(n): only an extrinsic distance

Reconsider the euclidean distance disteuclid(A,B) = ‖A− B‖ on GL+(n).

Problems:

The Euclidean distance is an arbitrary choice for a distance measure.

disteuclid is not an intrinsic distance measure on GL+(n):Since, in general, A− B /∈ GL+(n), the term ‖A− B‖ depends on the underlyinglinear structure of Rn×n.

A,B ∈ GL+(n) ; A + t(B − A) ∈ GL+(n), thus disteuclid can not becharacterized as the length of a connecting line in GL+(n).

Generally disteuclid(P · A,P · B) 6= disteuclid(A,B), i.e. disteuclid does notrespect the algebraic Lie-group structure of GL+(n).

GL+(n) is not closed in Rn×n under disteuclid and thus GL+(n) is not completein the euclidean metric, e.g. the sequence ( 1

n· 11)n does not converge in GL+(n).

Thus disteuclid is only an extrinsic distance measure on GL+(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 26: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The euclidean distance on GL+(n): only an extrinsic distance

R = polar(F )

SO(n)

11

GL+(n)

F

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

Figure : Intuitive sketch of the manifold GL+(n) and SO(n), note that GL+(n) is not compact!

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 27: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The euclidean distance on GL+(n): only an extrinsic distance

R = polar(F )

SO(n)

11

GL+(n)

F

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

Figure : Intuitive sketch of the manifold GL+(n) and SO(n), note that GL+(n) is not compact!

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 28: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

GL+(n) as a Riemannian manifold

We view GL+(n) as a Riemannian manifold and consider the geodesic distance onGL+(n):

Let g be a left GL(n)-invariant Riemannian metric g on GL(n). Such a metric isdefined via a transformation of the current tangent vectors to the tangent spaceat the identity:

gA :

TA GL(n)× TA GL(n)→ R

gA(X ,Y ) = 〈A−1X ,A−1Y 〉gl(n), A ∈ GL(n) ,

with a fixed inner product 〈·, ·〉gl(n) on the tangent space T11GL(n) = gl(n) = Rn×n.

The length of a curve γ ∈ C 1([0, 1]; GL+(n)) is

L(γ) =

∫ 1

0

√gγ(t)(γ(t), γ(t)) dt =

∫ 1

0

√〈γ−1γ, γ−1γ〉g dt .

The geodesic distance between P,F ∈ GL+(n) is defined as

distgeod(P,F ) = infL(γ) | γ ∈ C 1([0, 1]; GL+(n)), γ(0) = P, γ(1) = F.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 29: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Left GL(n)-invariant, right O(n)-invariant Riemannian metrics

GL+(n)

TAGL+(n) = A · gl(n)

T11GL+(n) = gl(n)

11

A

M

N

A−1M

A−1N

A−1

gA(M,N) = 〈A−1M,A−1N〉gl(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 30: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Left GL(n)-invariant, right O(n)-invariant Riemannian metrics

GL+(n)

TAGL+(n) = A · gl(n)

T11GL+(n) = gl(n)

11

A

M

N

A−1M

A−1N

A−1

gA(M,N) = 〈A−1M,A−1N〉gl(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 31: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Left GL(n)-invariant, right O(n)-invariant Riemannian metrics

We consider Riemannian metrics that are left GL(n)-invariant:

gBA(BX ,BY ) = gA(X ,Y ) for all B ∈ GL(n) ,

as well as right O(n)-invariant:

gAQ (XQ,YQ) = gA(X ,Y ) for all Q ∈ O(n) .

right O(n)-invariance ∼= isotropy of the material

left SO(n)-invariance ∼= frame-indifference

left GL(n)-invariance ∼= distgeod(AF ,AP) = distgeod(F ,P) ∀A ∈ GL(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 32: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Left-invariance in GL+(n): . . . treat similar things similarly

ϕ

A A

Ω ϕ(Ω)

A · Ω A · ϕ(Ω)

dist(Ω, ϕ(Ω))

dist(A(Ω),Aϕ(Ω))

dist(Ω, ϕ(Ω)) ∼ dist(11,∇ϕ) = dist(A,A∇ϕ) ∼ dist(A(Ω),A(ϕ(Ω)))

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 33: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Left GL(n)-invariant, right O(n)-invariant Riemannian metrics

Definition

The isotropic inner product 〈·, ·〉µ,µc ,κ on the Lie-algebra gl(n) = Rn×n = T11 GL+(n)is

〈X ,Y 〉µ,µc ,κ := µ〈devn sym X , devn sym Y 〉+ µc 〈skew X , skew Y 〉+ κn

tr X tr Y ,

where

〈X ,Y 〉 = tr(X T Y ) is the canonical inner product on gl(n),

devn sym X = sym X − 1n

tr[sym X ] · 11 is the deviatoric part of sym X ,

µ > 0 is the shear modulus,

µc > 0 is the spin modulus and

κ > 0 is the bulk modulus.

Every left GL(n)-invariant, right O(n)-invariant Riemannian metric on GL(n) has theform

gA(X ,Y ) = 〈A−1X ,A−1Y 〉µ,µc ,κ

= µ〈devn sym A−1X , devn sym A−1Y 〉+ µc 〈skew A−1X , skew A−1Y 〉+ κn

tr A−1X tr A−1Y

with constant coefficients µ, µc , κ.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 34: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

A new perspective: GL+(n) as a Riemannian manifold: intrinsic distance

SO(n)

11

R = polar(F )

GL+(n)

F

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n)) = ?

Figure : The geodesic distance on GL+(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 35: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

A new perspective: GL+(n) as a Riemannian manifold: intrinsic distance

SO(n)

11

R = polar(F )

GL+(n)

F

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n)) = ?

Figure : The geodesic distance on GL+(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 36: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Shortest geodesics on GL+(n)

Every geodesic curve γ : [0, 1]→ GL+(n) connecting F ,P ∈ GL+(n)is of the form [Mielke2002, MartinNeff2014]

γ(t) = F exp(t(sym ξ − µcµ

skew ξ)) exp(t(1 + µcµ

) skew ξ) , (1)

with fixed ξ ∈ gl(n) such that

P = γ(1) = F exp(sym ξ − µcµ

skew ξ) exp((1 + µcµ

) skew ξ) . (2)

Here:

exp : gl(n)→ GL+(n) is the matrix exponential,

sym ξ = 12

(ξ + ξT ) is the symmetric part and

skew ξ = 12

(ξ − ξT ) is the skew symmetric part of ξ

No closed form solution ξ to (2) for given P,F is known, but (1) can be used toobtain a lower bound for distgeod(F , SO(n)) = min

Q∈SO(n)distgeod(F ,Q).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 37: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance of F to SO(n)

Lower bound: (can be obtained from the geodesic parameterization)

dist2geod(F , SO(n)) = min

Q∈SO(n)dist2

geod(F ,Q) ≥ minQ∈SO(n)

‖ Log(Q F )‖2µ,µc ,κ

Upper bound: (insert a suitable orthogonal candidate)

dist2geod(F , SO(n)) ≤ dist2

geod(F , polar(F )) ≤ ‖ log(polar(F )T F )‖2µ,µc ,κ

= ‖ log U‖2µ,µc ,κ

= µ‖ dev log U‖2 +κ

n[tr(log U)]2 ,

where

F = R U is the polar decomposition,

R = polar(F ) ∈ SO(n) is the orthogonal polar factor of F and

U =√

F T F ∈ PSym(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 38: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance of F to SO(n)

Theorem (Log-optimality, Neff et al. 2013)

Let ‖ . ‖ be the Frobenius matrix norm on gl(n), F ∈ GL+(n). Then the minimum

minQ∈SO(n)

‖ Log(QT F )‖2 = ‖ log(polar(F )T F )‖2 = ‖ log(√

F T F )‖2 = ‖ log U‖2 ,

minQ∈SO(n)

µ‖ dev sym Log(QT F )‖2 + µc‖ skew Log(QT F )‖2 +κ

n[tr(Log(QT F ))]2

= µ‖ dev log(U)‖2 +κ

n[tr(log U)]2

is uniquely attained at Q = polar(F ).

The theorem holds for every unitary invariant norm ‖ . ‖ on gl(n,C) as well[Lankeit2013].

Note that the expression Log is used to indicate that the minimum is taken over alllogarithms of QT F (including non-symmetric arguments):

minQ∈SO(n)

‖ Log(QT F )‖2 = min‖X‖ : X ∈ gl(n), exp(X ) = QT F .

Combining this theorem with the upper and lower bound for distgeod(F , SO(n)) yieldsour main result.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 39: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

Theorem (Main result)

Let g be any left GL(n)-invariant Riemannian metric on GL(n) that is also rightinvariant under O(n) with constant coefficients µ, µc , κ, and let F ∈ GL+(n). Then:

dist2geod(F , SO(n)) = dist2

geod(F , polar(F )) = µ‖ devn log(U)‖2 +κ

n[tr(log U)]2 .

Thus the geodesic distance of the deformation gradient F to SO(n) is the isotropicHencky strain energy of F . In particular, the result is independent of the spin modulusµc > 0.

For µc = 0, the theorem still holds for the resulting pseudometric.

Furthermore, the result is basically identical for any right GL(n)-invariant, leftO(n)-invariant metric gA(X ,Y ) = 〈XA−1,YA−1〉µ,µc ,κ.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 40: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

SO(n)

11

R = polar(F )

GL+(n)

T11GL+(n) = gl(n)

T11SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ||devn sym∇u||2 + κn [tr∇u]2

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n))

= µ||devn log U||2 + κn [tr(logU)]2

Figure : Main result: The isotropic Hencky energy of F measures the geodesic distance of F toSO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 41: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

SO(n)

11

R = polar(F )

GL+(n)

T11GL+(n) = gl(n)

T11SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ||devn sym∇u||2 + κn [tr∇u]2

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n))

= µ||devn log U||2 + κn [tr(logU)]2

Figure : Main result: The isotropic Hencky energy of F measures the geodesic distance of F toSO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 42: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

SO(n)

11

R = polar(F )

GL+(n)

T11GL+(n) = gl(n)

T11SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ||devn sym∇u||2 + κn [tr∇u]2

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n))

= µ||devn log U||2 + κn [tr(logU)]2

Figure : Main result: The isotropic Hencky energy of F measures the geodesic distance of F toSO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 43: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

SO(n)

11

R = polar(F )

GL+(n)

T11GL+(n) = gl(n)

T11SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ||devn sym∇u||2 + κn [tr∇u]2

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n))

= µ||devn log U||2 + κn [tr(logU)]2

Figure : Main result: The isotropic Hencky energy of F measures the geodesic distance of F toSO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 44: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

SO(n)

11

R = polar(F )

GL+(n)

T11GL+(n) = gl(n)

T11SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ||devn sym∇u||2 + κn [tr∇u]2

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n))

= µ||devn log U||2 + κn [tr(logU)]2

Figure : Main result: The isotropic Hencky energy of F measures the geodesic distance of F toSO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 45: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result

SO(n)

11

R = polar(F )

GL+(n)

T11GL+(n) = gl(n)

T11SO(n) = so(n)

F

∇u

skew∇u

dist2euclid, gl(∇u, so(n))

= µ||devn sym∇u||2 + κn [tr∇u]2

dist2euclid(F , SO(n))

= ||U − 11||2 = ||√

F TF − 11||2

dist2geod(F , SO(n))

= µ||devn log U||2 + κn [tr(logU)]2

Figure : Main result: The isotropic Hencky energy of F measures the geodesic distance of F toSO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 46: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Main result - Corollaries

The isochoric and volumetric part can be characterized separately:

Corollaries

Let F ∈ GL+(n). Then

dist2geod,SL(n)

(F

det F 1/n, SO(n)

)= µ ‖ devn log U‖2 ,

dist2geod,R+11

((det F )1/n 11, SO(n)

)=κ

2[ln(det U)]2 ,

where

distgeod,SL is the geodesic distance in SL(n) = F ∈ GL(n) | det F = 1,

distgeod,R+11 is the one-dimensional geodesic distance on R+11,

Fdet F 1/n ∈ SL(n) is the projection on the isochoric part and

(det F )1/n 11 ∈ R+11 is the projection on the volumetric part of F .

Thus the isochoric and volumetric part can be characterized separately.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 47: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Result

The quantities

‖ devn log U‖ = distgeod,SL(n)

(F

det F 1/n, SO(n)

),

ln(det U) = distgeod,R+11

((det F )1/n 11, SO(n)

)are geometric properties of a deformation gradient F .

Goal

Find a well-behaved energy function

W (F ) = Ψ(‖ devn log U‖, ln(det U))

depending on those quantities alone.

The classical Hencky energy is obtained by letting Ψ(a, b) = µ a2 + κn

b2, hence forsmall strains, the Hencky model can be approximated with an appropriate Ψ.

0.7 1 1.4

σH

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 48: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Result

The quantities

‖ devn log U‖ = distgeod,SL(n)

(F

det F 1/n, SO(n)

),

ln(det U) = distgeod,R+11

((det F )1/n 11, SO(n)

)are geometric properties of a deformation gradient F .

Goal

Find a well-behaved energy function

W (F ) = Ψ(‖ devn log U‖, ln(det U))

depending on those quantities alone.

The classical Hencky energy is obtained by letting Ψ(a, b) = µ a2 + κn

b2, hence forsmall strains, the Hencky model can be approximated with an appropriate Ψ.

0.7 1 1.4

σH

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 49: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Goal

Find a well-behaved energy function

W (F ) = Ψ(‖ devn log U‖, ln(det U))

depending on those quantities alone.

The classical Hencky energy is obtained by letting Ψ(a, b) = µ a2 + κn

b2, hence forsmall strains, the Hencky model can be approximated with an appropriate Ψ.

0.7 1 1.4

σH

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 50: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Goal

Find a well-behaved energy function

W (F ) = Ψ(‖ devn log U‖, ln(det U))

depending on those quantities alone.

The classical Hencky energy is obtained by letting Ψ(a, b) = µ a2 + κn

b2, hence forsmall strains, the Hencky model can be approximated with an appropriate Ψ.

0.7 1 1.4

σH

σH ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 51: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The Hencky energy for large deformations

1 2 3 4 5 6 7λ

TBiot

Treloar 1944

Neo Hooke

Mooney-Rivlin

Ogden

Hencky

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 52: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Consider the exponentiated Hencky energy with isochoric-volumetric decoupling

WeH(U) =µ

kek‖ devn log U‖2

2ke k(tr log U)2

, k , k, µ, κ > 0 .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 53: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Consider the exponentiated Hencky energy with isochoric-volumetric decoupling

WeH(U) =µ

kek‖ devn log U‖2

2ke k(tr log U)2

, k , k, µ, κ > 0 .

0.8 1 1.2 1.4

k = 2

WeH(x) = 1k e

k ln(x)2

WH(x) = ln(x)2

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 54: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Consider the exponentiated Hencky energy with isochoric-volumetric decoupling

WeH(U) =µ

kek‖ devn log U‖2

2ke k(tr log U)2

, k , k, µ, κ > 0 .

1 2 3 4 5

k = 1

k = 2

WeH(x) = 1k e

k ln(x)2

WH(x) = ln(x)2

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 55: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The exponentiated Hencky energy

Uniaxial stress response for the exponentiated Hencky energy, fitted to Treloar’sexperimental data [Treloar1944]:

2 3 4 5 6

strainsoftening

strainhardening

exponentiatedHencky

Hencky

λ

TBiot

The exponentiated Hencky energy describes the effect of strain softening (the Mullinseffect) and strain hardening.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 56: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Consider the exponentiated Hencky energy with isochoric-volumetric decoupling

WeH(U) =µ

kek‖ devn log U‖2

2ke k(tr log U)2

, k , k, µ, κ > 0 .

Two-dimensional result (Neff, Lankeit, Ghiba, Martin 2014, work in progress):

Polyconvexity

The two-dimensional exponentiated Hencky energy

WeH(U) =µ

kek‖ dev2 log U‖2

2ke k(tr log U)2

, µ, κ > 0, k > 13, k > 1

8

is polyconvex (and thus quasiconvex and rank-one convex).

WeH is not polyconvex for n = 3.

Coercivity

The exponentiated Hencky energy is coercive in all Soboloev spaces W 1,q(Ω) with1 ≤ q <∞.

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 57: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Materially nonlinear extension of the isotropic Hencky energy

Consider the exponentiated Hencky energy with isochoric-volumetric decoupling

WeH(U) =µ

kek‖ devn log U‖2

2ke k(tr log U)2

, k , k, µ, κ > 0 .

Additional properties satisfied by WeH:

X Baker-Ericksen inequality: (σi − σj )(λi − λj ) > 0 if λi 6= λj

X tension-extension inequality: ∂σi∂λi≥ 0

X pressure-compression inequality: λ ∂σ∂λ≥ 0 for σ = σ 11, F = λ11

X true-stress-stretch invertibility: the mapping U 7→ σ(U) is invertible

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 58: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The distance between pure rotations

In general, there is no closed form solution to compute distgeod(A,B) forA,B ∈ GL+(n).

Consider the GL(n)-geodesic distance distgeod(P,Q) between P,Q ∈ SO(n).

Can we explicitly compute distgeod(P,Q) ?

Does distgeod(P,Q) only depend on the spin modulus µc ?

Is distgeod(P,Q) equal to the SO(n)-geodesic distance distSO(n)(P,Q) ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 59: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The distance between pure rotations

In general, there is no closed form solution to compute distgeod(A,B) forA,B ∈ GL+(n).

Consider the GL(n)-geodesic distance distgeod(P,Q) between P,Q ∈ SO(n).

Can we explicitly compute distgeod(P,Q) ?

Does distgeod(P,Q) only depend on the spin modulus µc ?

Is distgeod(P,Q) equal to the SO(n)-geodesic distance distSO(n)(P,Q) ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 60: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The distance between pure rotations

In general, there is no closed form solution to compute distgeod(A,B) forA,B ∈ GL+(n).

Consider the GL(n)-geodesic distance distgeod(P,Q) between P,Q ∈ SO(n).

Can we explicitly compute distgeod(P,Q) ?

Does distgeod(P,Q) only depend on the spin modulus µc ?

Is distgeod(P,Q) equal to the SO(n)-geodesic distance distSO(n)(P,Q) ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 61: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Geodesics on SO(n)

The Riemannian metric induced on the compact Lie group SO(n)

gQ :

TQ SO(n)× TQ SO(n)→ R

gQ (X ,Y ) = µc 〈Q−1X ,Q−1Y 〉 = µc 〈X ,Y 〉 = µc tr(X T Y ), Q ∈ SO(n)

is bi-invariant (left- and right SO(n)-invariant):

gRQ (RX ,RY ) = gQ (X ,Y ) ,

gQR (XR,YR) = gQ (X ,Y ) for all Q,R ∈ SO(n) .

Geodesics on SO(n) are translated one-parameter groups:

γ(t) = Q · exp(t W ), Q ∈ SO(n), W ∈ so(n) .

The well known SO(n)-geodesic distance between Q1,Q2 ∈ SO(n) is

dist2geod, SO(n)(Q1,Q2) = µc ‖log QT

1 Q2‖2 ,

where

‖M‖ =√

tr MT M =√∑n

i,j=1 M2i j denotes the Frobenius matrix norm and

log denotes the principal logarithm on SO(n).

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 62: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

GL+ (n)

P

Q

SO(n)

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 63: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

GL+ (n)

P

Q

SO(n)

distSO(n)(P,Q) = µc ‖logQT1 Q2‖2

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 64: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

GL+ (n)

P

Q

SO(n)

distSO(n)(P,Q) = µc ‖logQT1 Q2‖2

distGL+(n)(P,Q) ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 65: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

GL+ (n)

P

Q

SO(n)

distGL+(n)(P,Q) = µc ‖logQT1 Q2‖2 ?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 66: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

Proposition (Martin, Neff, work in progress)

Let n ∈ 2, 3. Then

distGL+(n)(P,Q) = distSO(n)(P,Q) for all P,Q ∈ SO(n) if µ ≥ µc ,

distGL+(n)(P,Q) 6= distSO(n)(P,Q) for some P,Q ∈ SO(n) if µ < µc .

Proposition

Let n ∈ 2, 3. Then SO(n) is geodesically convex in GL(n) if and only if µ ≥ µc .

Proposition

Let n ≥ 4. Then SO(n) is not geodesically convex in GL(n) if µ < µc .

Conjecture

Let n ≥ 4. Then SO(n) is geodesically convex in GL(n) if µ ≥ µc .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 67: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

Proposition (Martin, Neff, work in progress)

Let n ∈ 2, 3. Then

distGL+(n)(P,Q) = distSO(n)(P,Q) for all P,Q ∈ SO(n) if µ ≥ µc ,

distGL+(n)(P,Q) 6= distSO(n)(P,Q) for some P,Q ∈ SO(n) if µ < µc .

Proposition

Let n ∈ 2, 3. Then SO(n) is geodesically convex in GL(n) if and only if µ ≥ µc .

Proposition

Let n ≥ 4. Then SO(n) is not geodesically convex in GL(n) if µ < µc .

Conjecture

Let n ≥ 4. Then SO(n) is geodesically convex in GL(n) if µ ≥ µc .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 68: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

Proposition (Martin, Neff, work in progress)

Let n ∈ 2, 3. Then

distGL+(n)(P,Q) = distSO(n)(P,Q) for all P,Q ∈ SO(n) if µ ≥ µc ,

distGL+(n)(P,Q) 6= distSO(n)(P,Q) for some P,Q ∈ SO(n) if µ < µc .

Proposition

Let n ∈ 2, 3. Then SO(n) is geodesically convex in GL(n) if and only if µ ≥ µc .

Proposition

Let n ≥ 4. Then SO(n) is not geodesically convex in GL(n) if µ < µc .

Conjecture

Let n ≥ 4. Then SO(n) is geodesically convex in GL(n) if µ ≥ µc .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 69: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

Proposition (Martin, Neff, work in progress)

Let n ∈ 2, 3. Then

distGL+(n)(P,Q) = distSO(n)(P,Q) for all P,Q ∈ SO(n) if µ ≥ µc ,

distGL+(n)(P,Q) 6= distSO(n)(P,Q) for some P,Q ∈ SO(n) if µ < µc .

Proposition

Let n ∈ 2, 3. Then SO(n) is geodesically convex in GL(n) if and only if µ ≥ µc .

Proposition

Let n ≥ 4. Then SO(n) is not geodesically convex in GL(n) if µ < µc .

Conjecture

Let n ≥ 4. Then SO(n) is geodesically convex in GL(n) if µ ≥ µc .

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 70: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

The geodesic distance on SO(n)

The general case:

Minimize

‖M‖2µ,µc ,κ

= µ ‖ dev sym M‖2 + µc ‖ skew M‖2 +κ

n[tr M]2

over all M ∈ Rn×n with

Q = exp(sym M − µcµ

skew M) exp((1 + µcµ

) skew M) .

Open question (the case n ≥ 4, µ = µc ):

Is

min‖M‖ : exp(MT ) · exp(2 skew M) = Q = ‖ log Q‖

for all Q ∈ SO(n), n ≥ 4?

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen

Page 71: Geodesics on `39`42`'613A``45`47`'603AGL(3) and nonlinear elasticitymemocs.univaq.it/wp-content/uploads/2014/10/slides_martin_2014.pdf · Geodesics on GL(3) and nonlinear elasticity

Open problems

Work in progress:

Find a proof (or a counterexample) for the conjecture on the geodesic convexityof SO(n), n ≥ 4.

Characterize anisotropic Hencky strain energy 〈C. log U, log U〉 as a distance in anappropriate anisotropic Riemannian metric?

Reconsider the well-posedness problem for the quadratic Hencky energy (which isunknown).

Obtain geometric properties of our metric, e.g. the Levi-Civita connectioncoefficients, the Riemannian or Ricci curvature.

Thank You!

Robert Martin Geodesics on GL(3) and nonlinear elasticity Faculty of Mathematics, Universitat Duisburg-Essen