35
Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural Sciences, University of Bologna, Italy Conference on Scientific Support to Agriculture: competitiveness, quality and sustainability 23 April 2014, Athens, Greece

Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Genomics-assisted approaches for sustainable

intensification of cereal productivity

Roberto Tuberosa

Dept of Agricultural Sciences University of Bologna Italy

Conference on Scientific Support to Agriculture

competitiveness quality and sustainability

23 April 2014 Athens Greece

a a

Abiotic

stress

Nutrients

Salinity

Metals

Anoxia

Drought

Cold

Heat

Ozone

Multiple stress interaction

a a

Nematodes

Bacteria

Weeds

Virus

Fungi

Insects

Biotic

stress

Empirical breeding has allowed slow but steady

progress in improving yield under a broad range of

environments

Analytical breeding relies on the selection of

morpho-physiological traits (eg canopy temperature

as a proxy for plant water status)

Genomics-assisted breeding and genetic engineering

allow us to dissect and more accurately manipulate

the genetic and functional basis of yield

Breeding strategies for improving crop productivity

Genomics approaches

Forward genetics

Reverse genetics Phenotype

hellipGTACGTAAAThellip

hellipGTACATAAAThellip

Sequence

GeneQTL mapping amp cloning

mutagenesis

Candidate genes genetic

engineering TILLING etc

Reynolds and Tuberosa (2008) Translational research in drought Current Opinion Plant Biology 11171ndash179

Conceptual model for traits associated with adaptation to drought-prone environments grouped

according to main drivers of yield under drought as defined by Passioura (1977)

The QTL approach the crossroad where genetics bioinformatics

agronomy physiology and breeding meet

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 2: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

a a

Abiotic

stress

Nutrients

Salinity

Metals

Anoxia

Drought

Cold

Heat

Ozone

Multiple stress interaction

a a

Nematodes

Bacteria

Weeds

Virus

Fungi

Insects

Biotic

stress

Empirical breeding has allowed slow but steady

progress in improving yield under a broad range of

environments

Analytical breeding relies on the selection of

morpho-physiological traits (eg canopy temperature

as a proxy for plant water status)

Genomics-assisted breeding and genetic engineering

allow us to dissect and more accurately manipulate

the genetic and functional basis of yield

Breeding strategies for improving crop productivity

Genomics approaches

Forward genetics

Reverse genetics Phenotype

hellipGTACGTAAAThellip

hellipGTACATAAAThellip

Sequence

GeneQTL mapping amp cloning

mutagenesis

Candidate genes genetic

engineering TILLING etc

Reynolds and Tuberosa (2008) Translational research in drought Current Opinion Plant Biology 11171ndash179

Conceptual model for traits associated with adaptation to drought-prone environments grouped

according to main drivers of yield under drought as defined by Passioura (1977)

The QTL approach the crossroad where genetics bioinformatics

agronomy physiology and breeding meet

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 3: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Empirical breeding has allowed slow but steady

progress in improving yield under a broad range of

environments

Analytical breeding relies on the selection of

morpho-physiological traits (eg canopy temperature

as a proxy for plant water status)

Genomics-assisted breeding and genetic engineering

allow us to dissect and more accurately manipulate

the genetic and functional basis of yield

Breeding strategies for improving crop productivity

Genomics approaches

Forward genetics

Reverse genetics Phenotype

hellipGTACGTAAAThellip

hellipGTACATAAAThellip

Sequence

GeneQTL mapping amp cloning

mutagenesis

Candidate genes genetic

engineering TILLING etc

Reynolds and Tuberosa (2008) Translational research in drought Current Opinion Plant Biology 11171ndash179

Conceptual model for traits associated with adaptation to drought-prone environments grouped

according to main drivers of yield under drought as defined by Passioura (1977)

The QTL approach the crossroad where genetics bioinformatics

agronomy physiology and breeding meet

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 4: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Genomics approaches

Forward genetics

Reverse genetics Phenotype

hellipGTACGTAAAThellip

hellipGTACATAAAThellip

Sequence

GeneQTL mapping amp cloning

mutagenesis

Candidate genes genetic

engineering TILLING etc

Reynolds and Tuberosa (2008) Translational research in drought Current Opinion Plant Biology 11171ndash179

Conceptual model for traits associated with adaptation to drought-prone environments grouped

according to main drivers of yield under drought as defined by Passioura (1977)

The QTL approach the crossroad where genetics bioinformatics

agronomy physiology and breeding meet

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 5: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Reynolds and Tuberosa (2008) Translational research in drought Current Opinion Plant Biology 11171ndash179

Conceptual model for traits associated with adaptation to drought-prone environments grouped

according to main drivers of yield under drought as defined by Passioura (1977)

The QTL approach the crossroad where genetics bioinformatics

agronomy physiology and breeding meet

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 6: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

The QTL approach the crossroad where genetics bioinformatics

agronomy physiology and breeding meet

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 7: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

QTLs for drought resistance

one size doesnrsquot fit all

A given QTL allele can have positive null or negative effects

depending on the drought environment This complication has

slowed considerably the utilization of QTL data for breeding

Collins Tardieu Tuberosa (2008) Plant Physiology 147 469-486

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 8: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

GeneQTL

discovery

GeneQTL characterization

- Genotype x Environment x Manage

- Validation in different genetic

backgrounds

Marker-assisted breeding

- Cost-effectiveness

- High-throughput profiling

GeneQTL

cloning

Perfect marker

TILLING EcoTILLING

genetic engineering

Deploying the genomics pipeline

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 9: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

To clone or not to clone QTLs

Salvi amp Tuberosa (2005) Trends in Plant Science 10 297-304

Cloning QTLs as an essential step to

bull Unravel the functional basis of agronomic traits

bull Unlock the allelic richness of germplasm by

direct haplotyping and sequencing of target loci

bull Identify the perfect marker for selection

bull Apply genetic engineering

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 10: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Chasing major QTLs

for grain yield and yield stability

in durum wheat

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 11: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Durum Panel

(Maccaferri et al 2005)

260 accessions

(elite cultivars)

Chosen based on pedigree and

phenology (heading date)

From Italy Spain Morocco

Tunisia Southern USA

CIMMYT and ICARDA

350 SSR

900 DArT

29000 SNP

Kofa x Svevo

249 RILs

Colosseo x Lloyd

176 RILs

(Neodur x Claudio)

X

(Colosseo x Rascon)

330 RILs

Linkage mapping

RIL

populations

Association mapping

Elite lines

collection

Traits

Resistance to

virus

leaf amp stem rust

Fusarium

Septoria

Drought

resistance

Grain yield

Yield stability

QTL

mapping

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 12: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

IDuWUE Improving Durum wheat for Water-Use Efficiency and yield

stability Project funded by the EU

Partners Italy (2) Spain (3) Morocco Tunisia Lebanon Syria ICARDA

Objective

bull Identify QTLs affecting yield WUE and related traits in durum wheat

grown across environments with a broad range of water availability

Approach

bull Linkage mapping 249 RILs (Kofa x Svevo)

bull 16 field trials with a 10-fold range in yield (06 ndash 59 tha)

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 13: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Trait Number of QTLs significant in

1 env 2 env 3 or more env

Grain yield 15 1 2

Heading date 7 2 4

Plant height 5 1 6

Grain weight 7 3 3

Grainsm2 13 4 3

Summary of significant QTLs (LOD gt 25)

Adaptive Constitutive

Q T L e f f e c t

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 14: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Effects of the chr 2BL and 3BS QTLs on grain yield

in 249 RILs (Kofa x Svevo) tested in 16 environments

Chrom arm QTL Environ R2

(no) ()

2BL QYldidw-2B 8 215

3BS QYldidw-3B 7 138

2BL x 3BS 6 140

Grain weight

2BL QTgwidw-2B 8 112

3BS QTgwidw-3B 8 130

2BL x 3BS 7 156

Maccaferri et al (2008) Genetics 178 489-511

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 15: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 16: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

0

10

20

30

40

50

60

70

80

90

10

0

11

0

12

0

53

83

4

62

7

40

84

24

37

80

13

58

15

66

NIL (++)

cM

00

0

17

8

27

4

33

4

33

9

34

5

35

6

36

6

40

2

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

7

42

9

43

2

43

2

43

2

43

2

44

3

46

5

49

0

49

2

52

8

61

0

62

4

64

8

Lo

cu

s

cft5055

barc

133

cfb

011

ubw

3B

50

ubw

3B

51

ubw

3B

52

ubw

3B

53

cfb

6127

ubw

3B

54

ubw

3B

55

cfb

6149

cfb

6021

cfb

6134

cfb

6133

cfb

6148

ubw

3B

58

ubw

3B

59

cfb

6107

cfb

6142

cfb

6104

Phenoty

pe L

co

ubw

3B

60

cfb

6034

cfb

6033

cfb

6022

cfb

6032

cfb

6016

cfp

60

cs-s

sr7

wm

s493

SE

GM

EN

TA

L I

SO

LIN

ES

53 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

72 a a a b b b b b b b b b b b b b b b b b b b b b b b b b b b

83 a a a a b b b b b b b b b b b b b b b b b b b b b b b b b b

34 a a a a a b b b b b b b b b b b b b b b b b b b b b b b b b

4 a a a a a a b b b b b b b b b b b b b b b b b b b b b b b b

12 a a a a a a a b b b b b b b b b b b b b b b b b b b b b b b

62 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

256 a a a a a a a a b b b b b b b b b b b b b b b b b b b b b b

7 a a a a a a a a a b b b b b b b b b b b b b b b b b b b b b

69 a a a a a a a a a a a a a a a a a b b b b b b b b b b b b b

40 a a a a a a a a a a a a a a a a a a a a a a b b b b b b b b

21 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

84 a a a a a a a a a a a a a a a a a a a a a a a a b b b b b b

50 a a a a a a a a a a a a a a a a a a a a a a a a a a a a b b

24 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

39 b b b b b b a a a a a a a a a a a a a a a a a a a a a a a a

37 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

41 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

80 b b b b b b b b a a a a a a a a a a a a a a a a a a a a a a

51 b b b b b b b b b a a a a a a a a a a a a a a a a a a a a a

13 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

56 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

58 b b b b b b b b b b b b b b b b b b b b b b b b a a a a a a

60 b b b b b b b b b b b b b b b b b b b b b b b b b a a a a a

15 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

55 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

66 b b b b b b b b b b b b b b b b b b b b b b b b b b a a a a

NIL (--) b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

NIL (++) a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Grain yield

q h

a-1

648 t ha-1

888 t ha-1

693 t ha-1

QYldidw3B

Mendelizing QYldidw-3B

a = 111 t ha-1

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 17: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Mapping QTLs for root system architecture

in durum wheat

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 18: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Phenotyping the AM panel with semi-hydroponics protocol

Seminal Root Angle (deg) Project 244374 DROPS

Partner 12 UniBO

Project 289300 EURoot

Partner 9 UniBO

DP034 DP045

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 19: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Chasing major QTLs for

phenology and root architecture

in maize

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 20: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

B73 Gaspeacute Flint F1

20-d

ay d

iffe

ren

ce

7 days

Vgt1

13 days

other

major

loci

Flowering time in B73 and Gaspeacute Flint

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 21: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

N28

Early N28

N28E N28

NILs for the Vegetative to generative transition 1 (Vgt1) locus

Salvi et al (2007) Proc Nat Acad Sci 104 11376

Gaspeacute Flint

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 22: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

bull Vgt1 corresponds to a 2 kb noncoding sequence (Salvi et al 2007)

bull Vgt1 regulates the expression of ZmRap27 a repressor of

flowering of the Ap2 family

The Vegetative to Generative Transition 1 locus

MITE

(143 bp)

Vgt1 (1973 bp)

~ 70 kb

ZmRap27

bull A MITE transposon insertion is associated with differential

methylation at the maize flowering time QTL Vgt1

(Castelletti et al 2014 G3 doi101534g3114010686)

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 23: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

BB

Os (--) Os (++) 120 (--) 129 (++)

803

1973

474

1024

00

500

1000

1500

2000

2500

120 (--) 129 (++) OS-- OS++

root-yield-106 root-ABA1-204

Contrasting NILs for root architecture QTLs in maize

For yield see Landi et al (2010 J Exp Bot) For yield see Landi et al (2007 J Exp Bot)

Ro

ot

dry

wei

gh

t

Martinez et al

(unpublished) Giuliani et al

(unpublished)

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 24: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Where is the beef

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 25: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Genomics-assisted breeding

Maize

- Artesian (2010 Syngenta)

- AQUAmax (2011 Pioneer)

Rice

- PY84 or Birsa Vikas Dhan (2012 India)

Genetic engineering

Maize

- DroughtGard (2013 Monsanto)

Releases of drought-tolerant cvs via biotec-based approaches

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 26: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Publication number US20120317678 A1

Publication type Application

Application number US 13517215

Publication date Dec 13 2012

Also published as CA2782300A1

Inventors Yusaku Uga

Gene Dro1 Controlling Deep-Rooted

Characteristics of Plant and

Utilization of Same

httpwwwgooglecompatentsUS20120317678

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 27: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

QTL-based improvement for

yield and yield stability

Perspectives and

future challenges

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 28: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Past

Genotyping

Phenotyping

Future

Genotyping

Phenotyping

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 29: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

DROught-tolerant yielding PlantS

wwwdrops-projecteu

Coordinator Francois Tardieu INRA-LEPSE 34060 Montpellier France

15 Partners Allelic diversity

(panels of lines mapping)

Association with phenotypes (field and controlled platforms)

Crop modelling (prediction under drought

scenarios)

Response to water deficit through

seed abortion

leaf growth

root architectur

e

water-use efficiency

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 30: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Future research

priorities

Better understanding of

- Root functions and plasticity

- Reproductive failure under drought stress

- Interactions of abiotic and biotic stresses

- Genetic functional basis and modeling of yield

- Role of epigenetics in G x E

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 31: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

- High-throughput relevant phenotyping

- Cloning of major QTLs for adaptive traits and yield

- Mining wild germplasm for novel favourable alleles

- Interdisciplinary training and capacity building

- Strong Public-Private Partnerships (PPPs)

-

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 32: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Massi et al Produttori Sementi Bologna Feuillet et al INRA France

Taramino et al Pioneer Dupont USA Ouzunova et al KWS Germany

Many thanks to

bull Maria Angela Canersquo

bull Sara Castelletti

bull Chiara Colalongo

bull Simona Corneti

bull Walid Elfeki

bull Nazemi Ghasemali

bull Silvia Giuliani

bull Marta Graziani

bull Pierangelo Landi

bull Marco Maccaferri

bull Paola Mantovani

bull Ana Martinez

bull Sara Milner

bull Andrea Ricci

bull Silvio Salvi

bull Maria C Sanguineti

bull Josersquo Soriano

bull Sandra Stefanelli

bull Valentina Talamersquo

Funding European Union Produttori Sementi Bologna Pioneer-DuPont KWS

Feeding the Planet Energy for Life

May-October 2015 Milano Italy

Page 33: Genomics-assisted approaches for sustainable …...2014/04/23  · Genomics-assisted approaches for sustainable intensification of cereal productivity Roberto Tuberosa Dept. of Agricultural

Feeding the Planet Energy for Life

May-October 2015 Milano Italy