310
GENESYS 2003 Enterprise Element Catalog

GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

GENESYS 2003 Enterprise

Element Catalog

Page 2: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Eagleware Corporation owns both the GENESYS software program suite and its documentation. No part of this publication may be produced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of Eagleware Corporation.

Copyright © 1985-2003 Eagleware Corporation. All rights reserved

Eagleware Corporation 635 Pinnacle Court Norcross, GA 30071 USA Main Phone: 678-291-0995 Sales Phone: 678-291-0259 Support Phone: 678-291-0719 Fax: 678-291-0971 Printed in the United States of America.

Version 2003 first printing August 2003

Page 3: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Table Of Contents

Chapter 1 Overview and Miscellaneous...............................................................................1 Circuit Elements ...............................................................................................................................1 Commonly used Symbols (a reference figure) .............................................................................5 Extra Symbols...................................................................................................................................9 Standard wire connection (*LINE) .............................................................................................10 Net Block.........................................................................................................................................11 Standard Text (*TEXT) ................................................................................................................12

Chapter 2 Lumped Elements...............................................................................................13 Air core inductor (AIRIND1) ......................................................................................................13 Capacitor (CAP) .............................................................................................................................14 Frequency-independent Impedance (IMP).................................................................................15 Inductor (IND)...............................................................................................................................16 Inductor with Q (INDQ)..............................................................................................................17 Modelithics Capacitor (CAP_nnnn) ............................................................................................18 Two Mutually Coupled Inductors (MUI) ...................................................................................19 Mutually Coupled Coils (MUCQx)..............................................................................................20 Parallel L-C resonator (PFC) ........................................................................................................21 Parallel L-C resonator (PFL).........................................................................................................22 Parallel L-C Network (PLC) .........................................................................................................23 Parallel R-C Network (PRC).........................................................................................................24 Parallel R-L Network (PRL) .........................................................................................................25 Parallel R-L-C Network (PRX) ....................................................................................................26 Resistor (RES).................................................................................................................................27 Series L-C resonator (SFC) ...........................................................................................................28 Series L-C resonator (SFL)............................................................................................................29 Series inductor and capacitor network (SLC).............................................................................30 Spiral Inductor (SPIND) ...............................................................................................................31 Series resistor and capacitor network (SRC) ..............................................................................32 Series resistor and inductor network (SRL)................................................................................33 Series resistor, inductor and capacitor network (SRX) .............................................................34 Thin film capacitor (TFC).............................................................................................................35 Toroidal Core Inductor (TORIND)............................................................................................36 Ideal Transformer (TRF)...............................................................................................................37 Tapped Transformer (TRFCT) ....................................................................................................38 Ruthroff transformer (TRFRUTH).............................................................................................39 Piezoelectric resonator (XTL) ......................................................................................................40

Page 4: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Chapter 3 Linear Data Files and Deembedding ................................................................. 41 Four-Port Data (FOU) - LINEAR..............................................................................................41 Negation Operator (NEG1 and NEG2) ....................................................................................42 1-Port Data File (ONE) - LINEAR............................................................................................43 3-Port Data File (THR) .................................................................................................................44 1-Port Data File (ONE) - LINEAR............................................................................................45 2-Port Data File (TWO) - LINEAR............................................................................................46

Chapter 4 Linear Devices, Controlled Sources, and Matrix Parameters ............................ 47 ABCD parameters (ABC) .............................................................................................................47 Bipolar transistor model (BIP) - LINEAR.................................................................................48 Current controlled current source (CCC) - LINEAR...............................................................50 Current controlled voltage source (CCV) - LINEAR...............................................................51 FET transistor model (FET) - LINEAR ....................................................................................52 Gyrator (GYR)................................................................................................................................54 Operational Amplifier (OPA) - LINEAR ..................................................................................55 PIN Diode (PIN) - LINEAR .......................................................................................................56 S-parameters (SPA) ........................................................................................................................57 Thin Film Resistor (TFR)..............................................................................................................58 Voltage Controlled Current Source (VCC) - LINEAR ............................................................59 Voltage Controlled Voltage Source (VCV) -LINEAR .............................................................60

Chapter 5 System Elements and Behavioral Models .......................................................... 61 Coupled Antenna (ANTC)............................................................................................................61 RF Attenuator (ATTN) .................................................................................................................62 RF Attenuator (ATTN_VAR)......................................................................................................64 Dual Directional Coupler (COUPLER2) ...................................................................................66 Ideal three port circulator (CIR3) ................................................................................................67 RF Circulator (CIR) .......................................................................................................................68 Single RF Directional Coupler (COUPLER1)...........................................................................69 Time Delay (DELAY) ...................................................................................................................70 RF Frequency Divider (FREQ_DIV) .........................................................................................71 RF Frequency Multiplier (FREQ_MULT) .................................................................................74 Ideal gain block (GAIN) - LINEAR ...........................................................................................76 Hybrid 90 Degree Coupler (HYBRID1).....................................................................................77 RF Isolator (ISO) ...........................................................................................................................78 Ideal isolator (ISOLATOR)..........................................................................................................79 Log Detector (LOG_DET) ..........................................................................................................80 RF Mixer (MIXERA, MIXERP)..................................................................................................81 Intermod Mixer Table (MIXER_TBL).......................................................................................83 Antenna Path Loss (PATH) .........................................................................................................86

Page 5: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Table Of Contents

iii

Ideal Phase Shift (PHASE) ...........................................................................................................87 RF Amplifier (RFAMP)................................................................................................................88 RF Switch SPDT (SPDT) .............................................................................................................90 RF 2 Way - 0° Splitter / Combiner (SPLIT2)............................................................................92 RF 2 Way - 0°/ 180° Splitter / Combiner (SPLIT2180)..........................................................94 RF 2 Way - 0°/ 90° Splitter / Combiner (SPLIT290) ..............................................................96 RF 3 Way - 0° Splitter / Combiner (SPLIT3)............................................................................98 RF 4 Way - 0° Splitter / Combiner (SPLIT4)..........................................................................100 RF 5 Way - 0° Splitter / Combiner (SPLIT5)..........................................................................102 RF Switch SPnT (SWITCHn) ....................................................................................................104 RF Switch SPST (SPST) ..............................................................................................................106 VGA (Variable Gain Amplifier).................................................................................................108

Chapter 6 Filters (in System Toolbar) ...............................................................................111 Bessel Bandpass Filter (BPF_BESSEL)...................................................................................111 Butterworth Bandpass Filter (BPF_BUTTER) ......................................................................112 Chebyshev Bandpass Filter (BPF_CHEBY)...........................................................................113 Elliptic Bandpass Filter (BPF_ELLIPTIC).............................................................................114 Pole / Zero Bandpass Filter (BPF_POLES) ..........................................................................115 Bessel Bandstop Filter (BSF_BESSEL)...................................................................................117 Butterworth Bandstop Filter (BSF_BUTTER) ......................................................................118 Chebyshev Bandstop Filter (BSF_CHEBY) ...........................................................................119 Elliptic Bandstop Filter (BSF_ELLIPTIC) .............................................................................120 Pole / Zero Bandstop Filter (BSF_POLES)...........................................................................121 Duplexer with Chebyshev Filters (DUPLEXER_C).............................................................123 Duplexer with Elliptic Filters (DUPLEXER_E) ...................................................................125 Bessel Highpass Filter (HPF_BESSEL) ..................................................................................127 Butterworth Highpass Filter (HPF_BUTTER)......................................................................128 Chebyshev Highpass Filter (HPF_CHEBY)...........................................................................129 Elliptic Highpass Filter (HPF_ELLIPTIC).............................................................................130 Pole / Zero Highpass Filter (HPF_POLES) ..........................................................................131 Bessel Lowpass Filter (LPF_BESSEL) ....................................................................................133 Butterworth Lowpass Filter (LPF_BUTTER)........................................................................134 Chebyshev Lowpass Filter (LPF_CHEBY) ............................................................................135 Elliptic Lowpass Filter (LPF_ELLIPTIC) ..............................................................................136 Pole / Zero Lowpass Filter (LPF_POLES)............................................................................137

Chapter 7 Nonlinear Elements .........................................................................................139 Nonlinear bipolar transistor models (BIPNPN, BIPPNP, BIPNPN4, and BIPPNP4)....139 Nonlinear voltage and current sources (NLCCCS, NLCCVS, NLVCCS, and NLVCVS)141 Nonlinear Curtice2 FET transistor models (CURTICE2_N and CURTICE2_P) ............142

Page 6: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Curtice3 FET transistor models (CURTICE3_N and CURTICE3_P) ............144 Nonlinear diode (DIODE) .........................................................................................................146 Nonlinear JFET transistor models (JFET_N and JFET_P)..................................................147 Nonlinear MOSFET transistor models (MOS1_N and MOS1_P) ......................................148 Nonlinear Capacitor (NLCAP) ..................................................................................................150 Nonlinear Resistor (NLRES)......................................................................................................151 Nonlinear Statz FET transistor models (STATZ_N and STATZ_P) .................................152 Nonlinear TOM transistor models (TOM_N and TOM_P).................................................154 Nonlinear LDMOS transistor models (base or die models) ..................................................156 Nonlinear TOM2 transistor models (TOM2_N and TOM2_P) ..........................................158

Chapter 8 Sources, Ports, Grounds, and Probes .............................................................. 161 Ground (GND) ............................................................................................................................161 AC Current Source (IAC)- NONLINEAR..............................................................................162 DC Current Source (IDC) - NONLINEAR............................................................................163 Standard Input (*INP).................................................................................................................164 Input AC Current (INP_IAC) - NONLINEAR.....................................................................165 Input DC Current (INP_IDC) - NONLINEAR....................................................................166 Input Pulsed Current (INP_IPULSE) - NONLINEAR........................................................167 Input Custom Current Waveform (INP_IPWL) - NONLINEAR......................................168 Input AC Power (INP_PAC) - NONLINEAR ......................................................................169 Input AC Voltage (INP_VAC) - NONLINEAR....................................................................170 Input DC Voltage (INP_VDC) - NONLINEAR...................................................................171 Input Pulsed Voltage (INP_VPULSE) - NONLINEAR ......................................................172 Input Custom Voltage Waveform (INP_VPWL) - NONLINEAR.....................................173 Pulsed Current Source (IPULSE) - NONLINEAR ...............................................................174 Custom Current Waveform Source (IPWL) - NONLINEAR..............................................175 Current Probe (IPROBE) ...........................................................................................................176 Standard Output (*OUT)............................................................................................................177 Signal Ground Source (*SGND) ...............................................................................................178 Test Point (TEST_POINT)........................................................................................................179 AC Power Source (PAC) - NONLINEAR..............................................................................180 AC Voltage Source (VAC) - NONLINEAR ...........................................................................181 DC Voltage Source (VDC) .........................................................................................................182 Pulsed Voltage Source (VPULSE).............................................................................................183 Custom Voltage Waveform Source (VPWL) ...........................................................................184

Chapter 9 Ideal Transmission Lines, Coupled Lines, and Wires....................................... 185 Coupled lines (CPL).....................................................................................................................185 Impedance Inverter (INVERTER) ...........................................................................................186 Distributed RC transmission line (RCLIN)..............................................................................187

Page 7: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Table Of Contents

v

Transmission line (TLE) .............................................................................................................188 Four Terminal Transmission Line (TLE4)...............................................................................189 Transmission Line (TLP) ............................................................................................................190 Four Terminal Transmission Line (TLP4) ...............................................................................191 Distortionless TEM Transmission Line (TLRLDC)...............................................................192 Uniform TEM Transmission Line (TLRLGC)........................................................................193 Exponential TEM Transmission Line (TLX) ..........................................................................194 Rectangular Wire (RIBBON) .....................................................................................................195 Length of Conducting Wire (WIRE).........................................................................................196

Chapter 10 Coax ................................................................................................................197 Coaxial Cable (CABLE) ..............................................................................................................197 Coaxial Cable Types (RG6, RG8, RG58, RG59, RG214)......................................................198 Coaxial open end (CEN).............................................................................................................200 Coaxial center conductor gap (CGA)........................................................................................201 Coaxial transmission line (CLI) ..................................................................................................202 Four terminal coaxial line (CLI4)...............................................................................................203 Coplanar Gap (CPWCGAP).......................................................................................................204 Square Coax Line with Round Inner Conductor (CSQLI) ....................................................205 Square Coax Line with Square Inner Conductor (CSQLX)...................................................206 Coaxial conductor step (CST) ....................................................................................................207

Chapter 11 Microstrip (Standard, Inverted, and Suspended) .............................................209 Microstrip Bend (MBN)..............................................................................................................209 Multiple Coupled Microstrip Lines (MCN)..............................................................................210 Two Coupled Microstrip Lines (MCP) .....................................................................................211 Microstrip Cross (MCR)..............................................................................................................212 Microstrip Curved Bend (MCURVE) .......................................................................................214 Microstrip Open End (MEN) ....................................................................................................215 Microstrip Gap (MGA) ...............................................................................................................216 Microstrip Interdigital Capacitor (MIDCAP)...........................................................................217 Inverted Microstrip (MINV) ......................................................................................................218 Lange Coupler (MLANG) ..........................................................................................................219 Microstrip Line (MLI) .................................................................................................................220 Microstrip Rectangular Inductor (MRIND).............................................................................221 Microstrip Radial Stub (MRS) ....................................................................................................223 Microstrip Spiral Inductor (MSPIND)......................................................................................224 Microstrip Step (MST).................................................................................................................225 Suspended Microstrip (MSUS) ...................................................................................................226 Microstrip Linearly Tapered Line (MTAPER) ........................................................................227 Microstrip Asymmetrical Tee Junction (MTE)........................................................................228

Page 8: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip Via Hole (MVH) .......................................................................................................230

Chapter 12 Slabline ........................................................................................................... 231 Multiple Coupled Rods (slabline) (RCN)..................................................................................231 Coupled Slabline (RCP)...............................................................................................................232 Slabline (RLI) ................................................................................................................................233

Chapter 13 Stripline .......................................................................................................... 235 Offset Broadside Coupled Striplines (SBCP)...........................................................................235 Stripline Bend (SBN) ...................................................................................................................237 Multiple Coupled Striplines (SCN) ............................................................................................238 Coupled Striplines (SCP).............................................................................................................239 Stripline Open End (SEN)..........................................................................................................240 Stripline gap (SGA) ......................................................................................................................241 Stripline (SLI)................................................................................................................................242 Offset Stripline (SLIO)................................................................................................................243 Stripline Step in Width (SSP)......................................................................................................244 Stripline Tee Junction (STE).......................................................................................................245

Chapter 14 Coplanar Waveguide ...................................................................................... 247 Multiple coupled transmission lines (CPNn) ...........................................................................247 Coplanar Microstrip Line without and with Ground Plane ( CPW and CPWG )..............249

Chapter 15 Rectangular Waveguide.................................................................................. 251 Waveguide-to-TEM Adapter (WAD)........................................................................................251 Rectangular Waveguide Line (WLI) ..........................................................................................252

Chapter 16 EM Based Transmission Lines.......................................................................... 253 SMTLP and MMTLP...................................................................................................................253

Chapter 17 Antenna .......................................................................................................... 255 Dipole antenna (DIPOLE) .........................................................................................................255 Monopole Antenna (MONOPOLE) ........................................................................................256

Chapter 18 Transmission Line Type Reference.................................................................. 257 Microstrip ......................................................................................................................................257 Suspended Microstrip ..................................................................................................................259 Inverted Microstrip ......................................................................................................................260 Coupled Microstrip ......................................................................................................................261 Round Microstrip .........................................................................................................................262

Page 9: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Table Of Contents

vii

Coplanar Waveguide ....................................................................................................................263 Coplanar Waveguide with Ground............................................................................................264 Stripline ..........................................................................................................................................265 Coupled Stripline..........................................................................................................................266 Broadside Horizontal Coupled Stripline...................................................................................267 Broadside Vertical Coupled Stripline ........................................................................................268 Rounded Edge Stripline ..............................................................................................................269 Slabline ...........................................................................................................................................270 Square Slabline/Coax...................................................................................................................271 Coupled Slabline...........................................................................................................................272 Coaxial............................................................................................................................................273 Eccentric Coaxial..........................................................................................................................274 Partially Filled Coax .....................................................................................................................275 Square Coaxial...............................................................................................................................276 Coaxial Stripline............................................................................................................................277 Equal-Gap Rectangular Coax .....................................................................................................278 Unscreened Twin Wire................................................................................................................279 Single Wire Above Ground ........................................................................................................280 Trough Line...................................................................................................................................281

Chapter 19 Substrate Parameter Tables .............................................................................283 Loss Tangent.................................................................................................................................283 Metal Thickness ............................................................................................................................284 Relative Dielectric Constants......................................................................................................285 Relative Permeability....................................................................................................................286 Resistivity.......................................................................................................................................287 Surface Roughness .......................................................................................................................288

Chapter 20 References .......................................................................................................289 GENESYS References ................................................................................................................289 Transmission Line & Filter Shape Reference...........................................................................291

Index ...............................................................................................................295

Page 10: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 11: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

1

Chapter 1 Overview and Miscellaneous

Circuit Elements The following index shows the built-in linear elements organized by schematic toolbar. For an alphabetic listing, see the index. The code at the end is the model name which must be used when switching models in SCHEMAX or when typing in a netlist.

SCHEMAX main toolbar

Wire Connections (LINE) Inputs (INP, INP_VDC, INP_IDC, INP_VAC, INP_IAC, INP_PAC, INP_VPULSE, INP_IPULSE, INP_VPWL, and INP_IPWL) Output True Ground Signal Ground Power Sources (PAC, VDC, IDC, VAC, IAC, VPULSE, IPULSE, VPWL and IPWL) NET block Text

Lumped Toolbar

Air-Core Inductor (AIRIND1) Capacitor (CAP) Crystal RLC Model (XTL) Delay Block (Ideal) (DELAY) Dipole Antenna Element (DIPOLE) Inductor (IND) Gain Block (Ideal) (GAIN) Monopole Antenna Element (MONOPOLE) Mutually Coupled Inductors (MUI) Phase Block (Ideal) (PHASE) Resistor (RES) Spiral Inductor (SPIND) Thin Film Capacitor (TFC) Thin Film Resistor (TFR) Three-Port Circulator (CIR3) Toroidal Core Inductor (TORIND) Transformer (Ideal) (TRF) Transformer (Center Tapped Secondary) (TRFCT) Two-Port Isolator (Ideal) (ISOLATOR)

Linear Toolbar

1 Port (ONE) 2 Port (TWO) 3 Port (THR) 4 Port (FOU)

Page 12: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

2

Bipolar Transistor Model (BIP) Current Controlled Current Source (CCC) Current Controlled Voltage Source (CCV) FET Model (FET) Gyrator Model (GYR) N-Ports (5 to 20 Ports) (NPOn) Negation Operator (NEG1 and NEG2) Operational Amplifier (OPA) PIN Diode (PIN) Voltage Controlled Current Source (VCC) Voltage Controlled Voltage Source (VCV)

Nonlinear Toolbar

Nonlinear FETs (CURTICE2, CURTICE2A, CURTICE3, JFET, STATZ, TOM and TOM2) Nonlinear MOSFETs (MOS1) Nonlinear BJTs (BIPNPN, BIPPNP, BIPNPN4, and BIPPNP4) Nonlinear power sources (NLCCCS, NLCCVS, NLVCCS, and NLVCVS) Nonlinear Diode (DIODE) Nonlinear Resistor (NLRES) Nonlinear Capacitor (NLCAP)

T-Line Toolbar

Coupled Lines (2 Lines) (CPL) Coupled Lines (3 to 10 Lines) (CPNn) Distributed RC Transmission Line (RCLIN) Multi-Mode Lines (EMPOWER generated) (MMTLP) Single Line (2 Nodes) (TLE) Single Line (4 Nodes) (TLE4) Single Line With Physical Dimensions (2 Nodes) (TLE) Single Line With Physical Dimensions (4 Nodes) (TLE4) Single Mode Line (EMPOWER generated) (SMTLP) Transmission Line (Distortionless TEM) (TLRLDC) Transmission Line (Uniform TEM) (TLRLGC) Transmission Line (Exponential TEM) (TLX) Wire (Rectangular Cross Section) (RIBBON) Wire (Circular Cross Section) (WIRE)

Coaxial Toolbar

Coaxial Cable (CABLE) Coaxial Cable Types (CABLE TYPES) End Effect (CEN) Gap (CGA) Single Line (2 Nodes) (CLI) Single Line (4 Nodes) (CLI4) Square Coax Line with Round Inner Conductor (CSQLI) Square Coax Line with Square Inner Conductor (CSQLX) Step (CST)

Page 13: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Overview and Miscellaneous

3

Coplanar Toolbar

Coplanar Line without and with Ground Plane (CPW and CPWG) Coplanar Line with Gap (CPWCGAP)

Microstrip Toolbar

Bend (MBN) Coupled Lines (2 Lines) (MCP) Coupled Lines (3 to 10 Lines) (MCNn) Cross (MCR) Curved Line (MCURVE) End Effect (MEN) Gap (MGA) Interdigital Capacitor (MIDCAP) Inverted Microstrip (MINV) Lang Coupler (MLANG, MLANG6, and MLANG8) Radial Stub (MRS) Rectangular Inductor (MRIND) Single Line (MLI) Spiral Inductor (MSPIND) Step (MST) Suspended Microstrip (MSUS) Tapered Line (MTAPER) Tee (MTE) Via-Hole (MVH)

Slabline Toolbar

Single Line (RLI) Coupled Lines (2 Lines) (RCP) Coupled Lines (3 to 10 Lines) (RCNn)

Stripline Toolbar

Bend (SBN) Coupled Lines (2 Lines) (SCP) Coupled Lines (3 to 10 Lines) (SCNn) End Effect (SEN) Gap (SGA) Offset (SLIO) Offset Coupled (SBCP) Single Line (SLI) Step (SSP) Tee (STE)

System Toolbar

2 Way 0° Splitter / Combiner (SPLIT2) 2 Way (0° / 180°) Splitter / Combiner (SPLIT2180) 2 Way (0° / 90°) Splitter / Combiner (SPLIT290) 3 Way 0° Splitter / Combiner (SPLIT3) 4 Way 0° Splitter / Combiner (SPLIT4)

Page 14: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

4

5 Way 0° Splitter / Combiner (SPLIT5) Attenuator (ATTN) Coupled Antenna (ANTC) Attenuator - Variable (ATTN_VAR) Bandpass Filter - Bessel (BPF_BESSEL) Bandpass Filter - Butterworth (BPF_BUTTER) Bandpass Filter - Chebyshev (BPF_CHEBY) Bandpass Filter - Elliptic (BPF_ELLIPTIC) Bandpass Filter - Pole / Zero (BPF_POLES) Bandstop Filter - Bessel (BSF_BESSEL) Bandstop Filter - Butterworth (BSF_BUTTER) Bandstop Filter - Chebyshev (BSF_CHEBY) Bandstop Filter - Elliptic (BSF_ELLIPTIC) Bandstop Filter - Pole / Zero (BSF_POLES) Coupler - Dual Directional (COUPLER2) Coupler - Single Directional (COUPLER1) Circulator (CIR) Duplexer with Chebyshev Filters (DUPLEXER_C) Duplexer with Elliptic Filters (DUPLEXER_E) Highpass Filter - Bessel (HPF_BESSEL) Highpass Filter - Butterworth (HPF_BUTTER) Highpass Filter - Chebyshev (HPF_CHEBY) Highpass Filter - Elliptic (HPF_ELLIPTIC) Highpass Filter - Pole / Zero (HPF_POLES) Hybrid 90° Coulper (HYBRID1) Isolator (ISO) Lowpass Filter - Bessel (LPF_BESSEL) Lowpass Filter - Butterworth (LPF_BUTTER) Lowpass Filter - Chebyshev (LPF_CHEBY) Lowpass Filter - Elliptic (LPF_ELLIPTIC) Lowpass Filter - Pole / Zero (LPF_POLES) Switch SPDT (SPDT) Switch SPST (SPST)

Waveguide Toolbar

Rectangular Waveguide (WLI) Waveguide-to-TEM Adapter (WAD)

Extra Symbols

All Symbols (a reference figure)

Page 15: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Overview and Miscellaneous

5

Commonly used Symbols (a reference figure) To use a symbol not otherwise available, place a part and change its symbol.

Page 16: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

6

Page 17: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Overview and Miscellaneous

7

The following are a some representative samples of the plethora of internally generated elements that are available:

Page 18: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

8

Page 19: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Overview and Miscellaneous

9

Extra Symbols These extra symbols may be used by placing a similar part in SCHEMAX and double-clicking the part to display the Parts dialog box. Then click the "Symbols..." button to select a custom symbol.

Usage:

The best way to use these symbols is to place a part with a similar shape and then change the visual symbol. For CAP_POLARIZED try starting with a CAPACITOR; for SPST try using a RESISTOR with R=.001 ohms. For LED start with a DIODE and for CHASSIS_GROUND use a true GROUND. MIXER and VARACTOR are best represented by a user model.

Tip: You can duplicate a custom symbol by selecting it and pressing Ctrl+D.

Page 20: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

10

Standard wire connection (*LINE) The standard connection between schematic elements, which represents a "short circuit." This symbol is available in SCHEMAX in the main SCHEMAX toolbar or by pressing the "W" key for 90º lines or Shift+W for a line at any angle. Once a line has been placed, you can drag an end point to move it. You can also move a line (or any component) by dragging the center and the lines will stay "connected" if Keep Connected is enabled. Holding the ALT key down will toggle the current keep connect setting.

Netlist Syntax:

In a netlist, a wire connection is represented by a node number. All connections which use the same node number are directly connected by the same circuit trace.

Parameters:

None

Page 21: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Overview and Miscellaneous

11

Net Block This element allows a network or EM simulation to be reused. A NET block is an internally generated model that has many symbol variations based on the number of terminal connections. This symbol is available in SCHEMAX in the main SCHEMAX toolbar. Here are a few examples:

Netlist Syntax:

In a netlist, simply use the name of the network followed by the node numbers Parameters:

Network to Reuse The name of another design or EM simulation (in the current project)

Examples:

NETLIST1 1 2 0

Page 22: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

12

Standard Text (*TEXT) The Text element is used to annotate your schematic. This symbol is available in SCHEMAX in the main SCHEMAX toolbar or by pressing the "T" key (for left justified text.)

Text has no symbol, SCHEMAX just displays a comment in the standard font.

Netlist Syntax:

Use a comment for annotation in a netlist. Comments start with a "!" character.

Parameters:

Line n The line(s) of text to display Examples:

! This is a comment

Page 23: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

13

Chapter 2 Lumped Elements

Air core inductor (AIRIND1) This physical inductor symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

AIRIND1 n1 n2 N= D= L= WD= RHO= [Name=] Parameters:

N Number of turns D Diameter of form (mm) L Length (mm) WD Diameter of wire (mm) RHO Resistivity of conductor relative to copper

Examples:

AIRIND1 1 2 N=7 D=5.08 L=11.43 WD=1.143 RHO=1 Touchstone Translation:

AIRIND1 1 2 N= D= L= WD= RHO= Default SPICE Translation:

None

Page 24: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

14

Capacitor (CAP) Lumped capacitance with optional Q. This symbol is available in SCHEMAX in the LUMPED toolbar or by pressing the "C" key. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part. You can select an alternate symbol, CAP_POLARIZED, just like any other extra symbol. There is also a nonlinear capacitor model (NLCAP) available for your use.

Note: Use the keyboard shortcut key "C" to place a capacitor in SCHEMAX.

Netlist syntax:

CAP n1 n2 C= [Q=] [Name=] Parameters:

Capacitance (pF) Specifies the value of the capacitor in picoFarads. Capacitor Q (optional) Specifies the quality factor of the capacitor, modeled as constant with frequency. This parameter is not required, and defaults to 1 million if not specified.

Examples:

CAP 1 2 C=22 CAP 3 0 C=470 Q=300 N=C1

Q is modeled as constant with frequency. It can be specified higher or lower than the default value.

Touchstone Translation:

CAP n1 n2 C= or (if Q is specified)

CAPQ n1 n2 C= Q= F=1 MOD=3 Default SPICE Translation:

C1_NAME n1 n2 C Warning: Q is not modeled in SPICE.

Page 25: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

15

Frequency-independent Impedance (IMP) This symbol is available in SCHEMAX in the LUMPED Toolbar.

Netlist Syntax :

IMP 1 2 R= X= Parameters:

R Real part of Impedance [default=50] X Imaginary part of Impedance [default=0]

The Impedance (Z ) is equal to : Z = R + j X where both R and X are constant, .i.e independent of frequency.

Example:

IMP 1 2 R=10 X=10

Page 26: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

16

Inductor (IND) Lumped inductance with optional Q. This symbol is available in SCHEMAX in the LUMPED toolbar or by pressing the "L" key. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part.

Note: Use the keyboard shortcut key "L" to place an inductor in SCHEMAX.

Netlist Syntax:

IND n1 n2 L= [Q=] [Name=] Parameters:

Inductance (nH) Specifies the value of the inductor in nanoHenries. Inductor Q (optional) Specifies the quality factor of the inductor, modeled as constant with frequency. This parameter is not required, and defaults to 1 million if not specified.

Examples:

IND 1 2 L=22 IND 3 0 L=470 Q=300 N=L1

Q is modeled as constant with frequency. It can be specified higher or lower than the default value.

Touchstone Translation:

IND n1 n2 L= or (if Q is specified)

INDQ n1 n2 C= Q= F=1 MOD=3 Default SPICE Translation:

L1_NAME n1 n2 L Warning: Q is not modeled in SPICE.

Page 27: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

17

Inductor with Q (INDQ) This symbol is available in SCHEMAX in the LUMPED Toolbar.

Normally, the standard Inductor element is used. This element is provided only for ADS compatibility. This element is implemented as a series inductor plus frequency dependent resistor.

Netlist Syntax:

INDQ n1 n2 L= QL= F= MODE= RDC= [Name=] Parameters:

L Inductance in nanohenries. QL Quality factor (default=1e+6) F Frequency for Q value (MHz) MODE Selects the frequency variation of Q MODE = 1: Q proportional to frequency (f) (default) MODE = 2: Q proportional to sqrt (f) MODE = 3: Q constant MODE = 4: Identical to ADS Mode = sqrt(f), incorrect topology used as in ADS. RDC Resistance at dc (default = 1e-6 ohm)

Example:

INDQ 1 2 L=100 QL=100 MODE=3 Touchstone Translation: None

Default SPICE Translation: None

Page 28: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

18

Modelithics Capacitor (CAP_nnnn) Surface mount chip capacitor model with substrate-scaling capability. This model is an equivalent circuit topology that will emulate capacitor performance as a function of the substrate or printed circuit board on which it is mounted. The model is valid over a range of specific part values offered by the component manufacturer. The frequency-dependent effective series resistance (ESR) has been characterized and incorporated into the model. The fundamental resonance and up to two higher-order resonance pairs are accurately predicted.

A substrate definition must exist in the workspace and be associated with the model. Substrate dielectric constant, loss tangent, metal thickness and height will be used in the model. The model can be specified to provide an ideal element response for any part value by setting the Sim_mode parameter equal to 1.

See Modelithics Substrate-Scalable Capacitor Models data sheets for details on model development and use.

Parameters

Capacitance (pF) Specifies the nominal value of the capacitor in picoFarads. Sim_mode Specifies whether the full parasitic model is to be used (Sim_mode=0) or if an ideal element should be used (Sim_mode = 1).

See Also: Modelithics Capacitor Overview in the User's Guide

Page 29: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

19

Two Mutually Coupled Inductors (MUI) This symbol is available in SCHEMAX in the LUMPED Toolbar.

Netlist Syntax:

MUI n1 n2 n3 n4 L1= L2= K= [Name=] Parameters:

L1 Inductance of coil between n1 and n2 in nanohenries. L2 Inductance of coil between n3 and n4 in nanohenries. Coupling, K Coefficient of coupling.

WARNING: “K” must not equal 1.

Example:

MUI 1 2 3 4 L1=100 L2=100 K=.999999 A negative value of “K” inverts the phase. MUI is used to model a transformer including finite winding inductance and coupling, providing for a more realistic model.

Touchstone Translation:

MUC n1 n3 n2 n4 L1= L2= M= Default SPICE Translation:

.SUBCKT X$NAME 1 2 3 4 L_IND1 1 2 L1 nH L_IND2 3 4 L2 nH K_MUI L_IND1 L_IND2 k .ENDS X$NAME

Page 30: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

20

Mutually Coupled Coils (MUCQx) The symbol for 'x' coupled coils is available in SCHEMAX in the LUMPED Toolbar. For 'x' between 2 and 10.

[ Symbol for x = 4 ]

Netlist Syntax:

MUCQx n1 n2 ... n2x L1= L2= ... Lx= K12= K13= K23= ....Q1= Q2= ... Qx= RDC1= RDC2= ...RDCx= F= MODE= [Name=]

Parameters:

L1, L2, ... Lx Inductance of coils in nanohenries. K12, K13, ... K1x Coefficient of coupling between coil #1 and coil #x (for x > 1) K23, K24, ... K2x Coefficient of coupling between coil #2 and coil #x (for x > 2) K (x-1) (x) Coefficient of coupling between coils #(x-1) and coil #x Q1, Q2, ... Qx Quality factor for coils (default=1e+6) RDC1, RDC2, ... RDCx Resistance at dc for coils (default = 1e-6 ohm) F Frequency for Q value (MHz) MODE Selects the frequency variation of Q MODE = 1: Q proportional to frequency (f) (default) MODE = 2: Q proportional to sqrt (f) MODE = 3: Q constant

WARNING: Coupling coefficients “Kij” must be less than 1.

Example:

MUCQ4 1 2 3 4 5 6 7 8 L1=100 L2=100 L3=90 L4=50 K12=0.1 K13=0.9 K14=0.1K23=0 K24=0 K34=0 Q1=100 Q2=100 Q3=100 Q4=100 F=100 MODE=1

Touchstone Translation: None

Default SPICE Translation: None

Page 31: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

21

Parallel L-C resonator (PFC) The symbol for this element is available in SCHEMAX on the Lumped Toolbar.

Netlist Syntax :

PFC n1 n2 Frequency= C= [Ql=] [Qc=] [Name=] Parameters:

f Frequency of resonance (MHz). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

PFC 1 2 F=88 C=100 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

This code generates the same network as PLC. However, the frequency and capacitance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

Page 32: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

22

Parallel L-C resonator (PFL) The symbol for this element is available in SCHEMAX on the Lumped Toolbar.

Netlist Syntax:

PFL n1 n2 Frequency= L= [Ql=] [Qc=] [Name=] Parameters:

f Frequency of resonance (MHz). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

PFL 1 2 F=88 L=100 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

This code generates the same network as PLC. However, the frequency and inductance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

Page 33: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

23

Parallel L-C Network (PLC) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

PLC n1 n2 L= C= [Ql=] [Qc=] [Name=] Parameters:

L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

PLC 1 2 L=100 C=22 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 34: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

24

Parallel R-C Network (PRC) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

PRC n1 n2 R= C= [Qc=] [Name=] Parameters:

R Resistance (ohms). C Capacitance (pF). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

PRC 1 2 R=50 C=22 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 35: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

25

Parallel R-L Network (PRL) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

PRL n1 n2 R= L= [Ql=] [Name=] Parameters:

R Resistance (ohms). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million).

Example:

PRL 1 2 R=50 L=100 Ql=35 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 36: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

26

Parallel R-L-C Network (PRX) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

PRX n1 n2 R= L= C= [Ql=] [Qc=] [Name=] Parameters:

R Resistance (ohms). L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

PRX 1 2 R=50 L=100 C=22 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 37: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

27

Resistor (RES) Lumped resistance. This symbol is available in SCHEMAX in the LUMPED Toolbar or by pressing the "R" key. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part. There is also a nonlinear resistor (NLRES) available for your use.

Note: Use the keyboard shortcut key "R" to place a resistor in SCHEMAX.

Netlist Syntax:

RES n1 n2 R= [Name=] Parameters:

Resistance (ohms) Specifies the value of the resistor in ohms. Examples:

RES 1 2 R=22 RES 3 0 R=470 N=R1

Touchstone Translation:

RES n1 n2 R= Default SPICE Translation:

R1_NAME n1 n2 R

Page 38: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

28

Series L-C resonator (SFC) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

SFC n1 n2 Frequency= C= [Ql=] [Qc=] [Name=] Parameters:

f Frequency of resonance (MHz). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

SFC 1 2 F=88 C=22 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

This code generates the same network as SLC. However, the frequency and capacitance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

Page 39: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

29

Series L-C resonator (SFL) The symbol for this element in SCHEMAX is in the Lumped Toolbar.

Netlist Syntax:

SFL n1 n2 Frequency= L= [Ql=] [Qc=] [Name=] Parameters:

f Frequency of resonance (MHz). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

SFL 1 2 F=88 L=100 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

This code generates the same network as SLC. However, the frequency and inductance are specified instead of the inductance and capacitance. This is useful for two reasons. First, networks with bandpass and bandstop structures are often ill-behaved for optimization. As the L or C is changed to adjust the L/C ratio, the frequency is perturbed. The use of this resonator code can dramatically reduce optimization time in many networks, sometimes by as much as an order of magnitude. Secondly, this code is well suited to tuning or optimizing a response while leaving a transmission zero or peak at a desired frequency.

Page 40: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

30

Series inductor and capacitor network (SLC) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

SLC n1 n2 L= C= [Ql=] [Qc=] [Name=] Parameters:

L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

SRL 1 2 L=100 C=22 Ql=35 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 41: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

31

Spiral Inductor (SPIND) Planar spiral inductor without a ground plane. This physical inductor symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

SPIND n1 n2 RI= W= S= N= T= RHO= [Name=] Parameters:

(See figure below for parameter illustrations.) Inner Radius (RI) Inner radius, measured edge-to-edge of conductor (mm). Strip Width (W) Outer radius, measured edge-to-edge of conductor (mm). Strip Spacing (S) Spacing between conductors (mm). Number of Turns (N) Total number of turns. This does not have to be an integer. Conductor Thickness (T) Thickness of conductor. Resistivity (RHO) Resistivity of conductor relative to copper.

Examples:

SPIND 1 2 RI=20 W=5 S=5 N=1.6 T=1 RHO=1 Note: Resistance is based on d-c or skin effect depending upon which is larger.

Series R-L with inductance (self and mutual) determined by Remke and Burdick formulas. Resistance is d-c resistance or skin-effect resistance, whichever is greater.

Touchstone Translation:

None Default SPICE Translation:

None

Page 42: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

32

Series resistor and capacitor network (SRC) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

SRC n1 n2 R= C= [Qc=] [Name=] Parameters:

R Resistance (ohms). C Capacitance (pF). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

SRC 1 2 R=50 L=22 Qc=600 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 43: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

33

Series resistor and inductor network (SRL) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

SRL n1 n2 R= L= [Ql=] [Name=] Parameters:

R Resistance (ohms). L Inductance (nH). Ql Q of the inductor (optional, defaults to 1 million).

Example:

SRL 1 2 R=50 L=100 Ql=35 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 44: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

34

Series resistor, inductor and capacitor network (SRX) The symbol for this element is in SCHEMAX in the Lumped Toolbar.

Netlist Syntax:

SRX n1 n2 R= L= C= [Ql=] [Qc=] [Name=] Parameters:

R Resistance (ohms). L Inductance (nH). C Capacitance (pF). Ql Q of the inductor (optional, defaults to 1 million). Qc Q of the capacitor (optional, defaults to 1 million).

Example:

SRX 1 2 R=50 L=100 C=50 Ql=35 Q is modeled as constant with frequency and may be specified higher or lower than the default value.

Page 45: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

35

Thin film capacitor (TFC) This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

TFC n1 n2 W= L= T= ER= RHO= TAND= [Name=] Parameters:

W Width (mm) L Length (mm) T Thickness of dielectric film (mm) ER Relative dielectric constant of dielectric film (dimensionless) RHO Resistivity relative to copper (dimensionless) TAND Dielectric loss tangent of dielectric film (dimensionless)

Examples:

TFC 1 2 W=10 L=10 T=0.04 ER=2 RHO=1 TAND=0.0001 Touchstone Translation:

TFC n1 n2 W= L= T= ER= RHO= TAND= Default SPICE Translation:

None

Page 46: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

36

Toroidal Core Inductor (TORIND) This physical inductor symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

TORIND n1 n2 N= AL= RS= QC= FQ= [Name=] Parameters:

(See figure below for a model illustration.) N Number of turns (dimensionless). AL Inductance index used to calculate inductance from number of turns (supplied by manufacturer). RS Total winding resistance (ohms). QC Core quality factor (dimensionless). FQ Reference frequency of QC (MHz).

Examples:

TORIND 1 2 N=10 AL=10 RS=5 QC=100 FQ=50 Touchstone Translation:

CIND2 n1 n2 N= AL= R=RS Q=QC F=FQ Default SPICE Translation:

None

Page 47: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

37

Ideal Transformer (TRF) This symbol is available in SCHEMAX in the LUMPED Toolbar.

Netlist Syntax:

TRF n1 n2 n3 n4 Option={TR|IM} Primary= [Secondary=] [Condition=] [Name=] Parameters:

Primary # turns on primary (TR) or primary impedance (IM). Secondary # turns on secondary (TR) or sec. impedance (IM). This parameter is optional, and defaults to 1 if not specified. Conditioning Factor Conditioning factor. Certain networks using TRF may require a conditioning factor (typically 0.001 to.1) to avoid math errors. This parameter is optional. TR: Turns Ratio Choose this option to specify a turns ratio. IM: Impedance Ratio Choose this option to specify an impedance ratio.

Example:

TRF 1 2 0 0 Option=IM P=200 S=50 The turns and impedance are relative. For example, 200 and 50 will have the same result as 4 and 1. If an inverting transformer is desired, primary is negative. An ideal tranformer can ill-condition the matrix SUPERSTAR must solve. This causes the red error bar to illuminate. To eliminate this problem, certain networks using TRF may require a conditioning factor, typically 0.001 to.1.

Touchstone Translation:

XFER n1 n2 n3 n4 N= Default SPICE Translation:

None

Page 48: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

38

Tapped Transformer (TRFCT) Ideal transformer with a center tapped secondary. This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

TRFCT n1 n2 n3 n4 n5 P= S1= S2= [Name=] Parameters:

P Number of primary turns(dimensionless). S1 Number of secondary turns for one section (dimensionless). S2 Number of secondary turns for other section (dimensionless).

Examples:

TRFCT 1 2 0 3 0 P=1 S1=2 S2=2 Note: P, S1, and S2 are used to obtain turns ratios. The absolute values are immaterial. The ratio is all that matters.

Touchstone Translation:

None Default SPICE Translation:

None

Page 49: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Lumped Elements

39

Ruthroff transformer (TRFRUTH) Ruthroff transformer modeled as a transmission line (TLE4) with shunt inductance. This symbol is available in SCHEMAX in the T-LINE toolbar.

Netlist Syntax :

TRFRUTH n1 n2 n3 N= AL= Z= L= F=[Name=] Parameters:

Number of Turns Total number of turns (dimensionless). Inductance Index Inductance index (nH/turn/turn). This number is used to calculate the equivalent shunt inductance. Transmission Line Zo (Ohms) Characteristic impedance of the transmission line in ohms. Electrical Line Length Electrical length of the transmission line at the specified frequency, in degrees. Frequency for Electrical Length Frequency for the given electrical length, in MHz.

Example:

TRFRUTH 1 2 3 N=1 AL=1 Z=2 L=45 F=1000 This is an ideal model based on the paper by Ruthroff. The shunt inductance is given by:

L = N2*AL.

Touchstone Translation:

XFERRUTH N=N AL=AL Z=Z E=L F=F SPICE Translation:

None

Page 50: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

40

Piezoelectric resonator (XTL) This symbol is available in SCHEMAX in the LUMPED Toolbar. Like many common parts, a short version of the symbol is available by holding the SHIFT key down while placing the part.

Netlist Syntax:

XTL n1 n2 Rs= Lm= CM= CO= [Name=] Parameters:

Series Resistance Series resistance in ohms. Motional Inductance Motional inductance in nanohenries. Motional Capacitance Motional Capacitance in picofarads. Parallel Capacitance Parallel Capacitance in picofarads.

Example:

XTL 1 2 Rs=26 Lm=4.97e6 Cm=.012741 Co=4.18 Touchstone Translation:

SRLC n1 n2 R=Rs L=Lm C=Cm CAP n1 n2 C=Co

Default SPICE Translation:

.SUBCKT X$NAME 1 2 R_series 1 3 Rs L_motion 3 4 Lm nH C_motion 4 2 Cm pF C_parall 1 2 Co pF .ENDS X$NAME

Page 51: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

41

Chapter 3 Linear Data Files and Deembedding

Four-Port Data (FOU) - LINEAR Creates a four-port by reading data from a disk file. This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

FOU n1 n2 n3 n4 n5 Filename= [Name=] Parameters:

FILENAME Full path and filename containing data. Example:

FOU 1 2 3 4 0 F=MCROSS.S4P The data is stored in standard sequential ASCII files. For example, the format for four-port S-Parameter data is:

The data can be all on one line, or, for readability, can be broken into multiple lines as shown above. The frequency of data stored in the data file need not match the frequencies of a run. SUPERSTAR will interpolate or extrapolate the data to obtain the parameters at the run frequencies. See the Device Data section for more information.

Touchstone Translation:

S4PA n1 n2 n3 n4 filename(Note: Node n5 must be ground) Default SPICE Translation:

None

Page 52: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

42

Negation Operator (NEG1 and NEG2) Creates a one-port or two-port element by reading data from a disk file of the element to be negated. They are used to de-embed a port or network. When placed in series with the original network the overall effect is a short circuit. When placed in parallel with the original network the result is an open circuit. This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

NEG1 n1 n2 Filename= [Name=] or NEG2 n1 n2 Filename= [Name=] Parameters:

FILENAME Full path and filename containing data for the element to be negated. Example:

NEG2 1 2 F=filename.s2p N=NEG2_1

In this example the end-to-end effect is to produce a short, .i.e. S11 = S22 = 0 and S12 = S21 = 0. If the same two blocks are connected in parallel, the end-to-end result is an open circuit. The primary use of these elements is to de-embed or remove the effects of leads or connectors in test data. The data is stored in standard sequential ASCII files. SUPERSTAR will interpolate or extrapolate the data to obtain the parameters at the run frequencies. See the definition of a 1-port element (ONE) or 2-port element (TWO) for details. For best operation, it is often helpful to place a series resistor (R = 1e-6) between the two port elements. See the Examples manual for an example of NEG2.

Range: The frequency of data stored in the data file need not match the frequencies of a run. SUPERSTAR will interpolate or extrapolate the data to obtain the parameters at the run frequencies. See the Device Data section for more details. However, for best performance use the same frequency set for simulation/data as in the data file.

Touchstone Translation:

Deembed1 Filename= Type= ....... (same parameters for Deembed2) Default SPICE Translation:

None

Page 53: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Data Files and Deembedding

43

1-Port Data File (ONE) - LINEAR Creates a one port by reading data from a disk file. This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

ONE n1 n2 Filename= [Name=] Parameters:

FILENAME Full path and filename containing data. Example:

ONE 1 0 F=ANTENNA.S1P The data is stored in standard sequential ASCII files. The format for one-port S-Parameter data is:

.

.

.

All magnitudes are linear (not dB), and all angles are in degrees. The frequency of data stored in the data file need not match the frequencies of a run. SUPERSTAR will interpolate or extrapolate the data to estimate the parameters at the run frequencies. See the Device Data section for more information.

Touchstone Translation:

S1PA n1 n2 filename (Note: Node n2 must be ground) Default SPICE Translation:

None

Page 54: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

44

3-Port Data File (THR) Creates a three-port by reading data from a disk file. This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

THR n1 n2 n3 n4 Filename= [Name=] Parameters:

FILENAME Full path and filename containing data. Example:

THR 1 2 3 0 F=OPAMP.S3P The data is stored in standard sequential ASCII files. The format for S-Parameter data is:

The data can be all on one line, or, for readability, can be broken into multiple lines as shown above. The frequency of data stored in the data file need not match the frequencies of a run. SUPERSTAR will interpolate or extrapolate the data to obtain the parameters at the run frequencies. See the Device Data section for more details.

Touchstone Translation:

S3PA n1 n2 n3 filename Note: Node n4 must be ground

Default SPICE Translation:

None

Page 55: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Data Files and Deembedding

45

1-Port Data File (ONE) - LINEAR Creates a one port by reading data from a disk file. This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

ONE n1 n2 Filename= [Name=] Parameters:

FILENAME Full path and filename containing data. Example:

ONE 1 0 F=ANTENNA.S1P The data is stored in standard sequential ASCII files. The format for one-port S-Parameter data is:

.

.

.

All magnitudes are linear (not dB), and all angles are in degrees. The frequency of data stored in the data file need not match the frequencies of a run. SUPERSTAR will interpolate or extrapolate the data to estimate the parameters at the run frequencies. See the Device Data section for more information.

Touchstone Translation:

S1PA n1 n2 filename (Note: Node n2 must be ground) Default SPICE Translation:

None

Page 56: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

46

2-Port Data File (TWO) - LINEAR Creates a two-port by reading data from a disk file. This symbol is available in SCHEMAX in the LUMPED Toolbar and in the LINEAR Toolbar.

Netlist Syntax:

TWO n1 n2 n3 Filename= [Name=] Parameters:

FILENAME Full path and filename containing data. Example:

TWO 1 2 0 F=MRF901.615 N=Q1 The data is stored in standard sequential ASCII files. One line of data is a set of data for one frequency.

The data is stored in standard sequential ASCII files. One line of data is a set of data for one frequency. In an S-Parameter file, a typical line might be

500 .64 -23 12.5 98 .03 70 .8 -37

In an S-Parameter file, a typical line might be

500 .64 -23 12.5 98.03 70.8 -37

In this case, 500 is the frequency in megahertz. The magnitudes of S11, S21, S12 and S22 are.64, 12.5,.03 and.8, and the phases -23, 98, 70 and -37 degrees, respectively.

The frequency of data stored in the data file need not match the frequencies of a run. SUPERSTAR will interpolate or extrapolate the data to obtain the parameters at the run frequencies. See the Device Data section for more details.

Touchstone Translation:

S2PA n1 n2 n3 filename Default SPICE Translation:

None

Page 57: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

47

Chapter 4 Linear Devices, Controlled Sources, and Matrix Parameters

ABCD parameters (ABC) This symbol is available in SCHEMAX in the LINEAR Toolbar under the Two-port element.

Netlist Syntax :

ABC 1 2 0 AR=-.5 AI=.5 BR=1 BI=-.2 CR=.1 CI=.3 DR=.5 DI=-.6 Parameters:

n1 Input node number. n2 Output node number. n3 Ground reference node number. AR Real portion of A. AI Imaginary portion of A. BR Real portion of B. BI Imaginary portion of B. CR Real portion of C. CI Imaginary portion of C. DR Real portion of D. DI Imaginary portion of D.

Example:

ABC 1 2 0 AR=-.5 AI=.5 BR=1 BI=-.2 CR=.1 CI=.3 DR=.5 DI=-.6

Page 58: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

48

Bipolar transistor model (BIP) - LINEAR This symbol is available in SCHEMAX in the LINEAR toolbar.

Netlist syntax:

BIP n1 n2 n3 RBE= RCe= Gm= RBB= CBe= CC= [Name=] Parameters:

RBE Base-emitter resistance. RCE Collector-emitter resistance. GM Transconductance. RBB Base resistance. CBE Base-emitter capacitance. CC Collector-base capacitance.

Example:

BIP 1 3 4 RBB=1250 RCE=50000 Gm=-0.05 RBB=250 CBE=15 CC=1 BIP models a bipolar transistor using a voltage controlled current source plus additional components. The BIP code is based on the common emitter hybrid-pi model shown below.

Typical parameters for a low power, low frequency, NPN bipolar transistor are:

Rbe = 1250 ohms Rce = 50,000 ohms Gm = -0.05 mhos Rbb = 250 ohms Cbe = 15 pF Cc = 1 pF

Some of the parameters are related to the emitter current, beta and Ft via simple expressions. First, the emitter diffusion resistance, a function of the emitter current, is found.

Page 59: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Devices, Controlled Sources, and Matrix Parameters

49

where = 25.7mV at 25 C. Then:

Rbe = (1+beta)Re

Gm = beta/[(1+beta)Re]

CBe = 1/[2pi*Ft*Re]

Modeling attempts to describe a complex physical process via a simple equivalent electrical circuit. The result is only approximate, and the errors tend to increase with frequency. Measured device data is more accurate. However, modeling is useful at lower frequencies and for special simulation purposes.

Touchstone Translation:

None Default SPICE Translation:

None (User may specify a SPICE subcircuit or library model.)

Page 60: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

50

Current controlled current source (CCC) - LINEAR This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist syntax:

CCC n1 n2 n3 RIN= ROUT= BETA= [Name=] Parameters:

RIN Input resistance in ohms. ROUT Output resistance in ohms. BETA Current gain (dimensionless).

Examples:

CCC 1 2 0 RIN=1E-6 ROUT=1E6 BETA=1 Touchstone Translation:

CCCS n1 n2 n3 n3 M=BETA A=0 R1=RIN R2=ROUT F=0 T=0 Default SPICE Translation:

NONE

Page 61: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Devices, Controlled Sources, and Matrix Parameters

51

Current controlled voltage source (CCV) - LINEAR This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist syntax:

CCV n1 n2 n3 RIN= ROUT= TR= [Name=] Parameters:

RIN Input resistance in ohms. ROUT Output resistance in ohms. TR Transresistance in ohms.

Examples:

CCV 1 2 0 RIN=1E-6 ROUT=1E-6 TR=100 Touchstone Translation:

CCVS n1 n2 n3 n3 M=TR A=0 R1=RIN R2=ROUT F=0 T=0 Default SPICE Translation:

NONE

Page 62: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

52

FET transistor model (FET) - LINEAR This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist Syntax:

FET n1 n2 n3 RI= RD= GM= RG= CGs= CDg= RS= CSd= To= [Name=] Parameters:

(See figure below for parameter illustrations)

Note: RD = 1/GD

Example:

FET 1 2 3 RI=2 RD=200 GM=-0.07 RG=2.5 CGS=.25 CDG=0.10 RS=2 CSD=0.10 TO=1E-6 NAME=ATF101

FET models a junction or insulated-gate field effect transistor using a voltage controlled current source plus additional components. FET is based on a common source, voltage controlled current source model.

An example for the ATF-101XX at 2 volts and 20 mA is

RI = 2 ohms RD = 200 ohms GM = -0.07 mhos RG = 2.5 ohms CGs = 0.25 pF CDg = 0.10 pF RS = 2 ohms CSd = 0.10 pF To = 1E-6 nanoseconds

Page 63: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Devices, Controlled Sources, and Matrix Parameters

53

The Wolf and Avantek models place the drain-source capacitance in slightly different positions. Also, the Avantek model includes information on chip and bond-wire inductances. The Wolf model includes a shunt R-L network at the input. In critical applications, these differences are readily incorporated in SUPERSTAR by externally adding the appropriate components to the FET model.

Modeling describes a complex physical process via a simple equivalent electrical circuit. The result is approximate, and the error tends to increase with frequency. Measured device data is more accurate. Models are best for lower frequencies and special purposes.

Equations which reduce the model to exact equivalent Y or other parameters for use in a simulation program are quite complex. Authors (including Wolf in his derivation of Y-parameters) often make simplifying assumptions to the equations. This is not the case in SUPERSTAR, where the program exactly matches the model schematic. Therefore, you may experience small differences in the response computed by SUPERSTAR and other simulation programs. The differences are generally insignificant in relation to errors associated with the modeling process.

Touchstone Translation:

None Default SPICE Translation:

.SUBCKT X$NAME 1 2 3 R_g 1 4 rg C_dg 4 2 cdg pF C_Gs 4 5 cgs pF R_i 5 6 ri R_s 3 6 rs R_d 2 6 rd pF C_sd 2 3 csd pF G_Gm 6 2 5 6 Gm. ENDS X$NAME

Page 64: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

54

Gyrator (GYR) This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist Syntax:

GYR n1 n2 n3 n4 Ratio= [Name=] Parameters:

Gyrator Ratio Gyrator ratio. This is defined as the ratio of input voltage to output current, or the negative ratio of output voltage to input current.

Example:

GYR 1 2 3 4 R=6 The gyrator network is connected to nodes as indicated in the diagram below. The gyrator may be considered as back-to-back current controlled voltage sources,

where R is the gyrator ratio. S-parameters are:

where

Touchstone Translation:

GYR n1 n2 R= Default SPICE Translation:

None

Page 65: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Devices, Controlled Sources, and Matrix Parameters

55

Operational Amplifier (OPA) - LINEAR This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

OPA n1 n2 n3 RIn= ROut= Gdc= Frequency= [Name=] Parameters:

Input Resistance Input resistance in ohms. Output Resistance Output resistance in ohms. DC Open Loop Gain Open loop gain (voltage ratio, not in dB) at 0 Hz. Unity Gain Crossover Frequency Open loop unity gain crossover frequency (MHz). This is sometimes called the gain-bandwidth product.

Example:

OPA 1 2 2 RI=1E6 RO=75 G=50000 F=1 Name=U741 Touchstone Translation:

OPA n1 n2 n3 0 0 M=GDC A=0 R1=RI R2=RI R3=RO R4=0 F=F T=0 Default SPICE Translation:

.SUBCKT X$NAME 1 2 3 R_In1 1 0 Rin R_In2 2 0 Rin R_Out 4 3 Rout E_VCV 4 0 1 2 Gdc .ENDS X$NAME

Warning: Crossover frequency is not modeled in SPICE.

Page 66: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

56

PIN Diode (PIN) - LINEAR This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist syntax:

PIN n1 n2 CP= LS= RS= CE= CJ= CD= CI= RJ= RI= [Name=] Parameters:

(See image below for parameter illustrations) CP Package capacitance (pF) LS Series inductance (nH) RS Series resistance (ohms) CE Gap capacitance (pF) CJ Junction capacitance (pF). CD Diffusion Capacitance (pF). CI Intrinsic layer capacitance (pF). RJ Junction resistance (ohms). RI Intrinsic layer resistance (ohms).

Examples:

The first set of values CJ=0.17... correspond to a diode in the off state; the second to a diode in the on state. PIN 1 2 CP=0.3 LS=0.3 RS=0.3 CE=0.02 CJ=0.17 CD=0.01 CI=1E6 RJ=1E9 RI=0.01 PIN 1 2 CP=0.3 LS=0.3 RS=0.3 CE=0.02 CJ=10 CD=3 CI=0.25 RJ=0.1 RI=0.5

Touchstone Translation:

PIN n1 n2 Default SPICE Translation:

None

Page 67: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Devices, Controlled Sources, and Matrix Parameters

57

S-parameters (SPA) This symbol is available in SCHEMAX in the LINEAR Toolbar under the Two-port element.

Netlist Syntax :

SPA 1 2 0 Z= MAG11= ANG11= MAG21= ANG21= MAG12= ANG12= MAG22= ANG22=

Parameters:

Z Reference Impedance (Ohms). MAG11 S11 magnitude. ANG11 S11 phase (degrees). MAG21 S21 magnitude. ANG21 S21 phase (degrees). MAG12 S12 magnitude. ANG12 S12 phase (degrees). MAG22 S22 magnitude. ANG22 S22 phase (degrees).

Example:

SPA 1 2 0 Z=50 MAG11=.2 ANG11=15 MAG21=2 ANG21=90 MAG12=.15 ANG12=-45 MAG22=2 ANG22=90

Page 68: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

58

Thin Film Resistor (TFR) Thin film resistor on dielectric above ground plane. This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

TFR n1 n2 W= L= RS=[Name=] Note: This model requires a substrate definition.

Parameters:

W Width of line L Length of line RS Surface resistivity (ohms/square)

Examples:

TFR 1 2 W=25 L=100 RS=100 Note: Model makes use of microstrip distributed inductance and capacitance and series resistance per unit length based on RS.

Touchstone Translation:

TFR n1 n2 W= L= RS= F=0 Default SPICE Translation:

None

Page 69: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Linear Devices, Controlled Sources, and Matrix Parameters

59

Voltage Controlled Current Source (VCC) - LINEAR This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist Syntax:

VCC n1 n2 n3 RIn= ROut= Transconductance= [Name=] Parameters:

Input Resistance Input resistance in ohms. Output Resistance Output resistance in ohms. Transconductance Transconductance in mhos.

Example:

VCC 1 3 0 RI=50 RO=1000 T=1 Range:

RIn and ROut > 0. Touchstone Translation:

VCCS n1 n2 n3 n3 M=T A=0 R1=RIN R2=ROUT F=0 T=0 Default SPICE Translation:

.SUBCKT X$NAME 1 2 3 R_In 3 1 Rin R_Out 3 2 Rout G_Gm 3 2 1 3 Gm .ENDS X$NAME

Page 70: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

60

Voltage Controlled Voltage Source (VCV) -LINEAR This symbol is available in SCHEMAX in the LINEAR Toolbar.

Netlist syntax:

VCV n1 n2 n3 RIN= ROUT= MU= [Name=] Parameters:

RIN Input resistance (ohms) ROUT Output resistance (ohms) MU Voltage gain (dimensionless)

Examples:

VCV 1 2 0 RIN=1E6 ROUT=1E-6 MU=1 Touchstone Translation:

VCVS n1 n2 n3 n3 M=MU A=0 R1=RIN R2=ROUT F=0 T=0 Default SPICE Translation:

None

Page 71: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

61

Chapter 5 System Elements and Behavioral Models

Coupled Antenna (ANTC) This element is used to provide a secondary RF output path from an antenna. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

ANTC n1 n2 ISO= Phase= [ZIN=] [ZOUT=] [Name=] Parameters:

ISO Isolation or attenuation of coupled path in dB (nodes 1 to 2). Phase Phase lag in coupled path in degrees. ZIN Input impedance in ohms (default is 50 ohms). ZOUT Output impedance in ohms (default is ZIN).

The coupled antenna isolation and phase are assumed to be constant across frequency.

Note: The isolation is an attenuation and must be positive. The phase is a lag and must also be positive. The input and output impedances must be non-zero.

Examples:

ANTC 1 2 ISO=50 Phase=20 Touchstone Translation: None

Default SPICE Translation: None

Page 72: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

62

RF Attenuator (ATTN) This element is used to provide attenuation in the RF path. The return loss of an RF attenuator is double the total attenuation. Input and output impedances can be specified by the user. The output impedance defaults to the input impedance unless otherwise specified by the user. When the non-linear parameters are specified for this device SPECTRASYS will create intermods and harmonics based on these parameters. The linear simulator will ignore all non-linear parameters. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

ATTN n1 n2 L= [Zin=] [Zout=] [Ip1dB=] [Ipsat=] [IIP3=] [IIP2=] [Name=] Parameters:

*L Attenuation (or Loss) in dB. *Zin Input Impedance in ohms (default is 50). *Zout Output Impedance in ohms (default is Zin). Ip1db Input 1dB compression in dBm (optional). Ipsat Input saturation power in dBm (optional). IIP3 Input IP3 in dBm (optional). IIP2 Input IP2 in dBm (optional). * For Linear operation, only these variables are used. Attenuation is assumed to be constant across frequency. For attenuation that vary with frequency a post-processed equation can be created with the FREQ variable. The non-linear model for this attenuator can be thought of as an internal amplifier with 0 dB gain being connected to the output pin. The non-linear input parameters are translated to output parameters through the attenuation. For example, an input P1dB of -10 dBm will translated to an output P1dB of -13 for a total attenuation of 3 dB.

The attenuation of this device does not change as this device is driven into compression. Currently, the non-linear parameters are used to create intermods and harmonics. The noise figure of this device will also be independent of drive level.

Note: As the ratio of Zin to Zout gets very large or very small the input and output impedances will affect the total insertion loss of the attenuator.

Page 73: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

63

Examples:

Dissimilar Impedance Example: ATTN 1 2 L=3 Zin=50 Zout=75 Complex Output Impedance (50 + j10 ohms) Example: ATTN 1 2 L=3 Zout=complex(50,10)

Touchstone Translation:

None Default SPICE Translation:

None

WARNING: Only the linear portion of this model is used by HARBEC.

Page 74: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

64

RF Attenuator (ATTN_VAR) This element is used to provide variable attenuation in the RF path. The return loss of an RF attenuator is double the total attenuation. Input and output impedances can be specified by the user. The output impedance defaults to the input impedance unless otherwise specified by the user. This element allows the user to separate the insertion loss from the attenuation and provides an appropriate schematic. When the non-linear parameters are specified for this device SPECTRASYS will create intermods and harmonics based on these parameters. The linear simulator will ignore all non-linear parameters. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

ATTN n1 n2 IL= L= [Zin=] [Zout=] [Ip1dB=] [Ipsat=] [IIP3=] [IIP2=] [Name=] Parameters:

*IL Insertion Loss in dB. *L Attenuation (or Loss) in dB. *Zin Input Impedance in ohms (default is 50 ohms). *Zout Output Impedance in ohms (default is Zin). Ip1db Input 1dB compression in dBm (optional). Ipsat Input saturation power in dBm (optional). IIP3 Input IP3 in dBm (optional). IIP2 Input IP2 in dBm (optional). * For Linear operation, only these variables are used.

The total attenuation of the variable attenuator is simply the insertion loss plus the attenuation. Insertion Loss and Attenuation is assumed to be constant across frequency. For Insertion Loss and Attenuation that vary with frequency a post-processed equation can be created with the FREQ variable.

The non-linear model for this attenuator can be thought of as an internal amplifier with 0 dB gain being connected to the output pin. The non-linear input parameters are translated to output parameters through the insertion loss and attenuation. For example, an input P1dB of -10 dBm will translated to an output P1dB of -13 for a total attenuation of 3 dB.

The attenuation of this device does not change as this device is driven into compression. Currently, the non-linear parameters are used to create intermods and harmonics. The noise figure of this device will also be independent of drive level.

Page 75: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

65

Note: As the ratio of Zin to Zout gets very large or very small the input and output impedances will affect the total insertion loss of the attenuator.

Examples:

ATTN_VAR 1 2 L=3 Zin=50 Zout=75 Touchstone Translation:

None Default SPICE Translation:

None

WARNING: Only the linear portion of this model is used by HARBEC.

Page 76: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

66

Dual Directional Coupler (COUPLER2) This element is used to provide coupling in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

COUPLER2 n1 n2 n3 n4 IL= CPL1= CPL2= [DIR1=] [DIR2=] [Z0=] [Name=] Parameters:

IL Total Insertion Loss in dB (nodes 1 to 2). CPL1 Coupling in dB (nodes 1 to 3). CPL2 Coupling in dB (nodes 2 to 4). DIR1 Directivity in dB (nodes 2 to 3, default is 30 dB). DIR2 Directivity in dB (nodes 1 to 4, default is 30 dB). Z0 Reference Impedance in ohms (default is 50 ohms).

The coupler isolation (nodes 2 to 3 and 1 to 4) is equal to the coupling + directivity. Insertion Loss, Coupling, and Directivity is assumed to be constant across frequency.

Note: The total insertion loss of the coupler includes components due to attenuation and due to coupling. A warning is given if the specified "Total Insertion Loss" is less than the minimum theoretical loss due to coupling. This minimum amount equals: {-10 log [ 1 - 10+CPL * 0.1] } db. When this occurs the total insertion loss of the coupler will be higher than the specified value.

Examples:

COUPLER2 1 2 3 4 IL=0.75 CPL1=20 CPL2=20 Touchstone Translation: None

Default SPICE Translation: None

Page 77: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

67

Ideal three port circulator (CIR3) This ideal element symbol is available in SCHEMAX in the LUMPED toolbar.

Note: This element is in the LUMPED toolbar.

Netlist syntax:

CIR3 n1 n2 n3 Z= [Name=] Parameters:

Z Reference resistance in ohms. Examples:

CIR3 1 2 0 Z=50 Touchstone Translation:

CIR3 n1 n2 n3 Default SPICE Translation:

NONE

Page 78: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

68

RF Circulator (CIR) This element is used to provide directional control of signals in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

CIR n1 n2 n3 IL= ISO= [Z0=] [Name=] Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 2 to 3, 3 to 1). ISO Isolation in dB (nodes 2 to 1, 3 to 2, 1 to 3, default is 30 dB). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion Loss, and Isolation is assumed to be constant across frequency.

Note: As the isolation is reduced to the point that it begins to approach the insertion loss the total insertion loss will no longer be the value specified by the user.

Examples:

CIR 1 2 3 IL=0.75 ISO=40 Touchstone Translation:

None Default SPICE Translation:

None

Page 79: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

69

Single RF Directional Coupler (COUPLER1) This element is used to provide coupling in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

COUPLER1 n1 n2 n3 IL= CPL= [DIR=] [Z0=] [Name=] Parameters:

IL Insertion Loss in dB (nodes 1 to 2). CPL Coupling in dB (nodes 1 to 3). DIR Directivity in dB (default is 30 dB). Z0 Reference Impedance in ohms (default is 50 ohms).

The coupler isolation (nodes 2 to 3) is equal to the coupling + directivity. Insertion Loss, Coupling, and Directivity is assumed to be constant across frequency.

Note: The total insertion loss of the coupler includes components due to attenuation and due to coupling. A warning is given if the specified "Total Insertion Loss" is less than the minimum theoretical loss due to coupling. This minimum amount equals: {-10 log [ 1 - 10+CPL * 0.1] } db. When this occurs the total insertion loss of the coupler will be higher than the specified value.

Examples:

COUPLER1 1 2 IL=0.75 CPL=20 Touchstone Translation:

None Default SPICE Translation:

None

Page 80: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

70

Time Delay (DELAY) This element is used to provide a pure time delay in the RF path. This system symbol is available in SCHEMAX in the System toolbar and the LUMPED toolbar.

Netlist syntax:

DELAY n1 n2 T= [Z0=] [Name=] Parameters:

T Time delay in ns. Z0 Reference Impedance in ohms (default = 50)

Note: The time delay must be greater or equal to zero. The time delay creates a linear phase shift as a function of frequency (f) of the form :

S21 = e-j 2 pi f T .

In the reverse direction, S12 = S21 . An alternate formulation (Model DELAY2) is available where S12 is the complex conjugate of S21. DELAY2 is available by choosing "Model" on the DELAY dialog box. This brings up the "Change Model" option. Under "New Model" select "DELAY2".

Examples:

DELAY 1 2 T=10

Touchstone Translation:

DELAY 1 2 T=10

Default SPICE Translation:

None

Page 81: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

71

RF Frequency Divider (FREQ_DIV) This element is used to frequency divide input signals that exceed the input drive level threshold. This divider element internally includes both a frequency multiplier followed by a frequency divider. The will allow the maximum flexibility so the user can create a non-integer frequency multiplier and/or divider. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

FREQ_MULT n1 n2 MULT= DIV= CG= HL= InDrv= [RISO=] [Name=] Parameters:

MULT Multiplier value (must be a positive integer - default is 1). DIV Divider value (must be a positive integer). *CG Conversion gain of multiplier in dB. HL Harmonic level table in dBc. Each entry is separated by a semicolon beginning with the fundamental and working up to the nth harmonic. InDrv Input Drive Level in dBm. *RISO Reverse Isolation in dB (default is 50 dB). *Z0 Reference impedance in ohms (default is 50 ohms). *Noise Output Noise Above Thermal (default is 20). This parameters is used in conjunction with the thermal noise to determine the noise floor at the output of the frequency multiplier. * For Linear operation, only these variables are used. The resulting s-parameters are: S21 = CG dB, S12 = -RISO dB, NF = Noise - CG .

The frequency divider model internally is a frequency multiplier followed by a frequency divider. The multiplier section operates just like frequency multiplier model (FREQ_MULT) followed by a frequency division. The 'Multiplier Value' specifies the desired harmonic number (default for the divider = 1) where the 'Conversion Gain' is the difference in power between the input fundamental signal and the desired output harmonic level. The 'Harmonic Level' table specifies the amplitude of the fundamental signal and each harmonic. The harmonic levels are in dBc relative to the desired harmonic output level. Consequently, there should be an entry in the table that contains 0 dBc for the desired harmonic level. As expected the bandwidth of all harmonic signals at the output will be multiplied by the respective harmonic (i.e. the 5th harmonic will have 5 times the bandwidth as the input signal). It is assumed that all entries in the harmonic level table have been measured in a bandwidth greater than or equal to the bandwidth of the harmonic. The 'Input Drive Level' is the target input power for the multiplier. This

Page 82: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

72

value is only used in the simulation to determine if the input power is out of range. The 'Range Tolerance' can be specified in the system simulation dialog box. Once all harmonics have been created as specified in the Harmonic Level Table they are followed by a frequency division as specified by the 'Divider Value'.

All harmonics created by the multiplier (excluding the fundamental) appear at the input of the multiplier through the reverse isolation. These signals will then propagate backwards in a SPECTRASYS simulation.

The number of harmonics created by the multiplier is solely determined by the number of entries in the harmonic level table (i.e. if there are 10 entries then 10 harmonics will be created. The maximum number of harmonics must be less than 100.

In SPECTRASYS the 'Channel Frequency' will be multiplied by the multiplier value only for the forward path. No channel frequency translation will occur for reverse traveling signals.

Note: If the channel measurement bandwidth is narrower than the multiplied bandwidth the output power for that harmonic will appear to be lower than expected. This is because SPECTRASYS is a channel based measurement tool. All spectrum plots will be scaled by the channel bandwidth and most measurements only show power within the defined channel. Remember to set the 'channel measurement bandwidth' to a bandwidth greater than or equal to the largest measured harmonic.

Note: The default 'Ignore Spectrum Frequency Above' limit defaults to 5 times the highest input frequency. Please readjust this limit to include all of the desired harmonics of the multiplier.

Examples:

FREQ_MULT 1 2 MULT =1 DIV=8 CG =-17 HL=0;20;23;15 InDrv=10 RISO=50 NOISE=23

This examples specifies a divide by 8 element with a 17 dB conversion loss. The fundamental signal at the output will be 15 dB below the 2nd harmonic. Likewise a 3rd and 4th harmonic will also be created that will be 23 dB and 15 dB respectively below the 2nd harmonic level. The target input drive level is +10 dBm. The noise floor output will be 23 dB above thermal noise which is equivalent to a noise figure of 40 dB (23 dB noise - ( -17) conversion gain). If the system analysis range tolerance is ± 2 dB then a warning will appear if the total input drive level is less than +8 dBm or greater than +12 dBm.

If the input frequency is 1 GHz @ +10 dBm then four frequencies and their power levels appearing at the output would be 125 MHz @ -7 dBm, 250 MHz @ -27 dBm, 375 MHz @ -30 dBm, and 500 MHz @ -22 dBm.

Touchstone Translation: None Default SPICE Translation: None

Page 83: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

73

WARNING: This model is not supported by HARBEC.

Page 84: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

74

RF Frequency Multiplier (FREQ_MULT) This element is used to frequency multiply input signals that exceed the input drive level threshold. The user can specify up to 100 harmonics that can be created by the multiplier. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

FREQ_MULT n1 n2 MULT= CG= HL= InDrv= [RISO=] [Name=] Parameters:

MULT Multiplier value (must be a positive integer). *CG Conversion gain of multiplier in dB. HL Harmonic level table in dBc. Each entry is separated by a semicolon beginning with the fundamental and working up to the nth harmonic. InDrv Input Drive Level in dBm. *RISO Reverse Isolation in dB (default is 50 dB). *Z0 Reference impedance in ohms (default is 50 ohms). *Noise Output Noise Above Thermal (default is 20). This parameters is used in conjunction with the thermal noise to determine the noise floor at the output of the frequency multiplier. * For Linear operation, only these variables are used. The resulting s-parameters are: S21 = CG dB, S12 = -RISO dB, NF = Noise - CG .

The frequency multiplier models can create up to 100 harmonics at its output. The 'Multiplier Value' specifies the desired harmonic number where the 'Conversion Gain' is the difference in power between the input fundamental signal and the desired output harmonic level. The 'Harmonic Level' table specifies the amplitude of the fundamental signal and each harmonic. The harmonic levels are in dBc relative to the desired harmonic output level. Consequently, there should be an entry in the table that contains 0 dBc for the desired harmonic level. As expected the bandwidth of all harmonic signals at the output will be multiplied by the respective harmonic (i.e. the 5th harmonic will have 5 times the bandwidth as the input signal). It is assumed that all entries in the harmonic level table have been measured in a bandwidth greater than or equal to the bandwidth of the harmonic. The 'Input Drive Level' is the target input power for the multiplier. This value is only used in the simulation to determine if the input power is out of range. The 'Range Tolerance' can be specified in the system simulation dialog box.

All harmonics created by the multiplier (excluding the fundamental) appear at the input of the multiplier through the reverse isolation. These signals will then propagate backwards in a SPECTRASYS simulation.

Page 85: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

75

The number of harmonics created by the multiplier is solely determined by the number of entries in the harmonic level table (i.e. if there are 10 entries then 10 harmonics will be created. The maximum number of harmonics must be less than 100.

In SPECTRASYS the 'Channel Frequency' will be multiplied by the multiplier value only for the forward path. No channel frequency translation will occur for reverse traveling signals.

Note: If the channel measurement bandwidth is narrower than the multiplied bandwidth the output power for that harmonic will appear to be lower than expected. This is because SPECTRASYS is a channel based measurement tool. All spectrum plots will be scaled by the channel bandwidth and most measurements only show power within the defined channel. Remember to set the 'channel measurement bandwidth' to a bandwidth greater than or equal to the largest measured harmonic.

Note: The default 'Ignore Spectrum Frequency Above' limit defaults to 5 times the highest input frequency. Please readjust this limit to include all of the desired harmonics of the multiplier.

Examples:

FREQ_MULT 1 2 MULT =2 CG =-17 HL=15;0;23;15 InDrv=10 RISO=50 NOISE=23 This examples specifies a frequency doubler (multiplier = 2) with a 17 dB conversion loss. The fundamental signal at the output will be 15 dB below the 2nd harmonic. Likewise a 3rd and 4th harmonic will also be created that will be 23 dB and 15 dB respectively below the 2nd harmonic level. The target input drive level is +10 dBm. The noise floor output will be 23 dB above thermal noise which is equivalent to a noise figure of 40 dB (23 dB noise - ( -17) conversion gain). If the system analysis range tolerance is ± 2 dB then a warning will appear if the total input drive level is less than +8 dBm or greater than +12 dBm. If the input frequency is 1 GHz @ +10 dBm then four frequencies and their power levels appearing at the output would be 1GHz @ -22 dBm, 2 GHz @ -7 dBm, 3 GHz @ -30 dBm, and 4 GHz @ -22 dBm.

Touchstone Translation: None

Default SPICE Translation: None

WARNING: This model is not supported by HARBEC.

Page 86: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

76

Ideal gain block (GAIN) - LINEAR This ideal element symbol is available in SCHEMAX in the LUMPED toolbar.

Note: This element is in the LUMPED toolbar.

Note: n3 is normally grounded.

Netlist syntax:

GAIN n1 n2 n3 A= S= F= [Name=] Parameters:

A Flat gain for 0<FREQ<F (dB) S Gain slope for FREQ>=F (dB/octave) F Frequency at which gain slope starts (MHz).

Examples:

GAIN 1 2 0 A=6 S=6 F=4 Touchstone Translation:

GAIN n1 n2 A= S= F= Default SPICE Translation:

None

Page 87: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

77

Hybrid 90 Degree Coupler (HYBRID1) This element is used to provide coupling in the RF path. This system symbol is available in SCHEMAX in the System toolbar. The default is an equal power split (3 db) between the "direct" port (-90 deg) and the "coupled" port (0 deg). Both paths are subject to the insertion loss.

Netlist syntax:

HYBRID1 n1 n2 n3 n4 IL= [CPL=] [ISO=] [GBAL=] [PBAL=] [Z0=] [Name=] Parameters:

IL Total Insertion Loss in dB (nodes 1 to 3 and 1 to 4, also for nodes 2 to 3 and 2 to 4). CPL Coupling in dB (nodes 1 to 3 and 1 to 4, default is 3 db). ISO Isolation in dB (nodes 1 to 2, default is 50 dB). GBAL Gain balance (gain difference between 0 deg and 90 deg paths, default is 0). PBAL Phase balance (phase difference between 0 deg and 90 deg paths, default is 0). Z0 Reference Impedance in ohms (default is 50 ohms).

The gain balance error is equally divided between the direct and coupled paths. However, the phase balance is associated with the direct (-90 deg) path only. The resulting s-parameters for the two paths are:

S31 = { [ -IL (db) ] + [ -CPL (db) ] + [ 0.5 * GBAL (db) ] } phase = 0 deg

S41 = { [ -IL (db) ] + [ -CPL (db) ] + [- 0.5 * GBAL (db) ] } phase = -90 deg - PBAL deg

Note: The coupling must always be greater than the insertion loss. If not, an error message will be provided. In addition, a warning is supplied if the gain balance is greater than the coupling.

Examples:

HYBRID1 1 2 3 4 IL=0.75 CPL=3 ISO=30 GBAL=0.1 PBAL=5.0 Touchstone Translation: None

Default SPICE Translation: None

Page 88: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

78

RF Isolator (ISO) This element is used to provide directional control of signals in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

ISO n1 n2 IL= ISO= [Z0=] [Name=] Parameters:

IL Insertion Loss in dB (nodes 1 to 2). ISO Isolation in dB (nodes 2 to 1, default is 50 dB). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion Loss, and Isolation is assumed to be constant across frequency.

Note: As the isolation is reduced to the point that it begins to approach the insertion loss the total insertion loss will no longer be the value specified by the user.

Examples:

ISO 1 2 IL=0.75 ISO=40 Touchstone Translation:

None Default SPICE Translation:

None

Page 89: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

79

Ideal isolator (ISOLATOR) This ideal element symbol is available in SCHEMAX in the LUMPED toolbar.

Note: This element is in the LUMPED toolbar.

Note: n3 is normally grounded.

Netlist syntax:

ISOLATOR n1 n2 n3 Z= [Name=] Parameters:

Z Reference resistance in ohms. Examples:

ISOLATOR 1 2 0 Z=50 Touchstone Translation:

ISOLATOR n1 n2 Default SPICE Translation:

None

Page 90: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

80

Log Detector (LOG_DET) This element is used to provide a dc output voltage proportional to the power of the RF input signal. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

LOG_DET n1 n2 SLP=[INCPT=] [VMIN=] [VSAT=] [NFLR=] [Name=] Parameters:

SLP Slope of the output voltage scaling in v/dB. INCPT Intercept on the power axis in dB. VMIN Output voltage threshold in volts. VSAT Output voltage saturation in volts.

The voltage scaling is as shown in the diagram below. The voltage is a linear function of the RF power with a given slope (SLP) within the range of VMIN to VSAT.

For additional details on amplifier models see the System Manual.

Examples:

LOG_DET n1 n2 SLP=0.1 INCPT=0 VMIN=1 VSAT=10 Touchstone Translation: None

Default SPICE Translation: None

Page 91: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

81

RF Mixer (MIXERA, MIXERP) This element is used to combine RF and Local Oscillator signals to generate sum and difference signals in the RF path. This system symbol is available in SCHEMAX in the System toolbar. There are two models: MIXERA ( Active), MIXERP (Passive). The only difference between the Active and Passive mixer is that the Active mixer has conversion gain and the Passive mixer has conversion loss.

Netlist syntax:

MIXERA n1 n2 CG= SUM= [LO=] [LTOR=] [LTOI=] [RTOI=] [Ip1db=] [Ipsat=] [IIP3=] [IIP2=] [Z0=] [IR=] [NF=] [Name=]

Parameters:

CL Conversion loss in dB (Passive Only). CG Conversion gain in dB (Active Only). This gain can be positive or negative. SUM Desired output: Difference=0, Sum=1. LO Local Oscillator drive level in dBm (default is 7 dBm). LTOR Local oscillator to RF isolation in dB (default is 30 dB).* LTOI Local oscillator to IF isolation in dB (default is 30 dB).* RTOI RF to IF isolation in dB (default is 50 dB).* Ip1db Input 1dB compression in dBm (default is 1 dBm). Ipsat Input saturation power in dBm (default is 2 dBm). IIP3 Input IP3 in dBm (default is 11 dBm). IIP2 Input IP2 in dBm (default is 22 dBm). Z0 Reference impedance in ohms (default is 50 ohms).* IR Image Rejection in dB (default is 0 dB). Image rejection will not be applied unless this value is greater than 0. NF Noise Figure in dB (default is CL for a Passive and 0 for Active dB). Iside Image Side to Reject: 0-Low, 1-High. Determines which side of the LO the image rejection will apply to. For example, if a mixer has a 800 MHz LO frequency, Image Rejection set to a non-zero value like 10 dB, and the Image Side set to Reject the Low side then all frequencies for all signals between 0 and 800 MHz will be attenuated by 10 dB. The mixer will now create reverse isolation products on the mixer RF and IF ports. The reverse isolation used in this model is the RTOI isolation. All 2nd and 3rd order harmonics and intermods will appear back at the input where they were created after applying the conversion gain and reverse isolation (RTOI).

Page 92: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

82

* For Linear simulation only these variables are used. There is no frequency translation, only isolation. The resulting s-parameters are: S13 = S31 = -RTOI, S12 = S21 = -LTOR, S23 = S32 = -LTOI.

For additional details on mixer models see the Mixer section of the System Manual.

Examples:

MIXERA 1 2 CG=6 SUM=0 LO=7 LTOR=30 LTOI=30 RTOI=50 Ip1db=1 Ipsat=2 IIP3=11 IIP2=22

Touchstone Translation: None

Default SPICE Translation: None

WARNING: For GENESYS Version 8.1, this model is not supported by HARBEC.

Page 93: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

83

Intermod Mixer Table (MIXER_TBL) This element is used to combine RF and Local Oscillator signals to generate all of the products that appear on the mixer ports. Several things are very unique about this implementation of intermod mixer table. 1) The definition of the entire intermod table occurs in the software in the equation block. 2) An intermod table can be specified for both directions through the table ( RF to IF and IF to RF). Isolation parameters are also available to model the leakage signals through a mixer.

There are at least two advantages of having the intermod table defined in the equation block 1) all of the table entries can be based on equations. This allows the user to define a intermod table that varies with power level and/or frequency. Interpolation between two static tables with different power levels can now be avoided. 2) There is no need to attach, find, or define additional text files representing the intermod table.

The advantage of having an intermod table defined for the reverse direction is so that the user can specify the harmonics of the LO (as well as other table products) that appear on the input port.

This element is available in SCHEMAX in the System toolbar.

Netlist syntax:

MIXER_TBL n1 n2 CG= SUM= [LO=] [LTOR=] [LTOI=] [RTOI=] [Ip1db=] [Ipsat=] [IIP3=] [IIP2=] [Z0=] [IR=] [NF=] [Name=]

Parameters:

CG Conversion gain in dB. SUM Desired output: Difference=0, Sum=1. LO Local Oscillator drive level in dBm (default is 7 dBm). *LTOR Local oscillator to RF isolation in dB (default is 30 dB). *LTOI Local oscillator to IF isolation in dB (default is 30 dB). Ip1db Input 1dB compression in dBm (default is 1 dBm). Ipsat Input saturation power in dBm (default is 2 dBm). *Z0 Reference impedance in ohms (default is 50 ohms). NF Noise Figure in dB (optional). Rftbl RF Input Table Variable Name. Rfpwr RF Input Table Power in dBm. Iftbl IF Input Table Variable Name (optional). Ifpwr IF Input Table Power in dBm (optional). Lopwr LO Input Table Power in dBm.

Page 94: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

84

IR Image Rejection in dB (default is 0 dB). Image rejection will not be applied unless this value is greater than 0. Iside Image Side to Reject: 0-Low, 1-High. Determines which side of the LO the image rejection will apply to. For example, if a mixer has a 800 MHz LO frequency, Image Rejection set to a non-zero value like 10 dB, and the Image Side set to Reject the Low side then all frequencies for all signals between 0 and 800 MHz will be attenuated by 10 dB. * For Linear simulation only these variables are used. There is no frequency translation, only isolation. The resulting s-parameters are: S12 = S21 = -LTOR, S23 = S32 = -LTOI.

Examples:

MIXER_TBL 1 2 CG=6 SUM=0 LO=7 LTOR=30 LTOI=30 RTOI=50 Ip1db=1 Ipsat=2 IIP3=11 IIP2=22 The following text is an example of how both the RF table and IF table have been defined in the equation block of Genesys: '---------- RF Input Mixer Table ' (Using the RF and LO as the Input ) ' This table will be used to represent harmonics ' of the RF and LO that appear at the IF port ' MiniCircuits TFM-2 Mixer ' Characterization Conditions ' RF Frequency: 500.10 MHz at - 4 dBm ' LO Frequency: 470.01 MHz at + 7 dBm ' IF Frequency: 30.09 MHz ' Each column is a harmonic of the LO ' where the first column is for LO harmonic 0 ' 0 1 2 3 ... etc RFRow0 = 99;14;29;23;42;25;43;53;57;65;72 ' RF Harmonic 0 RFRow1 = 20; 0;29;12;34;25;47;35;42;57;57 ' RF Harmonic 1 RFRow2 = 52;40;58;40;58;41;50;48;66;53;68 ' RF Harmonic 2 RFRow3 = 46;49;50;49;53;49;52;48;58;57;51 ' RF Harmonic 3 RFRow4 = 73;73;65;62;66;59;66;55;65;65;70 ' RF Harmonic 4 RFRow5 = 77;76;84;63;64;60;59;60;59;68;71 ' RF Harmonic 5 RFRow6 = 78;79;78;82;79;79;76;75;75;74;79 ' RF Harmonic 6 RFRow7 = 79;78;77;79;82;80;81;80;80;79;78 ' RF Harmonic 7

Page 95: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

85

RFRow8 = 79;80;79;78;78;84;84;82;82;81;82 ' RF Harmonic 8 RFRow9 = 79;79;80;79;78;79;84;84;82;83;82 ' RF Harmonic 9 RFRow10 = 79;79;79;79;80;79;78;84;84;82;83 ' RF Harmonic 10 RFTable = RFRow0;RFRow1;RFRow2;RFRow3;RFRow4;RFRow5;RFRow6;RFRow7;RFRow8;RFRow9;RFRow10 '---------- IF Input Mixer Table ' (Using the IF and LO as the Input ) ' This table will be used to represent harmonics ' of the LO that appear on the RF port ' Variables that can be used for the spur table LOH1=?20 LOH2=?30 LOH3=?40 ' Each column is a harmonic of the LO ' where the first column is for LO harmonic 0 ' 0 1 2 3 ... etc IFRow0 = 99;LOH1;LOH2;LOH3 ' IF Harmonic 0 IFTable = IFRow0 The apostrophe ' is used in the equation block as a comment. Rows ( vectors ) are defined by a sequence of numbers separated by semicolons. The table ( vector of vectors ) is defined by a sequence of rows separated by semicolons. The names of the rows and tables can be any legal variable name that the user chooses. Notice how the IF table is defined by three tuneable variables. In this example the variable names 'RFTable' and 'IFTable' are used in the element parameters.

Touchstone Translation: None

Default SPICE Translation: None

WARNING: Only the linear portion of this model is used by HARBEC.

Page 96: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

86

Antenna Path Loss (PATH) This element is used to provide antenna gains and path losses for a pair of antennas. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

PATH n1 n2 G1= G2= Lossa= Lossb= DIST= Loss1= Loss2= [ZIN=] [ZOUT=] [Name=]

Parameters:

G1 Gain of Antenna #1 in dB (default = 0 dB). G2 Gain of Antenna #2 in dB (default = 0 dB). Lossa Path loss for given distance (DIST) in dB/decade (default = 40 dB/decade). Lossb Path loss at unit distance (DIST=1) (default = 100 dB). DIST Distance between antennas (default = 1). Loss1 Fixed loss #1 in dB (default = 0 dB). Loss2 Fixed loss #2 in dB (default = 0 dB). ZIN Input impedance in ohms (Port 1) (default is 50 ohms). ZOUT Output impedance in ohms (Port 2) (default is ZIN).

The coupled antenna gains and path losses are assumed to be constant across frequency. The total path loss is computed as:

Total Loss = Lossb + [Lossa * log10 (DIST)] -G1 - G2 + Loss1 + Loss2

The units for distance in the default values is miles. Therefore, the loss at one mile is 100 dB.

Note: The antenna gains should be positive. The losses must also be positive. The input and output impedances must be non-zero.

Examples:

PATH 1 2 G1=3 G2=6 LOssa=40 Lossb=100 DIST=100 Loss1=3 Loss2=10 Touchstone Translation: None

Default SPICE Translation: None

Page 97: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

87

Ideal Phase Shift (PHASE) This element is used to provide a phase lag in the RF path. This system symbol is available in SCHEMAX in the System toolbar and the LUMPED toolbar.

Netlist syntax:

PHASE n1 n2 A= S= F= [Z0=] [Name=] Parameters:

A Constant phase shift for 0<FREQ<F (in degrees) S Phase slope for FREQ>F (in degrees/octave) F Frequency for onset of slope (in MHz) Z0 Reference Impedance in ohms (default = 50)

Examples:

PHASE 1 2 A=45 S=45 F=5 Note: These elements can be cascaded to obtain arbitrary phase responses. The frequency (F) must be greater or equal to zero. The time delay creates a linear phase shift as a function of frequency (f) of the form :

S21 = e-j 2 pi f T .

In the reverse direction, S12 = S21 . An alternate formulation (PHASE2) is available where S12 is the complex conjugate of S21. PHASE2 is available by choosing "Model" on the PHASE dialog box. This brings up the "Change Model" option. Under "New Model" select "PHASE2". Use the same symbol.

Touchstone Translation:

PHASE n1 n2 A= S= F= Default SPICE Translation:

None

Page 98: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

88

RF Amplifier (RFAMP) This element is used to provide gain in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

RFAMP n1 n2 G= NF= [Op1db=] [Opsat=] [OIP3=] [OIP2=] [RISO=] [Z0=] [FC=] [Slope=] [Name=]

Parameters:

G Gain in dB.* NF Noise Figure in dB. Op1db Output 1db compression in dBm (default is 60 dBm). Opsat Output Saturation Power (default is 63 dBm). OIP3 Output IP3, in dBm (default is 70 dBm). OIP2 Output IP2, in dBm (default is 80 dBm). RISO Reverse Isolation in dB (default is 50 dB).* Z0 Reference impedance in ohms (default is 50 ohms).* FC Corner frequency in MHz (default is 1000 MHz).* slope Rolloff Slope in dB/decade (default is 0 dB/decade).* * For Linear operation, only these variables are used. The resulting s-parameters are: S21 = +G db, S12 = -RISO db.

The amplifier model includes the nonlinear effect of saturation or compression and the addition of noise. The default values for: Op1db, Opsat, OIP3, and OIP2 are a reasonably consistent set on nominal parameters. Their relative magnitudes are typically: Op1db < Opsat < OIP3 < OIP2. The absolute magnitudes are higher than typical networks. Rules of thumb for these parameters are:

IP2 = IP3 + ( 10 or 15 dBm), IP3 = Ip1db + (10 or 15 dBm), [ where leading "I" refers to Input, and "O" to Output]

Op1db = OIP3 - 10.6 dBm, Ip1db = IIP3 - 9.6 dBm.

For additional details on amplifier models see the System Manual.

Note: The corner frequency and rolloff slope must be positive. The gain and reverse isolation should be greater than zero.

Examples:

Page 99: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

89

RFAMP 1 2 G=10 NF=3 Op1db=60 Opsat=63 OIP3=70 OIP2=80 RISO=50 Touchstone Translation: None

Default SPICE Translation: None

WARNING: For GENESYS Version 8.1, this model is not supported by HARBEC.

Page 100: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

90

RF Switch SPDT (SPDT) This element is used to provide switched control of signals in the RF path. The user can set the switch in any one of three switch states, off, output 1, or output 2. This model supports both absorptive and reflective switches. The default switch is an absorptive switch with has Zopen (default is 50 ohm) impedances for all open switch ports. For a reflective switch the user can specify the open port impedance. Furthermore, the user can change the switch symbol to represent the state of the switch. When the non-linear parameters are specified for this device SPECTRASYS will create intermods and harmonics based on these parameters. The linear simulator will ignore all non-linear parameters. This system symbol is available in SCHEMAX in the System toolbar.

Default Symbol: Alternate symbols that can be changed by the user:

Netlist syntax:

SPDT n1 n2 n3 IL= ISO= State= [Z0=] [Zopen=] [Name=] Parameters:

*IL Insertion Loss in dB (between input and outputs 1 or 2). *ISO Isolation in dB (between input and output in off position, default is 30 dB). *State State of the switch 0-Off, 1-Output 1, and 2-Output 2 (default is 1). *Z0 Reference Impedance in ohms (default is 50 ohms). *Zopen Open Port Impedance in ohms (default is Z0). Ip1db Input 1dB compression in dBm (optional). Ipsat Input saturation power in dBm (optional). IIP3 Input IP3 in dBm (optional). IIP2 Input IP2 in dBm (optional). * For Linear operation, only these variables are used.

Insertion Loss, and Isolation is assumed to be constant across frequency.

The non-linear model for this switch can be thought of as an internal amplifier with 0 dB gain being connected to each output pin of the switch. The non-linear input parameters are translated to output parameters through either the insertion loss or isolation parameters depending on the path and state of the switch.

The attenuation of this device does not change as this device is driven into compression. Currently, the non-linear parameters are used to create intermods and harmonics. The noise figure of this device will also be independent of drive level.

Page 101: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

91

Note: As the isolation is reduced to the point that it begins to approach the insertion loss the total insertion loss will no longer be the value specified by the user.

Examples:

SPDT 1 2 3 IL=0.5 ISO=35 State=2 Zopen=complex(5,25) Touchstone Translation:

None Default SPICE Translation:

None

Page 102: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

92

RF 2 Way - 0° Splitter / Combiner (SPLIT2) This element is used to split or combine RF paths. The phase difference between the two split paths is 0 degrees. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SPLIT2 n1 n2 n3 [IL=] [ISO=] [Gbal2=] [PH2=] [PH3=] [Z0=] [Name=] Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 1 to 3, default is 3.0 dB). ISO Isolation in dB (nodes 2 to 3, default is 30 dB). Gbal2 Gain balance in dB (gain difference between paths(1->2, 1->3), default is 0 dB). PH2 Phase of output node 2 with respect to the input in degrees (default is -90 degrees). PH3 Phase of output node 3 with respect to the input in degrees ( default is -90 degrees). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion loss, phase and isolation are assumed to be constant across frequency. The minimum insertion loss of an ideal splitter is 10*Log(1/N) dB, where N is the number of paths. The gain balance error is assigned to the 1 -> 3 path only. However, the phase specifications apply to each output with respect to the input. The resulting s-parameters for the two paths are:

S21 = { [ -IL (db) ] } with phase = PH2 deg

S31 = { [ -IL (db) ] + [ Gbal2 (db) ] } with phase = PH3 deg

The total loss of this device consists of 3 loss contributors: 1) division loss ( 10 Log 1/N, where N is the number split paths), 2) dissipative loss ( typically due to the Q of the components and transmission line losses), and 3) isolation or coupling loss ( port-to-port isolations ). The insertion loss specified for this device must include all three of these loss parameters or the device will appear to be active. A warning will be given when this occurs. For example, in practice the user cannot expect to have an insertion loss of around 3 dB for a 2 way splitter if the port-to-port isolation is very low.

Note: Phase for each path should be negative. The total output energy must not exceed the input energy or the device will appear to be active.

Examples:

SPLIT2 1 2 3 IL=3.5 ISO=35 Gbal2=0.1 PH2=2 PH3=4

Page 103: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

93

Touchstone Translation: None Default SPICE Translation: None

Page 104: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

94

RF 2 Way - 0°/ 180° Splitter / Combiner (SPLIT2180) This element is used to split or combine RF paths. The phase difference between the two split paths is 180 degrees. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SPLIT2180 n1 n2 n3 [IL=] [ISO=] [Gbal2=] [PH2=] [PH3=] [Z0=] [Name=] Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 1 to 3, default is 3.0 dB). ISO Isolation in dB (nodes 2 to 3, default is 30 dB). Gbal2 Gain balance in dB (gain difference between paths(1->2, 1->3), default is 0 dB). PH2 Phase of node 2 with respect to input in degrees ( default is -90 degrees). PH3 Phase of node 3 with respect to input in degrees ( default is -270 degrees). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion loss, phase and isolation are assumed to be constant across frequency. The minimum insertion loss of an ideal splitter is 10*Log(1/N) dB, where N the number of paths. The gain balance error is added to path 1 ->3 only. However, the phase specifications apply to each output with respect to the input. The resulting s-parameters for the two paths are:

S21 = { [ -IL (db) ] } with phase = PH2 deg

S31 = { [ -IL (db) ] + [Gbal2 (db) ] } with phase = PH3 deg

The total loss of this device consists of 3 loss contributors: 1) division loss ( 10 Log 1/N, where N is the number split paths), 2) dissipative loss ( typically due to the Q of the components and transmission line losses), and 3) isolation or coupling loss ( port-to-port isolations ). The insertion loss specified for this device must include all three of these loss parameters or the device will appear to be active. A warning will be given when this occurs. For example, in practice the user cannot expect to have an insertion loss of around 3 dB for a 2 way splitter if the port-to-port isolation is very low.

Note: Phase for each path should be negative. The total output energy must not exceed the input energy or the device will appear to be active.

Examples:

SPLIT2180 1 2 3 IL=3.5 ISO=35 Gbal2=-0.1 PH2=0 PH3=-180

Page 105: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

95

Touchstone Translation: None Default SPICE Translation: None

Page 106: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

96

RF 2 Way - 0°/ 90° Splitter / Combiner (SPLIT290) This element is used to split or combine RF paths. The phase difference between the two split paths is 90 degrees. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SPLIT290 n1 n2 n3 [IL=] [ISO=] [Gbal2=] [PH2=] [PH3=] [Z0=] [Name=] Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 1 to 3, default is 3.0 dB). ISO Isolation in dB (nodes 2 to 3, default is 30 dB). Gbal2 Gain balance in dB (gain difference between paths(1->2, 1->3), default is 0 dB). PH2 Phase of node 2 with respect to input in degrees ( default is 0 degrees). PH3 Phase of node 3 with respect to input in degrees ( default is -90 degrees). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion loss, phase and isolation are assumed to be constant across frequency. The minimum insertion loss of an ideal splitter is 10*Log(1/N) dB, where N the number of paths. The gain balance error is added to path 1 ->3 only. However, the phase specifications apply to each output with respect to the input. The resulting s-parameters for the two paths are:

S21 = { [ -IL (db) ] } with phase = PH2 deg

S31 = { [ -IL (db) ] + [Gbal2 (db) ] } with phase = PH3 deg

The total loss of this device consists of 3 loss contributors: 1) division loss ( 10 Log 1/N, where N is the number split paths), 2) dissipative loss ( typically due to the Q of the components and transmission line losses), and 3) isolation or coupling loss ( port-to-port isolations ). The insertion loss specified for this device must include all three of these loss parameters or the device will appear to be active. A warning will be given when this occurs. For example, in practice the user cannot expect to have an insertion loss of around 3 dB for a 2 way splitter if the port-to-port isolation is very low.

Note: Phase for each path should be negative. The total output energy must not exceed the input energy or the device will appear to be active.

Examples:

SPLIT290 1 2 3 IL=3.5 ISO=35 Gbal2=-0.1 PH2=0 PH3=-92

Page 107: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

97

Touchstone Translation: None

Default SPICE Translation: None

Page 108: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

98

RF 3 Way - 0° Splitter / Combiner (SPLIT3) This element is used to split or combine RF paths. The phase difference between the three split paths is 0 degrees. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SPLIT3 n1 n2 n3 n4 [IL=] [ISO=] [Gbal2=0] [Gbal3=] [PH2=] [PH3=] [PH4=] [Z0=] [Name=]

Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 1 to 3, 1 to 4, default is 4.8 dB). ISO Isolation in dB (nodes 2 to 3, 3 to 4, 2 to 4, default is 30 dB). Gbal2 Gain balance in dB (gain difference between paths(1->2, 1->3), default is 0 dB). Gbal3 Gain balance in dB (gain difference between paths(1->2, 1->4), default is 0 dB). PH2 Phase of node 2 with respect to input in degrees ( default is -90 degrees). PH3 Phase of node 3 with respect to input in degrees ( default is -90 degrees). PH4 Phase of node 4 with respect to input in degrees ( default is -90 degrees). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion loss, phase and isolation are assumed to be constant across frequency. The minimum insertion loss of an ideal splitter is 10*Log(1/N) dB, where N the number of paths. The gain balance error is the gain difference from the nominal path (i.e. path 1 -> 2). However, the phase specifications apply to each output with respect to the input. The resulting s-parameters for the two paths are:

S21 = { [ -IL (db) ] } with phase = PH2 deg

S31 = { [ -IL (db) ] + [ Gbal2 (db) ] } with phase = PH3 deg

S41 = { [ -IL (db) ] + [ Gbal3(db) ] } with phase = PH4 deg

The total loss of this device consists of 3 loss contributors: 1) division loss ( 10 Log 1/N, where N is the number split paths), 2) dissipative loss ( typically due to the Q of the components and transmission line losses), and 3) isolation or coupling loss ( port-to-port isolations ). The insertion loss specified for this device must include all three of these loss parameters or the device will appear to be active. A warning will be given when this occurs. For example, in practice the user cannot expect to have an insertion loss of around 3 dB for a 2 way splitter if the port-to-port isolation is very low.

Note: Phase of each path should be negative. The total output energy must not exceed the input energy or the device will appear to be active.

Page 109: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

99

Examples:

SPLIT3 1 2 3 4 IL=5.0 ISO=35 Gbal2=-0.1 Gbal3=-0.1 PH2=2 PH3=2 PH4=2 Touchstone Translation: None

Default SPICE Translation: None

Page 110: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

100

RF 4 Way - 0° Splitter / Combiner (SPLIT4) This element is used to split or combine RF paths. The phase difference between the four split paths is 0 degrees. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SPLIT4 n1 n2 n3 n4 n5 [IL=] [ISO=] [Gbal2=] [Gbal3=] [Gbal4=] [PH2=] [PH3=] [PH4=] [PH5=] [Z0=] [Name=]

Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 1 to 3, 1 to 4, 1 to 5, default is 6.021 dB). ISO Isolation in dB (between any combination of nodes 2 thru 5, default is 30 dB). Gbal2 Gain balance in dB (gain difference between paths(1->2, 1->3), default is 0 dB). Gbal3 Gain balance in dB (gain difference between paths(1->2, 1->4), default is 0 dB). Gbal4 Gain balance in dB (gain difference between paths(1->2, 1->5), default is 0 dB). PH2 Phase of node 2 with respect to input in degrees ( default is -90 degrees). PH3 Phase of node 3 with respect to input in degrees ( default is -90 degrees). PH4 Phase of node 4 with respect to input in degrees ( default is -90 degrees). PH5 Phase of node 5 with respect to input in degrees ( default is -90 degrees). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion loss, phase and isolation are assumed to be constant across frequency. The minimum insertion loss of an ideal splitter is 10*Log(1/N) dB, where N the number of paths. The gain balance error is the gain difference from the nominal path (i.e. path 1 -> 2). However, the phase specifications apply to each output with respect to the input. The resulting s-parameters for the two paths are:

S21 = { [ -IL (db) ] } with phase = PH2 deg

S31 = { [ -IL (db) ] + [ Gbal2 (db) ] } with phase = PH3 deg

S41 = { [ -IL (db) ] + [ Gbal3(db) ] } with phase = PH4 deg

S51 = { [ -IL (db) ] + [ Gbal4(db) ] } with phase = PH5 deg

The total loss of this device consists of 3 loss contributors: 1) division loss ( 10 Log 1/N, where N is the number split paths), 2) dissipative loss ( typically due to the Q of the components and transmission line losses), and 3) isolation or coupling loss ( port-to-port

Page 111: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

101

isolations ). The insertion loss specified for this device must include all three of these loss parameters or the device will appear to be active. A warning will be given when this occurs. For example, in practice the user cannot expect to have an insertion loss of around 3 dB for a 2 way splitter if the port-to-port isolation is very low.

Note: Phase of each path should be negative. The total output energy must not exceed the input energy or the device will appear to be active.

Examples:

SPLIT4 1 2 3 4 5 IL=6.8 ISO=25 Gbal2=-0.1 Gbal3=-0.1 Gbal4=-0.1 PH2=2 PH3=2 PH4=2 PH5=2

Touchstone Translation: None

Default SPICE Translation: None

Page 112: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

102

RF 5 Way - 0° Splitter / Combiner (SPLIT5) This element is used to split or combine RF paths. The phase difference between the five split paths is 0 degrees. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SPLIT5 n1 n2 n3 n4 n5 n6 [IL=] [ISO=] [Gbal2=] [Gbal3=] [Gbal4=] [Gbal5=] [PH2=] [PH3=] [PH4=] [PH5=] [PH6=] [Z0=] [Name=]

Parameters:

IL Insertion Loss in dB (nodes 1 to 2, 1 to 3, 1 to 4, 1 to 5, default is 7.0 dB). ISO Isolation in dB (between any combination of nodes 2 thru 5, default is 30 dB). Gbal2 Gain balance in dB (gain difference between paths(1->2, 1->3), default is 0 dB). Gbal3 Gain balance in dB (gain difference between paths(1->2, 1->4), default is 0 dB). Gbal4 Gain balance in dB (gain difference between paths(1->2, 1->5), default is 0 dB). Gbal5 Gain balance in dB (gain difference between paths(1->2, 1->6), default is 0 dB). PH2 Phase of node 2 with respect to input in degrees ( default is -90 degrees). PH3 Phase of node 3 with respect to input in degrees ( default is -90 degrees). PH4 Phase of node 4 with respect to input in degrees ( default is -90 degrees). PH5 Phase of node 5 with respect to input in degrees ( default is -90 degrees). PH6 Phase of node 6 with respect to input in degrees ( default is -90 degrees). Z0 Reference Impedance in ohms (default is 50 ohms).

Insertion loss, phase and isolation are assumed to be constant across frequency. The minimum insertion loss of an ideal splitter is 10*Log(1/N) dB, where N the number of paths. The gain balance error is the gain difference from the nominal path (i.e. path 1 -> 2). However, the phase specifications apply to each output with respect to the input. The resulting s-parameters for the two paths are:

S21 = { [ -IL (db) ] } with phase = PH2 deg

S31 = { [ -IL (db) ] + [Gbal2 (db) ] } with phase = PH3 deg

S41 = { [ -IL (db) ] + [Gbal3(db) ] } with phase = PH4 deg

Page 113: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

103

S51 = { [ -IL (db) ] + [Gbal4(db) ] } with phase = PH5 deg

S61 = { [ -IL (db) ] + [Gbal5(db) ] } with phase = PH6 deg

The total loss of this device consists of 3 loss contributors: 1) division loss ( 10 Log 1/N, where N is the number split paths), 2) dissipative loss ( typically due to the Q of the components and transmission line losses), and 3) isolation or coupling loss ( port-to-port isolations ). The insertion loss specified for this device must include all three of these loss parameters or the device will appear to be active. A warning will be given when this occurs. For example, in practice the user cannot expect to have an insertion loss of around 3 dB for a 2 way splitter if the port-to-port isolation is very low.

Note: Phase of each path should be negative. The total output energy must not exceed the input energy or the device will appear to be active.

Examples:

SPLIT5 1 2 3 4 5 6 IL=6.8 ISO=25 Gbal2=-0.1 Gbal3=-0.1 Gbal4=-0.1 PH2=2 PH3=2 PH4=2 PH5=3 PH6=3

Touchstone Translation: None

Default SPICE Translation: None

Page 114: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

104

RF Switch SPnT (SWITCHn) This element is used to provide switched control of signals in the RF path. The user can set the switch in any one of N + 1 switch states, off, output 1, output 2, ... output N. This model supports both absorptive and reflective switches. The default switch is an absorptive switch with has Zopen (default is 50 ohm) impedances for all open switch ports. For a reflective switch the user can specify the open port impedance. Furthermore, the user can change the switch symbol to represent the state of the switch. When the non-linear parameters are specified for this device SPECTRASYS will create intermods and harmonics based on these parameters. The linear simulator will ignore all non-linear parameters. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

SWITCHx n1 n2 n3...n(x+1) IL= ISO= State= [Z0=] [Zopen=] [Ip1dB=] [Ipsat=] [IIP3=] [IIP2=] [Name=]

Parameters:

*IL Insertion Loss in dB (between input and outputs). *ISO Isolation in dB (between input and output in off position, default is 30 dB). *State State of the switch 0-Off, 1-Output 1, 2-Output 2 ... n-Output n (default is 1). *Z0 Reference Impedance in ohms (default is 50 ohms). *Zopen Open Port Impedance in ohms (default is Z0). Ip1db Input 1dB compression in dBm (optional). Ipsat Input saturation power in dBm (optional). IIP3 Input IP3 in dBm (optional). IIP2 Input IP2 in dBm (optional). * For Linear operation, only these variables are used.

This switch is a general purpose switch which can have any number of throws between 1 and 20; the position is shown on the symbol itself (as a connecting line between terminals) and can be set/tuned via the State parameter.

The non-linear model for this switch can be thought of as an internal amplifier with 0 dB gain being connected to each output pin of the switch. The non-linear input parameters

Page 115: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

105

are translated to output parameters through either the insertion loss or isolation parameters depending on the path and state of the switch.

Insertion Loss and Isolation are assumed to be constant across frequency. For Insertion Loss and Isolation that vary with frequency a post-processed equation can be created with the FREQ variable. The isolation parameter is from port to port and from input to all unselected ports.

The attenuation of this device does not change as this device is driven into compression. Currently, the non-linear parameters are used to create intermods and harmonics. The noise figure of this device will also be independent of drive level.

Note: As the isolation is reduced to the point that it begins to approach the insertion loss the total insertion loss will no longer be the value specified by the user.

Examples:

SWITCH6 1 2 3 4 5 6 7 IL=0.5 ISO=35 State=2 Zopen=complex(5,25) Touchstone Translation:

None Default SPICE Translation:

None

WARNING: Only the linear portion of this model is used by HARBEC.

Page 116: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

106

RF Switch SPST (SPST) This element is used to provide switched control of signals in the RF path. The user can set the switch in any one of three switch states, off or on. This model supports both absorptive and reflective switches. The default switch is an absorptive switch with has 50 ohm port impedances for all open switch ports. For a reflective switch the user can specify the open port impedance. Furthermore, the user change change the switch symbol to represent the state of the switch. When the non-linear parameters are specified for this device SPECTRASYS will create intermods and harmonics based on these parameters. The linear simulator will ignore all non-linear parameters. This system symbol is available in SCHEMAX in the System toolbar.

Default Symbol: Alternate symbols that can be changed by the user:

Netlist syntax:

SPST n1 n2 IL= ISO= State= [Z0=] [Zopen=] [Name=] Parameters:

*IL Insertion Loss in dB (nodes 1 to 2 when closed). *ISO Isolation in dB (nodes 1 to 2 when open, default is 30 dB). *State State of the switch 0-Open, 1-Closed (default is 1). *Z0 Reference Impedance in ohms (default is 50 ohms). *Zopen Open Port Impedance in dB (default is Z0). Ip1db Input 1dB compression in dBm (optional). Ipsat Input saturation power in dBm (optional). IIP3 Input IP3 in dBm (optional). IIP2 Input IP2 in dBm (optional). * For Linear operation, only these variables are used.

Insertion Loss, and Isolation is assumed to be constant across frequency.

The non-linear model for this switch can be thought of as an internal amplifier with 0 dB gain being connected to each output pin of the switch. The non-linear input parameters are translated to output parameters through either the insertion loss or isolation parameters depending on the path and state of the switch.

The attenuation of this device does not change as this device is driven into compression. Currently, the non-linear parameters are used to create intermods and harmonics. The noise figure of this device will also be independent of drive level.

Page 117: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

107

Note: As the isolation is reduced to the point that it begins to approach the insertion loss the total insertion loss will no longer be the value specified by the user.

Examples:

SPST 1 2 IL=0.75 ISO=40 Touchstone Translation:

None Default SPICE Translation:

None

Page 118: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

108

VGA (Variable Gain Amplifier) This element is used to provide gain in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

VARAMP n1 n2 G= NF= [Op1db=] [Opsat=] [OIP3=] [OIP2=] [RISO=] [Z0=] [FC=] [Slope=] [GMIN=] [VSLOPE=] [Name=]

Parameters:

G Gain in dB.* NF Noise Figure in dB. Op1db Output 1db compression in dBm (default is 60 dBm). Opsat Output Saturation Power (default is 63 dBm). OIP3 Output IP3, in dBm (default is 70 dBm). OIP2 Output IP2, in dBm (default is 80 dBm). RISO Reverse Isolation in dB (default is 50 dB).* Z0 Reference impedance in ohms (default is 50 ohms).* FC Corner frequency in MHz (default is 1000 MHz). slope Rolloff Slope in dB/decade (default is 0 dB/decade). GMIN Minimum gain (default is 0). VSLOPE Gain slope in dB/volt. * For Linear operation, only these variables are used. The resulting s-parameters are: S21 = +G db, S12 = -RISO db.

Page 119: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

System Elements and Behavioral Models

109

The amplifier model includes the nonlinear effect of saturation or compression and the addition of noise. The default values for: Op1db, Opsat, OIP3, and OIP2 are a reasonably consistent set on nominal parameters. Their relative magnitudes are typically: Op1db < Opsat < OIP3 < OIP2. The absolute magnitudes are higher than typical networks. Rules of thumb for these parameters are:

IP2 = IP3 + ( 10 or 15 dBm), IP3 = Ip1db + (10 or 15 dBm), [ where leading "I" refers to Input, and "O" to Output]

Op1db = OIP3 - 10.6 dBm, Ip1db = IIP3 - 9.6 dBm.

For additional details on amplifier models see the System Manual.

Note: The corner frequency and rolloff slope must be positive. The gain and reverse isolation should be greater than zero.

Examples:

VARAMP 1 2 G=10 NF=3 Op1db=60 Opsat=63 OIP3=70 OIP2=80 RISO=30 GMIN=0 VSLOPE=0.5

Touchstone Translation: None

Default SPICE Translation: None

WARNING: For GENESYS Version 8.1, this model is not supported by HARBEC.

Page 120: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 121: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

111

Chapter 6 Filters (in System Toolbar)

Bessel Bandpass Filter (BPF_BESSEL) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BPF_BESSEL n1 n2 FLO= FHI= N= [IL=] [Apass=] [AMAX=] [TYPE=] [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of lower passband edge. FHI Frequency of higher passband edge. N Order of the filter. IL Insertion loss, in dB (default is 0 db). Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Bessel filter characteristic has a flat group delay response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

BPF_BESSEL 1 2 FLO=2 FHI=4 N=4 Apass=6 TYPE=0 Touchstone Translation: None

Default SPICE Translation: None

Page 122: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

112

Butterworth Bandpass Filter (BPF_BUTTER) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BPF_BUTTER n1 n2 FLO= FHI= N= [IL=] [Apass=] [AMAX=] [TYPE=] [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of lower passband edge. FHI Frequency of higher passband edge. N Order of the filter. IL Insertion loss, in dB (default is 0 db). Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Butterworth filter characteristic is a maximally flat response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

BPF_BUTTER 1 2 FLO=2 FHI=4 N=4 Apass=6 TYPE=0 Touchstone Translation: None

Default SPICE Translation: None

Page 123: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

113

Chebyshev Bandpass Filter (BPF_CHEBY) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BPF_CHEBY n1 n2 FLO= FHI= N= R= [IL=] [Apass=] [AMAX=] [TYPE=] [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of lower passband edge. FHI Frequency of higher passband edge. N Order of the filter. R Ripple, in dB. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is ripple). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Chebyshev filter characteristic exhibits ripple in the passband and generated by poles only. This results in a cutoff which is sharper than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The nominal value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

BPF_CHEBY 1 2 FLO=2 FHI=4 N=5 R=0.5 Apass=6 TYPE=0 Touchstone Translation: None

Default SPICE Translation: None

Page 124: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

114

Elliptic Bandpass Filter (BPF_ELLIPTIC) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BPF_ELLIPTIC n1 n2 FLO= FHI= N= R= Sbattn= [IL=] [AMAX=] [TYPE=] [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of ripple lower passband edge. FHI Frequency of ripple higher passband edge. N Order of the filter. R Ripple, in dB. Sbattn Minimum stopband attenuation, in dB. IL Insertion loss, in dB (default is 0 db). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Elliptic filter characteristic exhibits ripple in the passband and generated by poles and zeros. This results in a cutoff which is sharper than most other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency. The stopband attenuation must be greater than the ripple.

Examples:

BPF_ELLIPTIC 1 2 FLO=2 FHI=4 N=5 R=0.5 Sbattn=20 TYPE=0 Touchstone Translation: None

Default SPICE Translation: None

Page 125: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

115

Pole / Zero Bandpass Filter (BPF_POLES) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BPF_POLES n1 n2 Poles= Zeros= FLO= FHI= Gain Factor= [AMAX=] [TYPE=] [IL=] [Z1=] [Z2=] [Name=]

Parameters:

Poles List of poles, in complex form: complex(a,b); complex(c,d)...* Zeros List of zeros, in complex form: complex(e,f); complex(g,h)...* Gain Factor Transfer function gain.** FLO Frequency at lower passband edge, in MHz. FHI Frequency at higher passband edge, in MHz. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB (default = 0 dB). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1). * Roots are normalized with respect to the frequency of the passband edge in rad/sec. ** If gain is greater than unity (non-passive network) at any frequency, the gain of the entire filter is reduced until the maximum gain is unity. The filter transfer function for the low frequency prototype is of the form: G (s) = Gain Factor * { [ s-complex (e,f)] [s-complex(g,h)] } / { [s-complex(a,b)] [s-complex(c,d)] }

The generalized pole/zero filter characteristic completely defined by the user. The specified poles and zeros define the low frequency prototype for the filter. Transformations are used as necessary for highpass, bandpass, and bandstop variants. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients.

Page 126: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

116

Note: The insertion loss and maximum stopband attenuation must be greater or equal to zero. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency. The number of poles must be 1 or greater.

Examples:

BPF_BUTTER 1 2 Poles=complex(-0.7,0.7);complex(-0.7,-0.7) Zeros=complex(-1.0,0) Gain Factor=1.0 FLO=2 FHI=4 AMAX=100 TYPE=0

Touchstone Translation: None

Default SPICE Translation: None

Page 127: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

117

Bessel Bandstop Filter (BSF_BESSEL) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BSF_BESSEL n1 n2 FLO= FHI= [Apass=] [AMAX=] [TYPE=] [IL=] N= [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of lower passband edge, in MHz. FHI Frequency of higher passband edge, in MHz. N Order of the filter. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Bessel filter characteristic has a flat group delay response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

BSF_BESSEL 1 2 FLO=2 FHI=4 Apass=6 TYPE=0 N=4 Touchstone Translation: None

Default SPICE Translation: None

Page 128: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

118

Butterworth Bandstop Filter (BSF_BUTTER) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BSF_BUTTER n1 n2 FLO= FHI= [Apass=] [AMAX=] [TYPE=] [IL=] N= [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of lower passband edge, in MHz. FHI Frequency of higher passband edge, in MHz. N Order of the filter. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Butterworth filter characteristic is a maximally flat response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

BSF_BUTTER 1 2 FLO=2 FHI=4 Apass=6 TYPE=0 N=4 Touchstone Translation: None

Default SPICE Translation: None

Page 129: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

119

Chebyshev Bandstop Filter (BSF_CHEBY) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BSF_CHEBY n1 n2 FLO= FHI= [Apass=] [AMAX=] [TYPE=] [IL=] N= R= [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of lower passband edge, in MHz. FHI Frequency of higher passband edge, in MHz. N Order of the filter. R Ripple, in dB. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is ripple). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Chebyshev filter characteristic exhibits ripple in the passband and generated by poles only. This results in a cutoff which is sharper than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The nominal value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

BSF_CHEBY 1 2 FLO=2 FHI=4 Apass=6 TYPE=0 N=5 R=0.5 Touchstone Translation: None

Default SPICE Translation: None

Page 130: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

120

Elliptic Bandstop Filter (BSF_ELLIPTIC) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BSF_ELLIPTIC n1 n2 FLO= FHI= [AMAX=] [TYPE=] [IL=] N= R= Sbattn= [Z1=] [Z2=] [Name=]

Parameters:

FLO Frequency of ripple lower passband edge, in MHz. FHI Frequency of ripple higher passband edge, in MHz. N Order of the filter. R Ripple, in dB. Sbattn Stopband attenuation, in dB. IL Insertion loss, in dB. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Elliptic filter characteristic exhibits ripple in the passband and generated by poles and zeros. This results in a cutoff which is sharper than most other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency. The stopband attenuation must be greater than the ripple.

Examples:

BSF_ELLIPTIC 1 2 FLO=2 FHI=4 TYPE=0 N=5 R=0.5 Sbattn=20 Touchstone Translation: None

Default SPICE Translation: None

Page 131: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

121

Pole / Zero Bandstop Filter (BSF_POLES) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

BSF_POLES n1 n2 Poles= Zeros= FLO= FHI= Gain Factor= [AMAX=] [TYPE=] [IL=] [Z1=] [Z2=] [Name=]

Parameters:

Poles List of poles, in complex form: complex(a,b); complex(c,d)...* Zeros List of zeros, in complex form: complex(e,f); complex(g,h)...* Gain Factor Transfer function gain.** FLO Frequency at lower passband edge, in MHz. FHI Frequency at higher passband edge, in MHz. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB (default = 0 dB). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1). * Roots are normalized with respect to the frequency of the passband edge in rad/sec. ** If gain is greater than unity (non-passive network) at any frequency, the gain of the entire filter is reduced until the maximum gain is unity. The filter transfer function for the low frequency prototype is of the form: G (s) = Gain Factor * { [ s-complex (e,f)] [s-complex(g,h)] } / { [s-complex(a,b)] [s-complex(c,d)] }

The generalized pole/zero filter characteristic completely defined by the user. The specified poles and zeros define the low frequency prototype for the filter. Transformations are used as necessary for highpass, bandpass, and bandstop variants. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients.

Note: The insertion loss and maximum stopband attenuation must be greater or equal to zero. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency. The number of poles must be 1 or greater.

Page 132: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

122

Examples:

BSF_BUTTER 1 2 Poles=complex(-0.7,0.7);complex(-0.7,-0.7) Zeros=complex(-1.0,0) Gain Factor=1.0 FLO=2 FHI=4 AMAX=100 TYPE=0

Touchstone Translation: None

Default SPICE Translation: None

Page 133: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

123

Duplexer with Chebyshev Filters (DUPLEXER_C) This element is used to provide a duplexer function in the RF path, made from two Chebyshev bandpass filters. The filters are marked "A" and "B" in the symbol. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

DUPLEXER_C n1 n2 n3 FLOA= FHIA= FLOB= FHIB= NA= NB= RA= RB= ILA= ILB= Apass= [AMAX=] [ZIN=] [ZOUT=] [Name=]

Parameters:

FLOA Frequency of lower passband edge, Filter A. FHIA Frequency of higher passband edge, Filter A. FLOB Frequency of lower passband edge, Filter B. FHIB Frequency of higher passband edge, Filter B. NA Order of the filter, Filter A. NB Order of the filter, Filter B. RA Ripple, Filter A, in dB. RB Ripple, Filter B, in dB. ILA Insertion loss, Filter A, in dB (default is 0 db). ILB Insertion loss, Filter B, in dB (default is 0 db). Apass Attenuation at passband edge, in dB (default is ripple). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). ZIN Input impedance in ohms (default is 50 ohms). ZOUT Output impedances for Filters A & B, in ohms (default is 50 ohms).

The duplexer is a pair of filters with one common port. In this case the filters are of the Chebyshev type.The filter characteristic exhibits ripple in the passband and generated by poles only. Typically the value used for the attenuation at the passband edge (Apass) is set equal to the ripple value. An alternative method of forming a duplexer is to use two separate filter elements and connecting them together in the schematic.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edges must be positive and the higher frequency must be larger than the lower frequency.

Examples:

Page 134: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

124

DUPLEXER_C 1 2 3 FLOA=1600 FHIA=1800 FLOB=1900 FHIB=2100 NA=5 NB=5 RA=0.5 RB=0.5 ILA=0.5 ILB=0.5 Apass=60.5 AMAX=100

Touchstone Translation: None

Default SPICE Translation: None

Page 135: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

125

Duplexer with Elliptic Filters (DUPLEXER_E) This element is used to provide a duplexer function in the RF path, made from two Elliptic bandpass filters. The filters are marked "A" and "B" in the symbol. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

DUPLEXER_E n1 n2 n3 FLOA= FHIA= FLOB= FHIB= Sbattn= [AMAX=] ILA= ILB= NA= NB= RA= RB= [ZIN=] [ZOUT=] [Name=]

Parameters:

FLOA Frequency of lower passband edge, Filter A. FHIA Frequency of higher passband edge, Filter A. FLOB Frequency of lower passband edge, Filter B. FHIB Frequency of higher passband edge, Filter B. NA Order of the filter, Filter A. NB Order of the filter, Filter B. RA Ripple, Filter A, in dB. RB Ripple, Filter B, in dB. Sbattn Minimum stopband attenuation, in dB. ILA Insertion loss, Filter A, in dB (default is 0 db). ILB Insertion loss, Filter B, in dB (default is 0 db). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). ZIN Input impedance in ohms (default is 50 ohms). ZOUT Output impedances for Filters A & B, in ohms (default is 50 ohms).

The duplexer is a pair of filters with one common port. In this case the filters are of the Elliptic type. The Elliptic filter characteristic exhibits ripple in the passband and generated by poles and zeros. This results in a cutoff which is sharper than most other filters. An alternative method of forming a duplexer is to use two separate filter elements and connecting them together in the schematic.

Note: The insertion loss must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequencies of the passband edges must be positive and the higher frequency must be larger than the lower frequency. The stopband attenuation must be greater than the ripple.

Page 136: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

126

Examples:

DUPLEXER_E 1 2 3 FLOA=1600 FHIA=1800 FLOB=1900 FHIB=2100 NA=5 NB=5 RA=0.5 RB=0.5 ILA=0.5 ILB=0.5 Sbattn=660 AMAX=100

Touchstone Translation: None

Default SPICE Translation: None

Page 137: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

127

Bessel Highpass Filter (HPF_BESSEL) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

HPF_BESSEL n1 n2 Fpass= [Apass=] [AMAX=] [TYPE=] [IL=] N= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of passband edge, in MHz. N Order of the filter. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Bessel filter characteristic has a flat group delay response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequency of the passband edge must be positive.

Examples:

HPF_BESSEL 1 2 Fpass=2 Apass=6 TYPE=0 N=4 Touchstone Translation: None

Default SPICE Translation: None

Page 138: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

128

Butterworth Highpass Filter (HPF_BUTTER) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

HPF_BUTTER n1 n2 Fpass= [Apass=] [AMAX=] [TYPE=] [IL=] N= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of passband edge, in MHz. N Order of the filter. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Butterworth filter characteristic is a maximally flat response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequency of the passband edge must be positive.

Examples:

HPF_BUTTER 1 2 Fpass=2 Apass=6 TYPE=0 N=4 Touchstone Translation: None

Default SPICE Translation: None

Page 139: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

129

Chebyshev Highpass Filter (HPF_CHEBY) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

HPF_CHEBY n1 n2 Fpass= [Apass=] [AMAX=] [TYPE=] [IL=] N= R= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of passband edge, in MHz. N Order of the filter. R Ripple, in dB. IL Insertion loss, in dB. Apass Attenuation at passband edge, in dB (default is ripple). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Chebyshev filter characteristic exhibits ripple in the passband and generated by poles only. This results in a cutoff which is sharper than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The nominal value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edge must be positive.

Examples:

HPF_CHEBY 1 2 Fpass=2 Apass=6 TYPE=0 N=5 R=0.5 Touchstone Translation: None

Default SPICE Translation: None

Page 140: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

130

Elliptic Highpass Filter (HPF_ELLIPTIC) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

HPF_ELLIPTIC n1 n2 Fpass= [AMAX=] [TYPE=] [IL=] N= R= Sbattn= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of ripple passband edge, in MHz. N Order of the filter. R Ripple, in dB. IL Insertion loss, in dB. Sbattn Stopband attenuation, in dB. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Elliptic filter characteristic exhibits ripple in the passband and generated by poles and zeros. This results in a cutoff which is sharper than most other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edge must be positive. The stopband attenuation must be greater than the ripple.

Examples:

HPF_ELLIPTIC 1 2 Fpass=2 TYPE=0 N=5 R=0.5 Sbattn=20 Touchstone Translation: None

Default SPICE Translation: None

Page 141: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

131

Pole / Zero Highpass Filter (HPF_POLES) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

HPF_POLES n1 n2 Poles= Zeros= Fpass= Gain Factor= [AMAX=] [TYPE=] [IL=] [Z1=] [Z2=] [Name=]

Parameters:

Poles List of poles, in complex form: complex(a,b); complex(c,d)...* Zeros List of zeros, in complex form: complex(e,f); complex(g,h)...* Gain Factor Transfer function gain.** Fpass Frequency at passband edge, in MHz. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB (default = 0 dB). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1). * Roots are normalized with respect to the frequency of the passband edge in rad/sec. ** If gain is greater than unity (non-passive network) at any frequency, the gain of the entire filter is reduced until the maximum gain is unity. The filter transfer function for the low frequency prototype is of the form: G (s) = Gain Factor * { [ s-complex (e,f)] [s-complex(g,h)] } / { [s-complex(a,b)] [s-complex(c,d)] }

The generalized pole/zero filter characteristic completely defined by the user. The specified poles and zeros define the low frequency prototype for the filter. Transformations are used as necessary for highpass, bandpass, and bandstop variants. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients.

Note: The insertion loss and maximum stopband attenuation must be greater or equal to zero. The frequency of the passband edge must be positive. The number of poles must be 1 or greater.

Page 142: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

132

Examples:

HPF_BUTTER 1 2 Poles=complex(-0.7,0.7);complex(-0.7,-0.7) Zeros=complex(-1.0,0) Gain Factor=1.0 Fpass=2 AMAX=100 TYPE=0

Touchstone Translation: None

Default SPICE Translation: None

Page 143: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

133

Bessel Lowpass Filter (LPF_BESSEL) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

LPF_BESSEL n1 n2 Fpass= [Apass=] [AMAX=] [TYPE=] [IL=] N= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of passband edge, in MHz. Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB. N Order of the filter. Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Bessel filter characteristic has a flat group delay response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequency of the passband edge must be positive.

Examples:

LPF_BESSEL 1 2 Fpass=2 Apass=6 TYPE=0 N=4 Touchstone Translation: None

Default SPICE Translation: None

Page 144: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

134

Butterworth Lowpass Filter (LPF_BUTTER) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

LPF_BUTTER n1 n2 Fpass= [Apass=] [AMAX=] [TYPE=] [IL=] N= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of passband edge, in MHz. Apass Attenuation at passband edge, in dB (default is 3 dB). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB. N Order of the filter. Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Butterworth filter characteristic is a maximally flat response in the passband generated by poles only. This results in no ripple in the passband, but a cutoff which is less sharp than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 1. The frequency of the passband edge must be positive.

Examples:

LPF_BUTTER 1 2 Fpass=2 Apass=6 TYPE=0 N=4 Touchstone Translation: None

Default SPICE Translation: None

Page 145: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

135

Chebyshev Lowpass Filter (LPF_CHEBY) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

LPF_CHEBY n1 n2 Fpass= [Apass=] [AMAX=] [TYPE=] [IL=] N= R= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of passband edge, in MHz. Apass Attenuation at passband edge, in dB (default is ripple). AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB. N Order of the filter. R Ripple, in dB. Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Chebyshev filter characteristic exhibits ripple in the passband and generated by poles only. This results in a cutoff which is sharper than some other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The nominal value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss and passband attenuation must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edge must be positive.

Examples:

LPF_CHEBY 1 2 Fpass=2 Apass=6 TYPE=0 N=5 R=0.5 Touchstone Translation: None

Default SPICE Translation: None

Page 146: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

136

Elliptic Lowpass Filter (LPF_ELLIPTIC) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

LPF_ELLIPTIC n1 n2 Fpass= [AMAX=] [TYPE=] [IL=] N= R= Sbattn= [Z1=] [Z2=] [Name=]

Parameters:

Fpass Frequency of ripple passband edge, in MHz. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB. N Order of the filter. R Ripple, in dB. Sbattn Stopband attenuation, in dB. Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1).

The Elliptic filter characteristic exhibits ripple in the passband and generated by poles and zeros. This results in a cutoff which is sharper than most other filters. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients. The value for the attenuation at the passband edge (Apass) is the ripple value. For filters of even order, the gain at dc is less than unity to avoid gains greater than unity in the passband. For additional details on filter types see the FILTER Synthesis Manual.

Note: The insertion loss must be greater or equal to zero. The filter order must be an integer greater or equal to 2. The frequency of the passband edge must be positive. The stopband attenuation must be greater than the ripple.

Examples:

LPF_ELLIPTIC 1 2 Fpass=2 TYPE=0 N=5 R=0.5 Sbattn=20 Touchstone Translation: None

Default SPICE Translation: None

Page 147: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Filters (in System Toolbar)

137

Pole / Zero Lowpass Filter (LPF_POLES) This element is used to provide filtering in the RF path. This system symbol is available in SCHEMAX in the System toolbar.

Netlist syntax:

LPF_POLES n1 n2 Poles= Zeros= Fpass= Gain Factor= [AMAX=] [TYPE=] [IL=] [Z1=] [Z2=] [Name=]

Parameters:

Poles List of poles, in complex form: complex(a,b); complex(c,d)...* Zeros List of zeros, in complex form: complex(e,f); complex(g,h)...* Gain Factor Transfer function gain.** Fpass Frequency at passband edge, in MHz. AMAX Maximum attenuation in stopband, in dB (default is 100 dB). TYPE Input impedance in stopband, short = 0, open = 1 (default is open). IL Insertion loss, in dB (default = 0 dB). Z1 Input impedance in ohms (default is 50 ohms). Z2 Output impedance in ohms (default is Z1). * Roots are normalized with respect to the frequency of the passband edge in rad/sec. ** If gain is greater than unity (non-passive network) at any frequency, the gain of the entire filter is reduced until the maximum gain is unity. The filter transfer function for the low frequency prototype is of the form: G (s) = Gain Factor * { [ s-complex (e,f)] [s-complex(g,h)] } / { [s-complex(a,b)] [s-complex(c,d)] }

The generalized pole/zero filter characteristic completely defined by the user. The specified poles and zeros define the low frequency prototype for the filter. Transformations are used as necessary for highpass, bandpass, and bandstop variants. The insertion loss only affects the forward (S21) and backward (S12) transmission, but not the reflection coefficients (S11,S22). The input impedance in the stopband only affects the phase of the reflection coefficients.

Note: The insertion loss and maximum stopband attenuation must be greater or equal to zero. The frequency of the passband edge must be positive. The number of poles must be 1 or greater.

Page 148: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

138

Examples:

LPF_BUTTER 1 2 Poles=complex(-0.7,0.7);complex(-0.7,-0.7) Zeros=complex(-1.0,0) Gain Factor=1.0 Fpass=2 AMAX=100 TYPE=0

Touchstone Translation: None

Default SPICE Translation: None

Page 149: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

139

Chapter 7 Nonlinear Elements

Nonlinear bipolar transistor models (BIPNPN, BIPPNP, BIPNPN4, and BIPPNP4)

This symbol is available in SCHEMAX in the Nonlinear toolbar and is modeled using Gummel-Poon. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

BIPNPN n1 n2 n3 [AREA=] [IS=] [...] [LE=] [Name=] BIPPNP n1 n2 n3 [AREA=] [IS=] [...] [LE=] [Name=] BIPNPN4 n1 n2 n3 n4 [AREA=] [IS=] [...] [LE=] [Name=] BIPPNP4 n1 n2 n3 n4 [AREA=] [IS=] [...] [LE=] [Name=]

Parameters (all are optional):

AREA Area Scaling Factor. Default: 1 IS (A) Saturation current. Default: 1e-16 BF Ideal forward beta. Default: 100 NF Forward emission coefficient. Default: 1 VAF (V) Forward Early voltage. Default: Infinite IKF (A) Forward beta roll-off corner current. Default: Infinite ISE (A) B-E leakage saturation current. Default: 0 NE B-E leakage emission coefficient. Default: 1.5 BR Ideal reverse beta. Default: 1 NR Reverse emission coefficient. Default: 1 VAR (V) Reverse Early voltage. Default: Infinite IKR (A) Reverse beta roll-off corner current. Default: Infinite ISC (A) B-C leakage saturation current. Default: 0 NC B-C leakage emission coefficient. Default: 2 RB (ohm) Zero bias base resistance. Default: 0 IRB (A) Current for rb=(rb0+rbm)/2. Default: None, Required if RBM specified RBM (ohm) Minimum base resistance. Default: RB RE (ohm) Emitter resistance. Default: 0

Page 150: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

140

RC (ohm) Collector resistance. Default: 0 CJE (F) Zero bias B-E capacitance. Default: 0 VJE (V) B-E built in potential. Default: 0.75 MJE B-E junction grading coefficient. Default: 0.33 TF (s) Ideal forward transit time. Default: 0 XTF TF bias dependence coefficient. Default: 0 VTF (V) Voltage giving TF VBC dependence. Default: 0 ITF (A) High current TF dependence. Default: 0 PTF (°) Excess phase. Default: 0 CJC (F) Zero bias B-C capacitance. Default: 0 VJC (V) B-C built in potential. Default: 0.75 MJC B-C junction grading coefficient. Default: 0.33 XCJC Fraction of B-C cap to base. Default: 1 TR (s) Ideal reverse transit time. Default: 0 CJS (F) Zero bias C-S capacitance. Default: 0 VJS (V) Sub. junction built in potential. Default: 0.75 MJS Sub. junction grading coefficient. Default: 0 XTB Forward/reverse beta temp. exp. Default: 0 EG Energy gap for IS temp dependency. Default: 1.11 XTI Temp. exponent for IS. Default: 3 FC Forward bias junction pararmeter. Default: 0.5 TNOM (°C) Measurement temperature. Default: 27 KF Flicker Noise Coefficient. Default: 0 AF Flicker Noise Exponent. Default: 1 LC (H) Collector lead inductance. Default: 0 LB (H) Base lead inductance. Default: 0 LE (H) Emitter lead inductance. Default: 0

Touchstone Translation:

None Default SPICE Translation:

None

Page 151: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

141

Nonlinear voltage and current sources (NLCCCS, NLCCVS, NLVCCS, and NLVCVS)

Nonlinear voltage and current sources. This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist Syntax:

NLCCCS n1 n2 n3 n4 Type= C= [Name=] NLCCVS n1 n2 n3 n4 Type= C= [Name=] NLVCCS n1 n2 n3 n4 Type= C= [Name=] NLVCVS n1 n2 n3 n4 Type= C= [Name=]

Parameters:

Type 1=exp, 2=poly, 3=pade, 4=spline C Coefficients For an explanation of these parameters, see NLCAP. These elements have the output as a nonlinear function of the probe value:

NLCCCS - Iout=f(Iin) NLCCVS - Vout=f(Iin) NLVCCS - Iout=f(Vin) NLVCVS - Vout=f(Vin)

Touchstone Translation:

None Default SPICE Translation:

None

Page 152: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

142

Nonlinear Curtice2 FET transistor models (CURTICE2_N and CURTICE2_P)

This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

CURTICE2_N n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=] CURTICE2_P n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=]

Parameters (all are optional):

AREA Area Scaling Factor. Default: 1 VT0 (V) Pinch-off voltage. Default: -2 BETA Transconductance parm. Default: 0.1 LAMBDA Channel length modulation parm. Default: 0 ALPHA Saturation voltage parm. Default: 2 M Gate p-n grading coefficient. Default: 0.5 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 0.85 VBR (V) Gate junction reverse breakdown. Default: 1e200 TAU (s) Conduction current delay time. Default: 0 CGS (F) Zero bias G-S capacitance. Default: 0 CGD (F) Zero bias G-D capacitance. Default: 0 FC Forward bias junction fit parm.. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RG (ohm) Gate ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 LD (H) Drain inductance. Default: 0 LG (H) Gate inductance. Default: 0 LS (H) Source inductance. Default: 0 CDS (F) D-S capacitance. Default: 0 CRF (F) Extra Output capacitance. Default: 0 RC (ohm) Extra Output resistance. Default: 1e200 RIN (ohm) Channel Resistance. Default: 0 RF (ohm) Effective forward bias RGS. Default: 0 R1 (ohm) Breakdown resistance. Default: 1e200 R2 (ohm) Breakdown voltage/channel current relation. Default: 0 IS (A) Junction saturation current. Default: 1e-14 N Gate p-n emission coefficient. Default: 1 XTI IS temperature coefficient. Default: 3 EG Energy gap for IS temp dependency. Default: 1.11

Page 153: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

143

BETATCE BETA exp temp coefficient. Default: 0 VTOTC VTO temperature coefficient. Default: 0 TRD1 Rd temperature coefficient. Default: 0 TRG1 Rg temperature coefficient. Default: 0 TRS1 Rs temperature coefficient. Default: 0 IDSTC Idc temperature coefficient. Default: 0 FNC (Hz) Flicker noise corner. Default: 0 R Gate noise coefficient. Default: 0.5 P Drain noise coefficient. Default: 1 C Gate-Drain noise corr. coefficient. Default: 0.9

Touchstone Translation:

None Default SPICE Translation:

None

Page 154: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

144

Nonlinear Curtice3 FET transistor models (CURTICE3_N and CURTICE3_P)

This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

CURTICE3_N n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=] CURTICE3_P n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=]

Parameters (all are optional):

AREA Area Scaling Factor. Default: 1 VT0 (V) Pinch-off voltage. Default: -2 BETA Transconductance parm. Default: 0.0001 RDS0 (ohm) DC resistance (ohms). Default: 0 VOUT0 (V) Output voltage for A0-A3. Default: 0 VDSDC (V) Vds at Rds0 measurement. Default: 0 GAMMA Current Saturation. Default: 2 A0 (A) A0 coefficient. Default: 0.4 A1 (A/V) A1 coefficient. Default: 0.4 A2 (A/V/V) A2 coefficient. Default: 0.1 A3 (A/V/V/V) A3 coefficient. Default: 0 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 0.85 VBR (V) Gate junction reverse breakdown. Default: 1e200 TAU (s) Conduction current delay time. Default: 0 CGS (F) Zero bias G-S capacitance. Default: 0 CGD (F) Zero bias G-D capacitance. Default: 0 FC Forward bias junction fit parm.. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RG (ohm) Gate ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 LD (H) Drain inductance. Default: 0 LG (H) Gate inductance. Default: 0 LS (H) Source inductance. Default: 0 CDS (F) D-S capacitance. Default: 0 CRF (F) Extra Output capacitance. Default: 0 RC (ohm) Extra Output resistance. Default: 1e200 RIN (ohm) Channel Resistance. Default: 0 RF (ohm) Effective forward bias RGS. Default: 0

Page 155: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

145

R1 (ohm) Breakdown resistance. Default: 1e200 R2 (ohm) Breakdown voltage/channel current relation. Default: 0 IS (A) Junction saturation current. Default: 1e-14 N Gate p-n emission coefficient. Default: 1 XTI IS temperature coefficient. Default: 3 EG Energy gap for IS temp dependency. Default: 1.11 BETATCE BETA exp temp coefficient. Default: 0 VTOTC VTO temperature coefficient. Default: 0 TRD1 Rd temperature coefficient. Default: 0 TRG1 Rg temperature coefficient. Default: 0 TRS1 Rs temperature coefficient. Default: 0 IDSTC Idc temperature coefficient. Default: 0 FNC (Hz) Flicker noise corner. Default: 0 R Gate noise coefficient. Default: 0.5 P Drain noise coefficient. Default: 1 C Gate-Drain noise corr. coefficient. Default: 0.9

Touchstone Translation:

None Default SPICE Translation:

None

Page 156: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

146

Nonlinear diode (DIODE) This symbol is available in SCHEMAX in the Nonlinear toolbar. There is also a linear PIN diode available for your use. For linear simulations, this model is linearized at the current DC operating point.

Note: Use the keyboard shortcut key "D" to place a diode in SCHEMAX.

Netlist syntax:

DIODE n1 n2 [TNOM=] [RS=] [...] [IBV=] [Name=] Parameters (all are optional):

IS (A) Saturation current. Default: 1e-14 TNOM (°C) Measurement temperature. Default: 27 RS (ohm) Ohmic resistance. Default: 0 N Emission Coefficient. Default: 1 TT (s) Transit Time. Default: 0 CJO (F) Junction capacitance. Default: 0 VJ (V) Junction potential. Default: 1 M Grading coefficient. Default: 0.5 EG Activation energy, eV. Default: 1.11 XTI IS temperature exp. Default: 3 KF Flicker noise coefficient. Default: 0 AF Flicker noise exponent. Default: 1 FC Forward bias junction parameter. Default: 0.5 BV (V) Reverse breakdown voltage. Default: Infinite IBV (A) Current at BV. Default: 1e-3

Touchstone Translation:

None Default SPICE Translation:

None

Page 157: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

147

Nonlinear JFET transistor models (JFET_N and JFET_P) This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

JFET_N n1 n2 n3 [AREA=] [VT0=] [...] [AF=] [Name=] JFET_P n1 n2 n3 [AREA=] [VT0=] [...] [AF=] [Name=]

Parameters (all are optional):

AREA Area Scaling Factor. Default: 1 VT0 (V) Pinch-off voltage. Default: -2 BETA Transconductance parm. Default: 0.0001 LAMBDA Channel length modulation parm. Default: 0 B Doping tail extending parm. Default: 1 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 1 CGS (F) Zero bias G-S capacitance. Default: 0 CGD (F) Zero bias G-D capacitance. Default: 0 FC Forward bias junction fit parm.. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 IS (A) Junction saturation current. Default: 1e-14 KF Flicker noise coefficient. Default: 0 AF Flicker noise exponent. Default: 1

Touchstone Translation:

None Default SPICE Translation:

None

Page 158: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

148

Nonlinear MOSFET transistor models (MOS1_N and MOS1_P) This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

MOS1_N n1 n2 n3 [L=] [W=] [...] [AF=] [Name=] Parameters:

L (m) Length. Default: 1e-4 W (m) Width. Default: 1e-4 AD (m*m) Drain area. Default: 0 AS (m*m) Source area. Default: 0 PD (m) Drain perimeter. Default: 0 PS (m) Source perimeter. Default: 0 NRD Drain squares. Default: 1 NRS Source squares. Default: 1 VT0 (V) Pinch-off voltage. Default: 0 KP Transconductance parameter. Default: 2e-5 GAMMA Bulk threshold parameter. Default: 0 PHI (V) Surface potential. Default: 0.6 LAMBDA Channel length modulation parameter /V. Default: 0 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 0.8 CBS (F) B-S junction capacitance. Default: 0 CBD (F) B-D junction capacitance. Default: 0 FC Forward bias junction fit parameter. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 CGSO (F) Gate-source overlap cap. Default: 0 CGDO (F) Gate-drain overlap cap. Default: 0 CGBO (F) Gate-bulk overlap cap. Default: 0 IS (A) Junction saturation current. Default: 1e-14 RSH (ohm) Sheet resistance. Default: 0 CJ (F) Bottom junction cap per area. Default: 0 MJ Bottom grading coefficient. Default: 0.5 CJSW (F) Side junction cap per area. Default: 0 MJSW Side grading coefficient. Default: 0.5 JS (A) Bulk jct. sat. current density. Default: 0 TOX Oxide thickness, m. Default: 0 LD Lateral diffusion. Default: 0 U0 Surface mobility. Default: 600

Page 159: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

149

NSUB Substrate doping. Default: None TPG Gate type. Default: 1 NSS Surface state density. Default: 0 KF Flicker Noise Coefficient. Default: 0 AF Flicker Noise Exponent. Default: 1

Touchstone Translation:

None Default SPICE Translation:

None

Page 160: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

150

Nonlinear Capacitor (NLCAP) Nonlinear capacitance, which is a function of voltage C=f(v). This symbol is available in SCHEMAX in the Nonlinear toolbar. There is also a linear capacitor (CAP) available for your use.

Netlist Syntax:

NLCAP n1 n2 Type= C= [Name=] Parameters:

Type 1=exp, 2=poly, 3=pade, 4=spline C Coefficients

About Nonlinear Function Parameters:

The nonlinear function parameters can model complex nonlinear relationships using exponential functions, polynomials, pade functions, and a spline curve. These functions can be used to model virtually any device, but, especially using the spline model (x vs. y data curve fit), are quite easy to use. If you find you need to use these advanced models, contact Eagleware for an application note and technical assistance.

Touchstone Translation:

None Default SPICE Translation:

None

Page 161: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

151

Nonlinear Resistor (NLRES) Nonlinear resistance, where current is a function of voltage I=f(v). This symbol is available in SCHEMAX in the Nonlinear toolbar. There is also a linear resistor (RES) available for your use.

Netlist Syntax:

NLRES n1 n2 Type= C= [Name=] Parameters:

Type 1=exp, 2=poly, 3=pade, 4=spline C Coefficients If you find you need to use these advanced models, contact Eagleware for an application note and technical assistance.

Note: As this element is defined as a function of voltage, the values are similar to admittance values (1/resistance).

Touchstone Translation:

None Default SPICE Translation:

None

Page 162: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

152

Nonlinear Statz FET transistor models (STATZ_N and STATZ_P) This symbol is available in SCHEMAX in the Nonlinear toolbar.

Netlist syntax:

STATZ_N n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=] STATZ_P n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=]

Parameters (all are optional):

AREA Area Scaling Factor. Default: 1 VT0 (V) Pinch-off voltage. Default: -2 BETA Transconductance parm. Default: 0.0001 LAMBDA Channel length modulation parm. Default: 0 ALPHA Saturation voltage parm. Default: 2 B (/V) Doping tail extending parm. Default: M Gate p-n grading coefficient. Default: 0.5 DELTA1 (V) Cap saturation trans voltage. Default: DELTA2 (V) Cap threshold trans voltage. Default: VMAX (V) Cap limiting voltage. Default: RDS0 (ohm) DC resistance (ohms). Default: 0 VOUT0 (V) Output voltage for A0-A3. Default: 0 VDSDC (V) Vds at Rds0 measurement. Default: 0 GAMMA Current Saturation. Default: 2 A0 (A) A0 coefficient. Default: 0.4 A1 (A/V) A1 coefficient. Default: 0.4 A2 (A/V/V) A2 coefficient. Default: 0.1 A3 (A/V/V/V) A3 coefficient. Default: 0 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 0.85 VBR (V) Gate junction reverse breakdown. Default: 1e200 TAU (s) Conduction current delay time. Default: 0 CGS (F) Zero bias G-S capacitance. Default: 0 CGD (F) Zero bias G-D capacitance. Default: 0 FC Forward bias junction fit parm.. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RG (ohm) Gate ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 LD (H) Drain inductance. Default: 0 LG (H) Gate inductance. Default: 0 LS (H) Source inductance. Default: 0 CDS (F) D-S capacitance. Default: 0

Page 163: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

153

CRF (F) Extra Output capacitance. Default: 0 RC (ohm) Extra Output resistance. Default: 1e200 RIN (ohm) Channel Resistance. Default: 0 RF (ohm) Effective forward bias RGS. Default: 0 R1 (ohm) Breakdown resistance. Default: 1e200 R2 (ohm) Breakdown voltage/channel current relation. Default: 0 IS (A) Junction saturation current. Default: 1e-14 N Gate p-n emission coefficient. Default: 1 XTI IS temperature coefficient. Default: 3 EG Energy gap for IS temp dependency. Default: 1.11 BETATCE BETA exp temp coefficient. Default: 0 VTOTC VTO temperature coefficient. Default: 0 TRD1 Rd temperature coefficient. Default: 0 TRG1 Rg temperature coefficient. Default: 0 TRS1 Rs temperature coefficient. Default: 0 IDSTC Idc temperature coefficient. Default: 0 FNC (Hz) Flicker noise corner. Default: 0 R Gate noise coefficient. Default: 0.5 P Drain noise coefficient. Default: 1 C Gate-Drain noise corr. coefficient. Default: 0.9

Touchstone Translation:

None Default SPICE Translation:

None

Page 164: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

154

Nonlinear TOM transistor models (TOM_N and TOM_P) This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

TOM_N n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=] TOM_P n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=]

Parameters:

AREA Area Scaling Factor. Default: 1 VT0 (V) Pinch-off voltage. Default: -2 BETA (A/V/V) Transconductance parameter. Default: 0.1 ALPHA (/V) Saturation voltage parameter. Default: 2 DELTA (/A/V) Output feedback parameter. Default: 0 GAMMA Static feedback parameter. Default: 0 M Gate p-n grading coefficient. Default: 0.5 Q Power-law parameter. Default: 2 DELTA1 (V) Cap saturation trans voltage. Default: 1/Alpha DELTA2 (V) Cap threshold trans voltage. Default: 0.2 VMAX (V) Cap limiting voltage. Default: 0.2 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 0.85 VBR (V) Gate junction reverse breakdown. Default: 1e200 TAU (s) Conduction current delay time. Default: 0 CGS (F) Zero bias G-S capacitance. Default: 0 CGD (F) Zero bias G-D capacitance. Default: 0 FC Forward bias junction fit parm.. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RG (ohm) Gate ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 LD (H) Drain inductance. Default: 0 LG (H) Gate inductance. Default: 0 LS (H) Source inductance. Default: 0 CDS (F) D-S capacitance. Default: 0 CRF (F) Extra Output capacitance. Default: 0 RC (ohm) Extra Output resistance. Default: 1e200 RIN (ohm) Channel Resistance. Default: 0 RF (ohm) Effective forward bias RGS. Default: 0 R1 (ohm) Breakdown resistance. Default: 1e200 R2 (ohm) Breakdown voltage/channel current relation. Default: 0

Page 165: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

155

IS (A) Junction saturation current. Default: 1e-14 N Gate p-n emission coefficient. Default: 1 XTI IS temperature coefficient. Default: 3 EG Energy gap for IS temp dependency. Default: 1.11 BETATCE BETA exp temp coefficient. Default: 0 VTOTC VTO temperature coefficient. Default: 0 TRD1 Rd temperature coefficient. Default: 0 TRG1 Rg temperature coefficient. Default: 0 TRS1 Rs temperature coefficient. Default: 0 IDSTC Idc temperature coefficient. Default: 0 FNC (Hz) Flicker noise corner. Default: 0 R Gate noise coefficient. Default: 0.5 P Drain noise coefficient. Default: 1 C Gate-Drain noise corr. coefficient. Default: 0.9

Touchstone Translation:

None Default SPICE Translation:

None

Page 166: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

156

Nonlinear LDMOS transistor models (base or die models) This element is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

MOS1_N n1 n2 n3 [L=] [W=] [...] [AF=] [Name=] Parameters:

AREA Gate Periphery Scaling Parameter Default:1.0 FING Gate Finger Scaling Parameter Default:1.0 RG_0 Gate Resistance Evaluated at Tnom (Ohms) Default: 1 RG_1 Gate Resistance Coefficient (Ohms/°K) Default: 0.001 RS_0 Source Resistance Evaluated at Tnom (Ohms) Default: 0.1 RS_1 Source Resistance Coefficient (Ohms/°K) Default:0.0001 RD_0 Drain Resistance Evaluated at Tnom (Ohms) Default: 1.5 RD_1 Drain Resistance Coefficient (Ohms/°K) Default:0.0015 VTO_0 Forward Threshold Voltage Evaluated at Tnom (V) Default: 3.5 VTO_1 Forward Threshold Voltage Coefficient (V/°K) Default:-0.001 GAMMA IDS Equation Coefficient Default: -0.02 VST Sub-Threshold Slope Coefficient(V) Default: 0.15 BETA_0 IDS Equation Coefficient BETA Evaluated at Tnom Default:0.2 BETA_1 IDS Equation Coefficient (1/°K) Default: -0.0002 LAMBDA IDS Equation Coefficient (1/V) Default: -0/0025 VGEXP IDS Equation Coefficient Default: 1.1 ALPHA IDS Equation Coefficient (1/Ohms) Default: 1.5 VK IDS Equation Coefficient (V) Default: 7.0 DELTA IDS Equation Coefficient (V) Default:0.9 VBR_0 Breakdown Voltage Evaluated at Tnom (V) Default: 75.0 VBR_1 Breakdown Parameter Default: 0.01 K1 Breakdown Parameter Default: 1.5 K2 Breakdown Parameter Default: 1.15 M1 Breakdown Parameter (V) Default:9.5 M2 Breakdown Parameter Default: 1.2 M3 Breakdown Parameter (V) Default: 0.001 BR Reverse IDS Equation Coefficient (1/(V*Ohm)) Default: 0.5 RDIODE_0 Reverse Diode Series Resistance Evaluated at Tnom (Ohms) Default: 0.5 RDIODE_1 Reverse Diode Series Resistance Coefficient (Ohms/°K) Default: 0.001 ISR Reverse Diode Leakage Current (A) Default: 1e-13

Page 167: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

157

NR Reverse Diode Ideality Factor Default: 1.0 VTO_R Reverse Threshold Voltage (V) Default: 3.0 RTH Thermal Resistance Coefficient (°C/Watts) 10.0Default: GGS Gate to Source Conductance (1/Ohms) Default: 1e5 GGD Gate to Drain Conductance (1/Ohms) Default:1e5 TAU Transit Time Under Gate to (sec) Default:1e-12 TNOM Temperature at Which Model Parameters are Extracted (°K) Default: 298 TSNK Heat Sink Temperature (°C) Default: 25 CGST Cgs Temperature Coefficient(1/°K) Default: 0.001 CDST Cds Temperature Coefficient(1/°K) Default: 0.001 CGDT Cgd Temperature Coefficient(J/°K) Default: 0 CTH Thermal Capacitance(1/°K) Default: 0 N Forward Diode Ideality Factor Default: 1.0 ISS Forward Diode Leakage Current (A) Default:1e-13 CGS1 Cgs Equation Coefficient(F) Default: 2e-12 CGS2 Cgs Equation Coefficient(F/V) Default: 1e-12 CGS3 Cgs Equation Coefficient(V) Default: -4.0 CGS4 Cgs Equation Coefficient(F/V) Default: 1e-12 CGS5 Cgs Equation Coefficient Default: 0.25 CGS6 Cgs Equation Coefficient(1/V) Default: 3.5 CGD1 Cgd Equation Coefficient(F) Default: 4e-13 CGD2 Cgd Equation Coefficient(F) Default: 1e-13 CGD3 Cgd Equation Coefficient(1/V^2) Default: 0.1 CGD4 Cgd Equation Coefficient(V) Default:4 CDS1 Cds Equation Coefficient(F) Default: 1e-12 CDS2 Cds Equation Coefficient(F) Default: 1.5e-12 CDS3 Cds Equation Coefficient(1/V^2) Default: 0.1 KF Flicker Noise Coefficient Default: 0 AF Flicker Noise Exponent Default: 1.0 FFE Flicker Noise Frequency Exponent Default:10

Touchstone Translation:

None Default SPICE Translation:

None

Page 168: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

158

Nonlinear TOM2 transistor models (TOM2_N and TOM2_P) This symbol is available in SCHEMAX in the Nonlinear toolbar. For linear simulations, this model is linearized at the current DC operating point.

Netlist syntax:

TOM2_N n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=] TOM2_P n1 n2 n3 [AREA=] [VT0=] [...] [C=] [Name=]

Parameters:

AREA Area Scaling Factor. Default: 1 VT0 (V) Pinch-off voltage. Default: -2 BETA (A/V/V) Transconductance parameter. Default: 0.1 ALPHA (/V) Saturation voltage parameter. Default: 2 ALPHATC Alpha temp coefficient. Default: 0 CGDTCE CGD temp coefficient. Default: 0 CGSTCE CGS temp coefficient. Default: 0 DELTA (/A/V) Output feedback parameter. Default: 0 GAMMA Static feedback parameter. Default: 0 GAMMATC Gamma temp coefficient. Default: 0 ND (/V) Slope drain parameter. Default: 0 NG Slope gate parameter. Default: 1 Q Power-law parameter. Default: 2 VBITC (V) VBI Temp Coefficient. Default: 0 DELTA1 (V) Cap saturation trans voltage. Default: 1/Alpha DELTA2 (V) Cap threshold trans voltage. Default: 0.1 VMAX (V) Cap limiting voltage. Default: 0.2 TNOM (°C) Measurement temperature. Default: 27 VBI (V) Gate junction potential (pb). Default: 0.85 VBR (V) Gate junction reverse breakdown. Default: 1e200 TAU (s) Conduction current delay time. Default: 0 CGS (F) Zero bias G-S capacitance. Default: 0 CGD (F) Zero bias G-D capacitance. Default: 0 FC Forward bias junction fit parm.. Default: 0.5 RD (ohm) Drain ohmic resistance. Default: 0 RG (ohm) Gate ohmic resistance. Default: 0 RS (ohm) Source ohmic resistance. Default: 0 LD (H) Drain inductance. Default: 0 LG (H) Gate inductance. Default: 0 LS (H) Source inductance. Default: 0 CDS (F) D-S capacitance. Default: 0

Page 169: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Nonlinear Elements

159

CRF (F) Extra Output capacitance. Default: 0 RC (ohm) Extra Output resistance. Default: 1e200 RIN (ohm) Channel Resistance. Default: 0 RF (ohm) Effective forward bias RGS. Default: 0 R1 (ohm) Breakdown resistance. Default: 1e200 R2 (ohm) Breakdown voltage/channel current relation. Default: 0 IS (A) Junction saturation current. Default: 1e-14 N Gate p-n emission coefficient. Default: 1 XTI IS temperature coefficient. Default: 3 EG Energy gap for IS temp dependency. Default: 1.11 BETATCE BETA exp temp coefficient. Default: 0 VTOTC VTO temperature coefficient. Default: 0 TRD1 Rd temperature coefficient. Default: 0 TRG1 Rg temperature coefficient. Default: 0 TRS1 Rs temperature coefficient. Default: 0 IDSTC Idc temperature coefficient. Default: 0 FNC (Hz) Flicker noise corner. Default: 0 R Gate noise coefficient. Default: 0.5 P Drain noise coefficient. Default: 1 C Gate-Drain noise corr. coefficient. Default: 0.9

Touchstone Translation:

None Default SPICE Translation:

None

Page 170: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 171: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

161

Chapter 8 Sources, Ports, Grounds, and Probes

Ground (GND) True ground. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Netlist Syntax:

Use node number zero to represent a ground in a netlist. Parameters:

None Examples:

CAP 1 0 C=1.0 Touchstone Translation:

Node zero is ground in Touchstone. Default SPICE Translation:

Node zero is ground in SPICE

Page 172: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

162

AC Current Source (IAC)- NONLINEAR AC current source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources). This device is only active for HARBEC and DC simulations. Linear and EMPOWER simulations will remove all AC current sources.

Note: Multiple frequencies, amplitudes, and phases can be specified in the same source. Separate entries with semicolons. If only one amplitude or phase is given, it is used for all frequencies.

Netlist Syntax:

IAC n1 n2 [IDC=] F= IAC= [PH=] Parameters:

IDC (V) DC Current, optional F (MHz) Source Frequencies IAC (V) AC Current (Peak Amplitude) PH (°) Phase, optional

Examples:

IAC 4 6 F=100;102 IAC=.1

Page 173: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

163

DC Current Source (IDC) - NONLINEAR DC current source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.) This device is only active for HARBEC and DC simulations. Linear and EMPOWER simulations will remove all AC current sources, but will use the nonlinear devices as linearized by DC simulation.

Netlist Syntax:

IDC n1 n2 IDC= Parameters:

IDC (A) DC Current Examples:

IDC 1 2 IDC=0.200

Page 174: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

164

Standard Input (*INP) The standard input port. This symbol is available in SCHEMAX in the main SCHEMAX toolbar or by pressing the "I" key.

Note: Use keyboard shortcut key "I" to place an input port in SCHEMAX.

Netlist Syntax:

Use DEFnP and TERM statements. See the netlist section in the User's Guide for details.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename

Note: The port impedance is the impedance seen looking back into the input port.

Examples:

Netlist Example TERM(50,50) DEF2P 21 19 AMP SCHEMAX Example Setting a complex impedance using the Complex(real,imaginary) post-processing function Impedance is set to: 45 + j25 ohms Where "=complex(45,25)" is typed into the value column of the Zo parameter Zo =complex(45,25) See Creating New Linear Data Files for and example of using a file for the port impedance.

Page 175: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

165

Input AC Current (INP_IAC) - NONLINEAR An input port that provides AC current. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Note: Multiple frequencies, amplitudes, and phases can be specified in the same source. Separate entries with semicolons. If only one amplitude or phase is given, it is used for all frequencies.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename IDC (A) DC Current F (MHz) Source Frequencies IAC (A) AC Current (Peak Amplitude) PH (°) Phase

Page 176: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

166

Input DC Current (INP_IDC) - NONLINEAR An input port that provides DC current. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename VDC (A) DC Current

Page 177: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

167

Input Pulsed Current (INP_IPULSE) - NONLINEAR An input port that provides a current pulse. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename I1 (A) Initial Current I2 (A) Pulsed Current TD (ns) Delay before pulse TR (ns) Rise Time PW (ns) Pulse Width TF (ns) Fall Time F0 (MHz) Fundamental Freq (1/TotalPeriod)

Page 178: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

168

Input Custom Current Waveform (INP_IPWL) - NONLINEAR An input port that provides a custom waveform (piece-wise linear) current source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename T (ns) Time Point Array. Use time point values separated by semicolons. I (A) Current Point Array. The points in this array are matched up with the Time Point Array.

This element makes a periodic waveform. The last time point value defines the frequency. For example, T=0;1;2;3;4;5 and I=0;-1;0;5;3;0 makes a repeating 200 MHz (1/5ns) signal.

Page 179: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

169

Input AC Power (INP_PAC) - NONLINEAR An input port that provides AC power. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Note: Multiple frequencies, power levels, and phases can be specified in the same source. Separate entries with semicolons. If only one power level or phase is given, it is used for all frequencies.

Parameters:

PORT Port Number R (ohm) Port Resistance VDC (V) DC Voltage, optional F (MHz) Source Frequencies PAC (dBm) AC Power PH (°) Phase, optional

Page 180: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

170

Input AC Voltage (INP_VAC) - NONLINEAR An input port that provides AC voltage. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Note: Multiple frequencies, amplitudes, and phases can be specified in the same source. Separate entries with semicolons. If only one amplitude or phase is given, it is used for all frequencies.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename VDC (V) DC Voltage F (MHz) Source Frequencies AC (V) Voltage (Peak Amplitude) PH (°) Phase

Page 181: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

171

Input DC Voltage (INP_VDC) - NONLINEAR An input port that provides DC voltage. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename VDC (V) DC Voltage

Page 182: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

172

Input Pulsed Voltage (INP_VPULSE) - NONLINEAR An input port that provides a voltage pulse. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename V1 (V) Initial Voltage V2 (V) Pulsed Voltage TD (ns) Delay before pulse TR (ns) Rise Time PW (ns) Pulse Width TF (ns) Fall Time F0 (MHz) Fundamental Freq (1/TotalPeriod)

Page 183: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

173

Input Custom Voltage Waveform (INP_VPWL) - NONLINEAR An input port that provides a custom waveform (piece-wise linear) voltage source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Note: For linear simulations, this element behaves just like a standard input.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename T (ns) Time Point Array. Use time point values separated by semicolons. V (V) Voltage Point Array. The points in this array are matched up with the Time Point Array.

This element makes a periodic waveform. The last time point value defines the frequency. For example, T=0;1;2;3;4;5 and V=0;-1;0;5;3;0 makes a repeating 200 MHz (1/5ns) signal.

Page 184: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

174

Pulsed Current Source (IPULSE) - NONLINEAR Pulsed current source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.)

Netlist Syntax:

IPULSE n1 n2 I1= I2= TD= TR= PW= TF= F0= Parameters:

I1 (A) Initial Current I2 (A) Pulsed Current TD (ns) Delay before pulse TR (ns) Rise Time PW (ns) Pulse Width TF (ns) Fall Time F0 (MHz) Fundamental Freq. Specifies the frequency at which the pulse repeats.

Example:

IPULSE 1 2 I1=0 I2=.001 TD=0 TR=0.1 PW=0.8 TF=0.1 F0=500

Page 185: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

175

Custom Current Waveform Source (IPWL) - NONLINEAR Custom current waveform (piece-wise linear) source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.)

Netlist Syntax:

IPWL n1 n2 T= I= Parameters:

T (ns) Time Point Array. Use time point values separated by semicolons. I (A) Current Point Array. The points in this array are matched up with the Time Point Array.

This element makes a periodic waveform. The last time point value defines the frequency.

Examples:

IPWL 1 2 T=0;1;2;3;4;5 I=0;-1;0;5;3;0 ! Makes a repeating 200 MHz (1/5ns) signal.

Page 186: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

176

Current Probe (IPROBE) This symbol is used to probe current anywhere in a circuit. It is used with DC or Harmonic balance simulation. To probe current for this device, use the measurement Ides where des is the designator for the device. For example, requesting the measurement ICP1 gives the current through probe CP1. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources) or by pressing the "A" key (for Ammeter.)

Netlist Syntax:

Not available. Parameters:

IDC DC Current -- Filled in by simulator

Page 187: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

177

Standard Output (*OUT) The standard output port. This symbol is available in SCHEMAX in the main SCHEMAX toolbar or by pressing the "O" key.

Note: Use keyboard shortcut key "O" to place an output port in SCHEMAX.

Netlist Syntax:

Use DEFnP and TERM statements. See the netlist section in the User's Guide for details.

Parameters:

PORT Port Number Zo (ohm) Port Impedance/Filename

Note: The port impedance is the impedance seen looking into the output port.

Examples:

Netlist Example TERM(50,50) DEF2P 21 19 AMP SCHEMAX example Setting a complex impedance using the Complex(real,imaginary) post-processing function Impedance is set to: 45 + j25 ohms Where "=complex(45,25)" is typed into the value column of the Zo parameter Zo =complex(45,25) See Creating New Linear Data Files for and example of using a file for the port impedance.

Page 188: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

178

Signal Ground Source (*SGND) Signal ground, a DC signal source. For pure linear, small-signal analysis, it is equivalent to a ground. This symbol is available in SCHEMAX in the main SCHEMAX toolbar.

Netlist Syntax:

Use either VDC or GND, depending on your application. Parameters:

V (V) DC Voltage

Page 189: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

179

Test Point (TEST_POINT) This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources) or by pressing the "V" key (for Voltage Test Point.)

This symbol names a node. To refer to measurements at this node, the test point's designator must be used. For example, if a test point is named TP1, then VTP1 gives the voltage at the test point in a HARBEC or DC simulation.

Test points are also used to get measurements at linear nodes. GENESYS only reports voltage data at nodes touching a port, probe, nonlinear element or source.

Note: When a test point is placed, it "hides" the node number, and measurements can no longer be made using the node number.

Netlist Syntax:

Not available. Parameters:

VDC DC Voltage -- Filled in by simulator

Page 190: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

180

AC Power Source (PAC) - NONLINEAR AC power source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.). For Linear simulations, only the series resistance is used.

Note: Multiple frequencies, amplitudes, and phases can be specified in the same source. Separate entries with semicolons. If only one amplitude or phase is given, it is used for all frequencies.

Netlist Syntax:

PAC 1 2 [VDC=] R= F= PAC= PH= Parameters:

VDC (V) DC Voltage (optional) R (ohms) Series Resistance F (MHz) Source Frequencies PAC (dBm) AC Power PH (degrees) Phase (optional)

Examples:

PAC 1 2 R=50 F=100 PAC=-20 Touchstone Translation:

None Default SPICE Translation:

None

Page 191: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

181

AC Voltage Source (VAC) - NONLINEAR AC voltage source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources). This device is only active for HARBEC and DC simulations. Linear and EMPOWER simulations will short all AC voltage sources.

Note: Multiple frequencies, amplitudes, and phases can be specified in the same source. Separate entries with semicolons. If only one amplitude or phase is given, it is used for all frequencies.

Netlist Syntax:

VAC n1 n2 [VDC=] F= VAC= [PH=] Parameters:

VDC (V) DC Voltage, optional F (MHz) Source Frequencies VAC (V) AC Voltage (Peak Amplitude) PH (°) Phase, optional

Examples:

VAC 3 0 F=100 VAC=.1

Page 192: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

182

DC Voltage Source (VDC) DC voltage source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.)

Netlist Syntax:

VDC n1 n2 [VDC=] Parameters:

VDC (V) DC Voltage Examples:

VDC 12 0 VDC=15

Page 193: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Sources, Ports, Grounds, and Probes

183

Pulsed Voltage Source (VPULSE) Pulsed voltage source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.)

Netlist Syntax:

VPULSE n1 n2 V1= V2= TD= TR= PW= TF= F0= Parameters:

V1 (V) Initial Voltage V2 (V) Pulsed Voltage TD (ns) Delay before pulse TR (ns) Rise Time PW (ns) Pulse Width TF (ns) Fall Time F0 (MHz) Fundamental Freq. Specifies the frequency at which the pulse repeats.

Example:

VPULSE 1 2 V1=0 V2=5 TD=0 TR=0.3 PW=0.6 TF=0.1 F0=500

Page 194: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

184

Custom Voltage Waveform Source (VPWL) Custom voltage waveform (piece-wise linear) source. This symbol is available in SCHEMAX in the main SCHEMAX toolbar (under Power Sources.)

Netlist Syntax:

VPWL n1 n2 T= V= Parameters:

T (ns) Time Point Array. Use time point values separated by semicolons. V (V) Voltage Point Array. The points in this array are matched up with the Time Point Array.

This element makes a periodic waveform. The last time point value defines the frequency.

Examples:

VPWL 1 2 T=0;1;2;3;4;5 V=0;-1;0;5;3;0 ! Makes a repeating 200 MHz (1/5ns) signal.

Page 195: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

185

Chapter 9 Ideal Transmission Lines, Coupled Lines, and Wires

Coupled lines (CPL) Coupled line four-port based on an electrical description. This symbol is available in SCHEMAX in the T-Line Toolbar.

Netlist Syntax:

CPL n1 n2 n3 n4 ZOE= ZOO= Length= KOE= KOO= [AE= AO= Frequency=] [Name=]

Parameters:

ZOE Even mode impedance. ZOO Odd mode impedance. Length Physical line length. KOE Even mode effective dielectric constant. KOO Odd mode effective dielectric constant Even Mode Loss, AE Even mode loss in dB/meter. This parameter is optional. Odd Mode Loss, AO Odd mode loss in dB/meter. This parameter is optional. Freq. For Loss Frequency at which specified loss applies. This parameter is optional.

Example:

CPL 1 0 2 0 ZOE=55 ZOO=45 L=50 KOE=1.73 KOO=1.60 The letters OE and OO represent the even and odd modes respectively. The loss model increases as the square root of the sweep frequency. If the losses are not specified the lines are lossless and the frequency should not be specified.

Touchstone Translation:

CLINP n1 n2 n3 n4 ZE= ZO= L= KE= AE= AO= Default SPICE Translation:

None

Page 196: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

186

Impedance Inverter (INVERTER) This symbol is available in SCHEMAX in the LUMPED Toolbar.

Netlist Syntax :

INVERTER 1 2 0 K= Parameters:

K Impedance "gain", where Zin = K2 / Zload [default=50]

The Impedance Inverter or "K-inverter" is useful in the filter synthesis process to make changes in topology. The result is that the input impedance is inversely proportional to the load impedance and is scaled by the gain factor "K". Similarly, an admittance inverter or "J-inverter" is the same as an impedance inverter, when K = 1/J, where J is the admittance factor.

Example:

INVERTER 1 2 0 K=5

Page 197: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Ideal Transmission Lines, Coupled Lines, and Wires

187

Distributed RC transmission line (RCLIN) This symbol is available in SCHEMAX in the TLINE toolbar.

Netlist syntax:

RCLIN n1 n2 R= C= L= [Name=] Parameters:

R Distributed resistance per unit length (e.g. ohms/mm) C Distributed capacitance per unit length (e.g. pF/mm) L Length (e.g. mm)

Examples:

RCLIN 1 2 R=0.8 C=0.8 L=12.7 Touchstone Translation:

RCLIN n1 n2 R= C= L= Default SPICE Translation:

None

Page 198: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

188

Transmission line (TLE) Transmission line described with electrical parameters and optional loss. This symbol is available in SCHEMAX in the T-LINE Toolbar.

Netlist Syntax:

TLE n1 n2 Zo= Length= Frequency= [Attenuation=] [Name=] Parameters:

Zo Characteristic impedance in ohms. Electrical Length Electrical length at specified frequency in degrees. Frequency for length and loss Frequency for length and loss in MHz. Actual Loss at Freq Actual loss in dB at the specified frequency. This parameter is optional.

Example:

TLE 1 2 Z=50 L=90 F=1200 The model for loss is proportional to the square root of the frequency. For example, if.24 dB of loss is specified at 1200 MHz, the loss will be.241/2 dB (.34 dB) at 2400 MHz. The default value of loss is 0 dB. Zo is the characteristic impedance, in ohms, of the transmission line.

Touchstone Translation:

TLIN n1 n2 Z= E= F= Default SPICE Translation:

T_TLE1 n1 0 n2 0 Z0= F= NL=

Page 199: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Ideal Transmission Lines, Coupled Lines, and Wires

189

Four Terminal Transmission Line (TLE4) Four terminal transmission line described with electrical parameters and optional loss. This symbol is available in SCHEMAX in the T-LINE Toolbar.

Netlist Syntax:

TLE4 n1 n2 n3 n4 Zo= Length= Frequency= [Attenuation=] [Name=] Parameters:

Zo Characteristic impedance in ohms. Electrical Length Electrical length at specified frequency in degrees. Frequency for length and loss Frequency for length and loss in MHz. Actual Loss at Freq Actual loss in dB at the specified frequency. This parameter is optional.

Example:

TLE4 1 2 3 0 Z=50 L=90 F=1200 The model for loss is proportional to the square root of the frequency. For example, if.24 dB of loss is specified at 1200 MHz, the loss will be.241/2 dB (.34 dB) at 2400 MHz. The default value of loss is 0 dB.

Touchstone Translation:

TLIN4 n1 n2 n3 n4 Z= E= F= Default SPICE Translation:

T_TLE1 n1 n2 n3 n4 Z0= F= NL=

Page 200: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

190

Transmission Line (TLP) Transmission line described with physical parameters and optional loss. This symbol is available in SCHEMAX in the T-LINE Toolbar.

Netlist Syntax:

TLP n1 n2 Zo= Length= Keff= [Attenuation= Frequency=] [Name=] Parameters:

Zo Characteristic impedance in ohms. Physical Length Physical length in millimeters. Keff Effective dielectric constant. Actual loss at Freq Loss in dB/meter at the specified frequency. This parameter is optional. Frequency for Loss Frequency for loss in MHz. This parameter is optional.

Example:

TLP 1 2 Z=75 L=200 K=2.2 If the optional loss is specified, the frequency in megahertz for that loss must be specified. The model for loss is proportional to the square root of the frequency. The default value of loss is 0 dB.

Touchstone Translation:

TLINP n1 n2 Z= L= K= A= F= Default SPICE Translation:

T_TLP1 n1 0 n2 0 Z0= TD=

Page 201: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Ideal Transmission Lines, Coupled Lines, and Wires

191

Four Terminal Transmission Line (TLP4) Four-terminal transmission line described with physical parameters and optional loss. This symbol is available in SCHEMAX in the T-LINE Toolbar.

Netlist Syntax:

TLP4 n1 n2 n3 n4 Zo= Length= Keff= [Attenuation= Frequency=] [Name=] Parameters:

Zo Characteristic impedance in ohms. Physical Length Physical length in millimeters. Keff Effective dielectric constant. Actual loss at Freq Loss in dB/meter at the specified frequency. This parameter is optional. Frequency for Loss Frequency for loss in MHz. This parameter is optional.

Example:

TLP4 1 2 3 0 Z=75 L=200 K=2.2 If the optional loss is specified, the frequency in megahertz for that loss must be specified. The model for loss is proportional to the square root of the frequency. The default value of loss is 0 dB.

Touchstone Translation:

TLINP4 n1 n2 n3 n4 Z= L= K= A= F= Default SPICE Translation:

T_TLP1 n1 n2 n3 n4 Z0= TD=

Page 202: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

192

Distortionless TEM Transmission Line (TLRLDC) Distortionless TEM transmission line. This symbol is available in SCHEMAX in the TLINE toolbar.

Netlist syntax:

TLRLDC n1 n2 R= L= C= LEN= [Name=] Parameters:

R Resistance per unit length (e.g. ohms/mm) L Inductance per unit length (e.g. nH/mm) C Capacitance per unit length (e.g. pF/mm) LEN Length (e.g. mm)

Examples:

TLRLDC 1 2 R=0.05 L=0.005 C=0.002 LEN=50

Note: Shunt conductance per unit length (p.u.l) is calculated automatically so that R/L=G/C.

Touchstone Translation:

None Default SPICE Translation:

None

Page 203: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Ideal Transmission Lines, Coupled Lines, and Wires

193

Uniform TEM Transmission Line (TLRLGC) This symbol is available in SCHEMAX in the TLINE toolbar.

Netlist syntax:

TLRLGC n1 n2 R= L= G= C= LEN= [Name=] Parameters:

R Series resistance per unit length (e.g. ohms/mm) L Series inductance per unit length (e.g. nH/mm) G Shunt conductance per unit length (e.g. Siemen/mm) C Shunt capacitance per unit length (e.g. pF/mm) LEN Length (e.g. mm)

Examples:

TLRLGC 1 2 R=0.05 L=0.005 G=1.88E-8 C=0.002 LEN=50 Touchstone Translation:

None Default SPICE Translation:

None

Page 204: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

194

Exponential TEM Transmission Line (TLX) This symbol is available in SCHEMAX in the TLINE toolbar.

Netlist syntax:

TLX n1 n2 R1= R2= L= K= RPUL GPUL [Name=] Parameters:

R1 Resistance, (L/C)1/2 at n1 end (ohms) R2 Resistance, (L/C)1/2 at n2 end (ohms) L Length (e.g. mm) K Effective dielectric constant (dimensionless) RPUL Series resistance per unit length (e.g. ohms/mm) GPUL Shunt conductance per unit length (e.g. Siemen/mm)

Examples:

TLX 1 2 R1=50 R2=200 L=12.7 K=1 RPUL=0 GPUL=0 Note: The exponential taper is calculated automatically using the values of R1 and R2.

Touchstone Translation:

None Default SPICE Translation:

None

Page 205: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Ideal Transmission Lines, Coupled Lines, and Wires

195

Rectangular Wire (RIBBON) Conducting wire of rectangular cross section. This symbol is available in SCHEMAX in the TLINE toolbar.

Netlist syntax:

RIBBON n1 n2 W= T= L= RH=[Name=] Parameters:

W Width of wire (mm). T Thickness of wire (mm). L Length of wire (mm). RH Resistivity of wire relative to copper.

Examples:

RIBBON 1 2 W=0.0394 T=0.00394 L=0.394 RH=1 Note: Resistance is d-c resistance or skin effect resistance depending upon which is larger.

Touchstone Translation:

RIBBON n1 n2 W= L= RHO=RH Default SPICE Translation:

None

Page 206: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

196

Length of Conducting Wire (WIRE) Physical length of conducting wire. This symbol is available in SCHEMAX in the TLINE toolbar.

Netlist syntax:

WIRE n1 n2 D= L= RH=[Name=] Parameters:

D Diameter of wire (mm) L Length of wire (mm) RH Resistivity relative to copper

Examples:

WIRE 1 2 D=0.0254 L=0.254 RH=1 Touchstone Translation:

WIRE n1 n2 D= L= RHO=RH Default SPICE Translation:

None

Page 207: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

197

Chapter 10 Coax

Coaxial Cable (CABLE) This symbol is available in SCHEMAX in the Coax Toolbar

Netlist Syntax:

CABLE n1 n2 L= [Zo=] [Er=] [Kdb1=] [Kdb2=] [Name=] Parameters:

L Length of cable (physical units). Zo Characteristic Impedance of line in ohms. Er Dielectric constant of insulator. Kdb1 Attenuation per meters, per square root of frequency (in MHz). Kdb2 Attenuation per meters, per MHz.

Example:

CABLE 1 0 L=100 Zo=50 Er=2.26 Kdb1=0.00426 Kdb2=0.1348e-3 Range:

Single part models are available for six widely used cable types: RG-6, 8, 9, 58, 59, 214. These have a characteristic impedance of 50 ohms, except for RG-6 and RG-59 which are 75 ohms. In the Examples is a workspace, Coaxial_Cable.wsp, which presents a method for computing the required parameters from manufacturers data. It assumes that the characteristic impedance is readily available. The dielectric constant of the material between the inner and outer conductors is commonly given. This can also be computed if the "velocity factor (Vp)" or "velocity of propagation" is given. The dielectric constant (Er) equals:

Er = ( 1 / Vp2 ).

The attenuation parameters are may be available. If not, they can be calculated from the curves of attenuation per 100 meters as a function of frequency. The example workspace facilitates the curve fit.

Touchstone Translation: None

Default SPICE Translation: None

Page 208: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

198

Coaxial Cable Types (RG6, RG8, RG58, RG59, RG214) This symbol is available in SCHEMAX in the Coax Toolbar.

Netlist Syntax:

RGx n1 n2 L= [Zo=] [Er=] [Kdb1=] [Kdb2=] [Name=] where x = 6, 8, 9, 58, 59, or 214

Parameters:

L Length of cable (physical units). Zo Characteristic Impedance of line in ohms. Er Dielectric constant of insulator. Kdb1 Attenuation per meters, per square root of frequency (in MHz). Kdb2 Attenuation per meters, per MHz.

Example:

RG214 1 0 L=100 Zo=50 Er=2.26 Kdb1=0.00426 Kdb2=0.1348e-3 Range:

Single part models are available for six widely used cable types: RG-6, 8, 9, 58, 59, 214. These have a characteristic impedance of 50 ohms, except for RG-6 and RG-59 which are 75 ohms. In the Examples is a workspace, Coaxial_Cable.wsp, which presents a method for computing the required parameters from manufacturers data. It assumes that the characteristic impedance is readily available. The dielectric constant of the material between the inner and outer conductors is commonly given. This can also be computed if the "velocity factor (Vp)" or "velocity of propagation" is given. The dielectric constant (Er) equals:

Er = ( 1 / Vp2 ).

The attenuation parameters are may be available. If not, they can be calculated from the curves of attenuation per 100 meters as a function of frequency. The example workspace facilitates the curve fit.

For the six parts included, the default parameters are listed in the following table.

RG6 RG8 RG9 RG58 RG59 RG214

Zo 75.0 52.0 51.0 53.5 75.0 50.0

Er 1.78 2.26 2.26 2.26 1.45 2.26

Kdb1 .006734 .005264 .006229 .0138 .0085535 .00426

Kdb2 0 .69e-4 .70e-4 .1254e-3 0 0.1348e-3

Page 209: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Coax

199

Touchstone Translation: None

Default SPICE Translation: None

Page 210: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

200

Coaxial open end (CEN) This symbol is available in SCHEMAX in the COAX Toolbar.

Netlist Syntax:

CEN n1 n2 A= B= Spacing= [Name=] Note: This model requires a substrate definition.

Parameters:

Inner Radius A Center conductor radius. ( Optional, uses adjacent line values. ) Outer Radius B Outer conductor radius. ( Optional, uses adjacent line values. ) Spacing to closed end Spacing from the end of the inner conductor to end wall.

Example:

CEN 1 0 A=100 B=1000 S=50 Range:

wavelength > (B-A) > spacing In a netlist, n2 is normally zero (ground). Substrate characteristics and units must be established in a previous SUB call. The coaxial end is modeled as an effective shunt capacitor. The modeled capacitance is within 5% for the specified range. The error increases with increasing spacing, however, the capacitance is also decreasing and is less significant. The model is intended for use with small spacings where the capacitance is significant.

Touchstone Translation:

None Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 211: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Coax

201

Coaxial center conductor gap (CGA) This symbol is available in SCHEMAX in the COAX Toolbar.

Netlist Syntax:

CGA n1 n2 A= B= Gap= [Name=] Note: This model requires a substrate definition.

Parameters:

Inner Radius A Center conductor radius. ( Optional, uses adjacent line values. ) Outer Radius B Outer conductor radius. ( Optional, uses adjacent line values. ) Gap Gap spacing.

Example:

CGA 1 2 A=100 B=1000 G=20 Range:

5 > A/B >1.111 0.30 >Gap/B >0.05

The coaxial gap is modeled as a shunt capacitor, series capacitor and shunt capacitor in cascade. The modeled capacitances are within approximately 5% over the parameter range, but degrade rapidly outside the range.

Touchstone Translation:

None Default SPICE Translation:

None

Page 212: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

202

Coaxial transmission line (CLI) This symbol is available in SCHEMAX in the COAX Toolbar.

Netlist Syntax:

CLI n1 n2 A= B= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Inner Radius A Center conductor radius. Outer Radius B Outer conductor radius. Length Physical line length.

Example:

CLI 1 0 A=100 B=1000 L=3500 Range:

operation frequency is below TE01 cutoff The substrate characteristics and dimensional units must be established in a previous call to SUB. The model is identical to the coaxial line model in T/LINE from Eagleware.

Touchstone Translation:

COAX n1 n2 0 0 DI= DO= L= ER= TAND= RHO= Default SPICE Translation:

None

Page 213: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Coax

203

Four terminal coaxial line (CLI4) This symbol is available in SCHEMAX in the COAX Toolbar.

Netlist Syntax:

CLI4 n1 n2 n3 n4 A= B= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Inner Radius A Center conductor radius. Outer Radius B Outer conductor radius. Length Physical line length.

Range:

Operation frequency must be below TE01 cutoff Touchstone Translation:

COAX n1 n2 n3 n4 DI= DO= L= ER= TAND= RHO= Default SPICE Translation:

None

Page 214: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

204

Coplanar Gap (CPWCGAP) This symbol is available in SCHEMAX in the Coplanar Toolbar.

Netlist Syntax:

CPWCGAP n1 n2 Width= Gap= Center Gap= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. Gap Width of gap between line and adjacent ground plane. Center Gap Width of gap in line.

Example:

CPWCGAP 1 2 W=80 G=8 S=5 Range:

2 < Er < 15 0.1 < Width / Height < 2 0.1 < Gap / Width < 1.0

The substrate characteristics must be established in a previous SUB. The accuracy is generally within 7% for the indicated parameter ranges. The gap is modeled as a shunt C, series C, shunt C pi network.

Touchstone Translation:

CPWCGAP n1 n2 W= G= S= Default SPICE Translation:

None

Page 215: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Coax

205

Square Coax Line with Round Inner Conductor (CSQLI) This symbol is available in SCHEMAX in the Coax Toolbar.

Netlist Syntax:

CSQLI n1 n2 Diameter= Outer Side= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Diameter Diameter of inner conductor. Outer Side Side of outer conductor. Length Length of line.

Example:

CSQLI 1 2 A=20 B=100 L=500 Range:

0.01 < Diameter / Height < 1.0 The substrate characteristics and dimensional units must be established in a previous call to SUB. This model is identical to the T/LINE model.

Touchstone Translation:

None Default SPICE Translation:

None

Page 216: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

206

Square Coax Line with Square Inner Conductor (CSQLX) This symbol is available in SCHEMAX in the Coax Toolbar.

Netlist Syntax:

CSQLX n1 n2 Inner Side= Outer Side= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Inner Side Side of inner conductor. Outer Side Side of outer conductor. Length Length of line.

Example:

CSQLX 1 2 S=20 B=100 L=500 Range:

0.01 < Side/Height < 1.0 The substrate characteristics and dimensional units must be established in a previous call to SUB. This model is identical to the T/LINE model.

Touchstone Translation:

None Default SPICE Translation:

None

Page 217: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Coax

207

Coaxial conductor step (CST) Coaxial step in the inner or outer conductor of coax. This symbol is available in SCHEMAX in the COAX Toolbar.

Netlist Syntax:

CST n1 n2 Option={IN|OU} ANarrow= BNarrow= AWide= BWide= [Name=] Note: This model requires a substrate definition.

Parameters:

A Narrow Input Center conductor radius (at n1) ( Optional, uses adjacent line values. ) B Narrow Input Inner radius of outer conductor (at n1) ( Optional, uses adjacent line values. ) A Wide Output Center conductor radius (at n2) ( Optional, uses adjacent line values. ) B Wide Output Inner radius of outer conductor (at n2) ( Optional, uses adjacent line values. ) IN: Step Inner Conductor Choose this option to step the inner conductor. OU: Step Outer Conductor Choose this option to step the outer conductor.

NOTE: GENESYS will work properly if the “narrow” values are greater than the “wide” values. The terms wide and narrow are for identification of nodes on the schematic element only.

Example:

CST 1 2 O=IN AN=20 BN=100 AW=50 BW=100 Range:

For an inner conductor step:

For an outer conductor step:

Page 218: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

208

Option IN indicates a step in the inner conductor and OU indicates a step in the outer conductor. The dielectric and conductor characteristics and dimensional units must be established in a previous call to SUB. A step in both conductors is modeled by cascading two steps.

The coaxial step is modeled as an effective shunt capacitor. The modeled effective capacitance is within approximately:

{0.2 pF/m * BNarrow (meters)} for inner conductor steps

{0.4 pF/m * BNarrow (meters)} for outer conductor steps

For example, for an inner conductor step with BNarrow of 1.0 cm (i.e. 0.01 meter), the error is 0.002 pF.

Touchstone Translation:

None Default SPICE Translation:

None

Page 219: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

209

Chapter 11 Microstrip (Standard, Inverted, and Suspended)

Microstrip Bend (MBN) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MBN n1 n2 Option={CH|SQ} Width= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. CH: Chamfered Corner Choose this option for a chamfered (mitered) corner. SQ: Square Corner Choose this option for a squared corner.

Example:

MBN 2 3 O=CH W=80 Range:

15000/H(mm) > Freq(MHz) 6 >W/H >0.2 13 >Er >2

90o square and chamfered corners are available. The substrate characteristics and dimensional units must be established in a previous SUB. The bend model is a series L, shunt C, series L tee. The capacitance error is small. The inductance error is greater for W/H > 1. Predicted resonator frequencies are generally within 0.3%.

Touchstone Translation:

MBEND2 n1 n2 W= (Chamfered) MCORN n1 n2 W= (Square)

Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 220: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

210

Multiple Coupled Microstrip Lines (MCN) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MCNx n1 n2..n(x) Width= S1= S2=..S(0.5x-1)= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width of All Strips Width of strips (all are equal widths) Sn Edge-to-edge separations (see figure below) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Length Physical length of lines.

Example:

MCN8 1 2 3 4 5 6 7 8 W=100 S1=15 S2=25 S3=15 L=800 Range:

See MCP The number of nodes is x. The spacing between the far left and the next line is s1. The spacing between the far right and the preceding line is s(0.5x-1).

This model is convenient for analyzing combline, interdigital and other multiple coupled line structures. Multiple coupled microstrip is based on an exact wire-line equivalent of cascaded coupled pairs of microstrip line. Therefore, full-wave based analytical models is utilized.

Touchstone Translation:

(Translation is only available for MCN6) MACLIN3 n1 n2 n3 n4 n5 n6 W1= W2= W3= S1= S2= L=

Default SPICE Translation:

None

Page 221: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

211

Two Coupled Microstrip Lines (MCP) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MCP n1 n2 n3 n4 Width= Spacing= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width of Both Strips Width of each line. Edge-to-Edge Spacing Edge-to-edge separation of the strips. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Length Physical length of lines.

Example:

MCP 1 0 2 0 W=80 S=15 L=1000 Range:

30000/Height(mm) > Freq(MHz) 18 > Er > 1 10 > Width/Height > 0.1 10 > Spacing/Height > 0.1 metal thickness < 0.1*Height and < 0.2*Spacing

The substrate characteristics and the units of dimensions are established in a previous call to SUB. The accuracy is generally within 1% for the indicated parameter ranges, provided the cover is sufficiently removed. Adequate cover spacings are determined using T/LINE from Eagleware.

Touchstone Translation:

MCLIN n1 n2 n3 n4 W= S= L= Default SPICE Translation:

None

Page 222: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

212

Microstrip Cross (MCR) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MCR n1 n2 n3 n4 WThru= WCross= [Height=] [Name= ] Note: This model requires a substrate definition.

Parameters:

Thru Width Width of thru lines (at nodes 1 and 2). ( Optional, uses adjacent line width. ) Cross Width Width of cross line (at nodes 3 and 4). ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

MCR 1 2 3 4 WT=100 WC=400 Range:

15000/Height(mm) > Freq(MHz) 18 > Er > 1 10 > WThru / Height > 0.1 WCross < 10 * WThru

The discontinuity model used for MCR was developed by Eagleware and verified with field simulation. The model includes phase shift effects as well as junction discontinuity effects. The accuracy and limits are similar to the MTE model.

Page 223: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

213

Touchstone Translation:

MCROS n1 n3 n2 n4 W1= W2= W3=W1 W4=W2 Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 224: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

214

Microstrip Curved Bend (MCURVE) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist syntax:

MCURVE n1 n2 W= ANG= RAD= [Name=] Note: This model requires a substrate definition.

Parameters:

(See figure below for an illustration of parameters). W Width of microstrip line. ANG Angle of bend in degrees. RAD Radius of bend measured to center of line.

Examples:

MCURVE 1 2 W=25 ANG=90 RAD=50 Touchstone Translation:

MCURVE n1 n2 W= ANG= RAD= Default SPICE Translation:

None

Page 225: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

215

Microstrip Open End (MEN) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MEN n1 n2 Width= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

MEN 3 0 W=80 Range:

15000/Height(mm) > Frequency(MHz) 50 > Er > 2 Width / Height > 0.2

Node n2 is normally grounded (node 0). The substrate characteristics and dimensional units must be established in a previous. The accuracy is generally within 4% for the indicated parameter ranges, provided that the cover is sufficiently removed.

Touchstone Translation:

MLEF n1 W= L=0 Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 226: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

216

Microstrip Gap (MGA) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MGA n1 n2 Width= Gap= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Strip Width Width of strip. ( Optional, uses adjacent line width. ) Gap Spacing between the ends of the strips. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

MGA 1 2 W=80 G=8 Range:

15000/Height(mm) > Freq(MHz) 15 > Er > 2.0 2 > Width / Height > 0.5 1 > Gap / Width > 0.1

The substrate characteristics must be established in a previous SUB. The accuracy is generally within 7% for the indicated parameter ranges. The end is modeled as a shunt C, series C, shunt C pi network.

Touchstone Translation:

MGAP n1 n2 W= S= Default SPICE Translation:

None

Page 227: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

217

Microstrip Interdigital Capacitor (MIDCAP) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist syntax:

MIDCAP n1 n2 W= G= GE= L= N= [Name=] Note: This model requires a substrate definition.

Parameters:

(See the figure below for parameter illustrations.) W Width of each conductor (finger) G Space between conductors (fingers) GE Space at end of conductor (finger) L Length of fingers N Number of fingers

Examples:

MIDCAP 1 2 W=0.005 G=0.005 GE=0.001 L=0.1 N=5 Touchstone Translation:

MIDCAP1 n1 n2 W= G= GE= L= NP=N/2 Default SPICE Translation:

None

Page 228: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

218

Inverted Microstrip (MINV) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MINV n1 n2 Width= [Height=] Distance= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Distance Distance between substrate and ground plane. Length Length of line.

Example:

MINV 1 2 W=80 B=50 L=200 Range:

0.5 < Width/Distance < 10 0.06 < Height/Distance < 1.5

The substrate characteristics and dimensional units must be established in a previous call to SUB. This model is identical to the T/LINE model.

Touchstone Translation:

SSLIN n1 n2 W= L= Default SPICE Translation:

None

Page 229: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

219

Lange Coupler (MLANG) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MLANG n1 n2 n3 n4 Width= Spacing= Length= [W1=] [W2=] [Name=] (same for MLANG6 and MLANG8 )

Note: This model requires a substrate definition.

Parameters:

Width Width of lines (except bridge widths) Spacing Spacing between adjacent lines. Length Physical length of lines. Width at Ports (W1) Width of line at port (for layout only). Width of Bridges (W2) Width of bridge lines (for layout only).

Example:

MLANG 1 2 3 4 W=2 S=1 L=100 W1=25 W2=2 Range:

This model is based on multiple-coupled line models (MCP, MCN). The same range restrictions apply. Multiple coupled microstrip is based on a wire-line equivalent of cascaded coupled pairs of microstrip line. Accuracy is considerably better than other available Lange coupler models.

Note: To see the exact geometry of the coupler, create a layout with the Lange coupler. When creating a layout, be sure to set the default via hole layers to: Top Layer: Bond, Bottom Layer: TOP METAL. This connects the bridges to the metal layers of the lines.

Touchstone Translation:

MLANG n1 n2 n3 n4 W= S= L= W1= (same parameters for MLANG6, MLANG8)

Default SPICE Translation:

None

Page 230: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

220

Microstrip Line (MLI) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MLI n1 n2 Width= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Length Length of line.

Example:

MLI 1 2 W=80 L=200 Range:

30000/Height(mm) > Frequency(MHz) 128 > Er > 1 100 > Width/Height > 0.01 metal thickness < Height and < Width

The substrate characteristics and dimensional units must be established in a previous call to SUB. The accuracy is generally within 1% for the indicated parameter ranges, provided a cover is sufficiently removed. Adequate cover spacings are determined using T/LINE from Eagleware. This model is identical to the T/LINE model and includes dispersion.

Touchstone Translation:

MLIN n1 n2 W= L= Default SPICE Translation:

None

Page 231: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

221

Microstrip Rectangular Inductor (MRIND) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist syntax:

MRIND 1 2 L1=20 L2=50 L3=50 W=5 S=5 N=7.16 Note: This model requires a substrate definition.

Parameters:

(See figure below for parameter illustrations.) Length, 1st inside segment (L1) Length of the first segment from the inside tap point Length, 2nd inside segment (L2) Length of the second segment from the inside tap point Length, 3rd inside segment (L3) Length of the third segment from the inside tap point Strip Width (W) Width of conductor strips. Strip Spacing (S) Space between conductors. Number of Turns (N) Total number of turns. This does not need to be an integer.

Examples:

MRIND 1 2 L1=0.715 L2=0.715 L3=.9 W=0.02 S=0.02 N=7 Touchstone Translation:

MRIND n1 n2 N=N/4 L1= L2= W= S= Default SPICE Translation:

Page 232: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

222

None

Page 233: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

223

Microstrip Radial Stub (MRS) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MRS n1 Radius= Phi= Width= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Radius Radius of stub (R in diagram). Phi Stub width in degrees (j in diagram). Width Width of the stub base (W in diagram). Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

MRS 1 R=100 Phi=30 W=20 Range:

15000/Height(mm) > Frequency(MHz) The stub is connected parallel to the transmission path. The digram below illustrates the geometry of the radial stub. The ends of the feed lines are referenced to the center of the radial stub. Note that the penetration depth may exceed the width of the microstrip feed line. The width of the stub base and the penetration depth, P, are related by the formula:

W = 2 * P * tan(phi/2)

Touchstone Translation:

MRSTUB n1 WI= L= ANG= Default SPICE Translation:

None

Page 234: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

224

Microstrip Spiral Inductor (MSPIND) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist syntax:

MSPIND n1 n2 RI= W= S= N= [Name=] Note: This model requires a substrate definition.

Parameters:

(See figure below for parameter illustrations.) Inner Radius (RI) Inside radius, measured edge-to-edge of conductors (see figure above). Strip Width (W) Outer radius, measured edge-to-edge of conductors (see figure above). Strip Spacing (S) Width of conductor Number of Turns (N) Number of turns. This does not have to be an integer.

Examples:

MSPIND 1 2 RI=100 W=5 S=5 N=3.3 Lumped PI model consisting of shunt C, series R-L, shunt C all paralleled by a capacitor. Inductance is calculated using the formulas of Remke and Burdick. Capacitance based on Smith. Resistance is d-c or skin-effect resistance, whichever is greater.

Touchstone Translation:

MSPIND n1 n2 DI= DO= W= S= Default SPICE Translation:

None

Page 235: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

225

Microstrip Step (MST) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MST n1 n2 Option={AS|SY} NARrow= Wide= [Height=] [NAMe=] Note: This model requires a substrate definition.

Parameters:

Narrow Width Line width on the n1 side. ( Optional, uses adjacent line width. ) Wide Width Width on the n2 side. ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Substrate Name of substrate. SY: Symmetrical Step Choose this option for a symmetrical step. AS: Asymmetrical Step Choose this option for an asymmetrical step.

Example:

MST 1 2 O=SY NAR=100 W=300 NAM=STEP Range:

15000/Height(mm) > Frequency(MHz) 10 > Er > 1 20 > Narrow / Wide > 0.28

Use SY for a symmetrical step as pictured. Use AS for an asymmetrical step in which only one edge is discontinuous (not pictured). The substrate characteristics and dimensional units must be established in a previous SUB.

NOTE: In optimization, SUPERSTAR will automatically adjust if the “narrow” values are greater than the “wide” values.

The accuracy is generally within 10% for the indicated parameter ranges.

The step is modeled as a series L, Shunt C, series L pi network.

Touchstone Translation:

MSTEP n1 n2 W1= W2= (Symmetrical) None (Asymmetrical)

Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 236: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

226

Suspended Microstrip (MSUS) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MSUS n1 n2 Width= [Height=] Distance= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Distance Distance between substrate and ground plane. Length Length of line.

Example:

MSUS 1 2 W=80 B=50 L=200 Range:

0.5 < Width/Distance < 10 0.06 < Height/Distance < 1.5

The substrate characteristics and dimensional units must be established in a previous call to SUB. This model is identical to the T/LINE model.

Touchstone Translation:

SSLIN n1 n2 W= L= Default SPICE Translation:

None

Page 237: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

227

Microstrip Linearly Tapered Line (MTAPER) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist syntax:

MTAPER n1 n2 W1= W2= L= [Name=] Note: This model requires a substrate definition.

Parameters:

(See figure below for parameter illustrations.) W1 Width of line at n1 end W2 Width of line at n2 end L Length of line

Examples:

MTAPER 1 2 W1=0.835 W2=0.435 L=5 Touchstone Translation:

MTAPER n1 n2 W1= W2= L= Default SPICE Translation:

None

Page 238: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

228

Microstrip Asymmetrical Tee Junction (MTE) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MTE3 n1 n2 n3 W1= W2= WS= SYM= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

W1 Width of thru line at node 1. W2 Width of thru line at node 2. WS Width of stub line at node 3. SYM Thru-path symmetry 0-No, 1-Yes [ Default = 1]. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Notes: Reference planes: T1, T2, T3 [ SYM = 1]

Page 239: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Microstrip (Standard, Inverted, and Suspended)

229

No Thru-path Symmetry [SYM = 0]

Example:

MTE 1 2 3 W1=100 W2=50 WS=75 SYM=0 Range:

15000/Height(mm) > Frequency(MHz) 10 > WThru / Height > 0.1 for Wthru = W1 and W2 W3 < 10 * Wthru 18 > Er > 1

The discontinuity model used for MTE3 was developed by Eagleware and verified with field simulation. MTE3 includes phase shift effects as well as junction discontinuity effects. The model is similar to several other proposed models with the advantage that phase and stub reflection are more accurately modeled for a wide range of height and width ratios. The accuracy decreases with increasing frequency but is good through 12GHz with Height=50 mils. Smaller heights increase the frequency limit.

Touchstone Translation:

MTEE n1 n2 n3 W1=W1 W2=W2 W3=WS Default SPICE Translation: None

Page 240: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

230

Microstrip Via Hole (MVH) This symbol is available in SCHEMAX in the Microstrip Toolbar.

Netlist Syntax:

MVH n1 n2 Radius= [Height=] [Thickness=] [Name=] Note: This model requires a substrate definition.

Parameters:

Radius Via hole outside radius. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Lining Thickness Thickness of via hole lining. This parameter is optional.

Example:

MVH 1 0 R=30 Range:

15000/Height(mm) > Frequency(MHz) MVH creates a very low impedance to ground, modeled as a series RL. n2 is normally ground (node 0). If the thickness of the via hole lining is not specified, then the SUB conductor thickness is used.

Touchstone Translation:

VIA n1 n2 D1= D2=D1 H= T= Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 241: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

231

Chapter 12 Slabline

Multiple Coupled Rods (slabline) (RCN) This symbol is available in SCHEMAX in the SLABLINE Toolbar.

Netlist Syntax:

RCNx n1 n2...n(x) Dia= S1= S2=...s(0.5x-1)= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Diameter of All Rods Diameter of rods (all are equal diameter). Sn Edge-to-edge separations (see figure below). Substrate Height Ground-to-ground spacing. This parameter is optional. Length Physical length of lines.

Example:

RCN8 1 2 3 4 5 6 7 8 W=200 S1=55 S2=65 S3=55 L=800 Range:

See RCP The number of nodes is x. The edge-to-edge spacing between the far left and the next rod is s1. The spacing between the far right and the preceding rod is s(0.5x-1).

This model is a significant convenience for analyzing combline, interdigital and other multiple coupled rod structures. The model is based on an exact wire-line equivalent of cascaded coupled pairs of rods.

Touchstone Translation:

None Default SPICE Translation:

None

Page 242: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

232

Coupled Slabline (RCP) Two coupled round rods centered between flat ground planes. This symbol is available in SCHEMAX in the SLABLINE Toolbar.

Netlist Syntax:

RCP n1 n2 n3 n4 Diameter= Spacing= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Diameter of Both Rods Diameter of rods (both are equal diameter). Edge-to-Edge Spacing Edge-to-edge separation of the rods. Substrate Height Ground-to-ground spacing. This parameter is optional. Length Physical length of lines.

Example:

RCP 1 0 2 0 D=200 S=300 H=500 L=1200 Range:

0.2 < D/H < 0.8 S/H > 0.1

The dimensional units and substrate characteristics must be defined in a previous SUB. The coupled slabline model is an Eagleware curve fit to accurate numerical solution data. Stracca, et. al., also provide analytical expressions but with errors up to 3%. Eagleware expessions are within 0.25% of the numeric data for D/H from 0.2 to 0.8 and S/H > 0.1.

Touchstone Translation:

None Default SPICE Translation:

None

Page 243: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Slabline

233

Slabline (RLI) Round rod transmission line centered between flat ground planes. This symbol is available in SCHEMAX in the SLABLINE Toolbar.

Netlist Syntax:

RLI n1 n2 Diameter= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Rod Diameter Rod diameter. Substrate Height Ground-to-ground spacing. This parameter is optional and defaults to the value specified in the substrate. Length Physical length of line.

Example:

RLI 1 2 D=200 H=500 L=1200 The dimensional units and substrate characteristics must be defined in a previous SUB. Slabline is particularly well suited for applications where a high unloaded Q (low loss) is required. An approximate expression due to Frankel has been widely used since 1942, but this model is a curve fit to more accurate numerical solution data. The impedance is believed to be within a fraction of a percent of the precise value for D/H from 0.10 to 0.90.

Touchstone Translation:

None Default SPICE Translation:

None

Page 244: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 245: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

235

Chapter 13 Stripline

Offset Broadside Coupled Striplines (SBCP) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SBCP n1 n2 n3 n4 Width= Offset= Spacing= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width of Both Strips (W) Width of strips (both are equal width). Offset between Lines (WO) Lateral displacement of the horizontal striplines. Spacing of Lines (S) Vertical spacing of the horizontal striplines. Length (L) Physical length of lines.

Parameters from substrate definition:

Distance between ground planes (H)

Thickness of Metal (T)

Example:

SBCP 1 0 2 0 W=100 WO=10 S=15 L=800 Range:

Width/Height > 0.35 (less restrictive for small metal thickness) metal thickness/Height < 0.1 spacing/height < 0.95

Page 246: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

236

The substrate characteristics and dimensional units must be established in a previous call to SUB.

Touchstone Translation:

SOCLIN n1 n2 n3 n4 W= WO= S= L= Default SPICE Translation:

None

Page 247: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Stripline

237

Stripline Bend (SBN) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SBN n1 n2 Width= Height= Angle= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Angle Angle of bend in degrees (j in diagram below).

Example:

SBN 1 2 W=100 A=90 Range:

1.75 > Width/Height > 0.25 Arbitrary corner angles are supported. The substrate characteristics and dimensional units must be established in a previous SUB.

The errors from measured data demonstrate excellent agreement and suggest a much wider useful parameter range for bends of 90o or less. The model is a series L, shunt C, series L tee with added strip lines to simulate the added length of the path.

Touchstone Translation:

SBEND n1 n2 W= ANG= Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 248: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

238

Multiple Coupled Striplines (SCN) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SCNx n1 n2...n(x) Width= S1= S2=..S(0.5x-1)= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width of All Strips Width of strips (all widths are equal). Sn Edge-to-edge separations (see figure below). Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Length Physical length of lines.

Example:

SCN8 1 2 3 4 5 6 7 8 W=100 S1=15 S2=25 S3=15 L=800 Range:

See SCP The number of nodes is x. The spacing between the far left and the next line is s1. The spacing between the far right and the preceding line is s(0.5x-1).

This model is a significant convenience for analyzing combline, interdigital and other multiple coupled line structures. The model is based on a wire-line equivalent of cascaded coupled pairs of stripline.

Touchstone Translation:

None Default SPICE Translation:

None

Page 249: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Stripline

239

Coupled Striplines (SCP) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SCP n1 n2 n3 n4 Width= Spacing= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width of Both Strips Width of strips (both are equal width). Edge-to-Edge Spacing Edge-to-edge separation of the striplines. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Length Physical length of lines.

Example:

SCP 1 0 2 0 W=100 S=15 L=800 Range:

Width/Height > 0.35 (less restrictive for small metal thickness) 0.1 > metal thickness/Height The accurate range of spacing, s, is from (5*t) to (5*b), where "t" is the thickness of the strips and "b" is the ground-to-ground spacing.

The substrate characteristics and dimensional units must be established in a previous call to SUB.

The model is identical to the model in T/LINE.

Touchstone Translation:

SCLIN n1 n2 n3 n4 W= S= L= Default SPICE Translation:

None

Page 250: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

240

Stripline Open End (SEN) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SEN n1 n2 Width= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

MEN 5 0 W=100 Range:

2.0 > Width/Height > 0.1 Node n2 is normally ground (node 0). The substrate characteristics and dimensional units must be established in a previous call to SUB.

The errors from measured data demonstrate excellent agreement and suggest a much wider useful parameter range.

Touchstone Translation:

SLEF n1 W= L=0 Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 251: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Stripline

241

Stripline gap (SGA) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SGA n1 n2 Width= Gap= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Strip Width Width of strip. ( Optional, uses adjacent line width. ) Gap Spacing between the ends of the strips. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

SGA 1 2 W=100 G=5 The substrate characteristics and dimensional units must be established in a previous call to SUB. Height is the thickness of the substrate (ground-to-ground spacing).

Little data is given with respect to the parameter ranges, except that the model accuracy is suspect for high stripline impedance. The gap model is a shunt L, series C, shunt L pi. The model is based on Altschuler and Oliner.

Touchstone Translation:

None Default SPICE Translation:

None

Page 252: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

242

Stripline (SLI) Single strip transmission line between ground planes. This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SLI n1 n2 Width= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Length Physical length of line.

Example:

SLI 1 2 W=100 L=1800 Range:

Width/Height > 0.35 (less restrictive for small metal thickness) 0.1 > metal thickness/Height

The substrate characteristics and the dimensional units must be established in a previous call to SUB. Width is the width of the strip. Height is the thickness of the dielectric substrate (ground-to-ground). Length is the physical length of the line.

The model is identical to the T/LINE model.

Touchstone Translation:

SLIN n1 n2 W= L= Default SPICE Translation:

None

Page 253: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Stripline

243

Offset Stripline (SLIO) Single strip transmission line between ground planes. This symbol is available in SCHEMAX in the Stripline Toolbar.

Netlist Syntax:

SLIO n1 n2 Width= [Height=] Offset= Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Width Width of strip. Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used. Offset Offset from center of substrate. Length Physical length of line.

Example:

SLIO 1 2 W=100 A=10 L=1800 Range:

Width/Height > 0.35 (less restrictive for small metal thickness) 0.1 > metal thickness/Height

The substrate characteristics and the dimensional units must be established in a previous call to SUB. Width is the width of the strip. Height is the thickness of the dielectric substrate (ground-to-ground). Length is the physical length of the line.

The model is identical to the T/LINE model.

Touchstone Translation:

SLIO n1 n2 W= S= L= Default SPICE Translation:

None

Page 254: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

244

Stripline Step in Width (SSP) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Netlist Syntax:

SSP n1 n2 NARrow= Wide= [Height=] [NAMe=] Note: This model requires a substrate definition.

Parameters:

Narrow Width Line width on the n1 side. ( Optional, uses adjacent line width. ) Wide Width Line width on the n2 side. ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

SSP 1 3 NAR=100 W=300 NAM=STEP Range:

6.6 > Lwidth/Rwidth > 0.15 The substrate characteristics and dimensional units must be established in a previous SUB. NOTE: During optimization, SUPERSTAR adjusts if the “narrow” values are greater than the “wide” values.

The errors from measured data demonstrate excellent agreement and suggest a wider useful parameter range. The step model is a short stripline, series reactance, and a short negative-length stripline.

Touchstone Translation:

SSTEP n1 n2 W1= W2= Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 255: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Stripline

245

Stripline Tee Junction (STE) This symbol is available in SCHEMAX in the STRIPLINE Toolbar.

Format:

STE n1 n2 n3 WThru= WStub= [Height=] [Name=] Note: This model requires a substrate definition.

Parameters:

Thru Width Width of thru lines (at nodes 1 and 2). ( Optional, uses adjacent line width. ) Stub Width Width of stub line (at node 3). ( Optional, uses adjacent line width. ) Substrate Height Height of substrate. This parameter is optional. If omitted, the height declared in the substrate definition is used.

Example:

STE 1 2 3 WT=100 WS=200 Range:

10 > WThru / Height > 0.1 WStub < 10 * WThru.

STE includes phase shift effects as well as junction discontinuity effects.

Touchstone Translation:

STEE n1 n2 n3 W1= W2=W1 W3= Default SPICE Translation:

None

Note: This element can be automatically added to the schematic by using Discos. For additional information see Using Distributed Elements in the User's Guide.

Page 256: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 257: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

247

Chapter 14 Coplanar Waveguide

Multiple coupled transmission lines (CPNn) Multiple coupled transmission lines using an electrical model. This symbol is available in SCHEMAX in the T-Line Toolbar.

Netlist Syntax:

CPNx n1 n2...n(x) Zo= K1= K2=...K(0.5x-1)= L= KOE= KOO= [AE= AO= F= N=]

Parameters:

n1..n(x) node numbers Zo Characteristic impedance of all lines (see formula) K# Coupling coefficients (see formula) L Physical length (mm) KOE Even mode effective dielectric constant KOO Odd mode effective dielectric constant AE Even mode loss (optional) AO Odd mode loss (optional) F Frequency for loss (MHz) (optional)

Example:

CPN8 1 2 3 4 5 6 7 8 Zo=50 K1=.03 K2=.01 K3=.03 L=200 Koe=1.73 Koo=1.60 The number of nodes is x. The coupling coefficients are k1 through k(0.5x-1). Their definition is:

The letters OE and OO represent the even and odd modes respectively. The loss model increases as the square root of the sweep frequency. If the losses are not specified the lines are lossless and the frequency should not be specified.

This model is a significant convenience for analyzing combline, interdigital and other multiple coupled line structures. The multiple coupled line model is based on an exact wire-line equivalent of cascaded coupled pairs of lines (CPL).

Touchstone Translation:

None

Page 258: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

248

Default SPICE Translation:

None

Page 259: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Coplanar Waveguide

249

Coplanar Microstrip Line without and with Ground Plane ( CPW and CPWG )

This symbol is available in SCHEMAX in the Coplanar Toolbar.

Netlist Syntax:

CPW n1 n2 Width= Gap Width= Length= [Name=] CPWG n1 n2 Width= Gap Width= Length= [Name=]

Note: This model requires a substrate definition. Required: substrate height, metal thickness, and dielectric constant.

Parameters:

Width Width of strip. Gap Width Width of gap between line and adjacent ground plane. Length Length of line.

Example:

CPW 1 2 W=50 G=10 L=200 Range:

( Gap Width / metal thickness) > 10 [ Height / (Width + 2 * Gap Width) ] > 1 for CPWG (lower ground plane)

The substrate characteristics and dimensional units must be established in a previous call to SUB. This model is identical to the T/LINE model.

Touchstone Translation:

CPW n1 n2 W= G= L= CPWG n1 n2 W= G= L=

Default SPICE Translation:

None

Page 260: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 261: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

251

Chapter 15 Rectangular Waveguide

Waveguide-to-TEM Adapter (WAD) Rectangular waveguide-to-TEM adapter. This symbol is available in SCHEMAX in the WAVE Toolbar.

Netlist Syntax:

WAD n1 n2 Width= [Height=] Zo= [Name=] Note: This model requires a substrate definition.

Parameters:

Guide Width Width of waveguide (A). Guide Height Height of waveguide (B). This parameter is optional. TEM Impedance Characteristic impedance of the TEM mode side (coaxial, etc.) of the adapter.

Example:

WAD 1 2 W=100 H=50 Zo=50 The dimensional units must be established by a SUB call anytime before WAD.

Waveguide impedance is frequency dependent. Waveguide-to-TEM adapters transform frequency dependent waveguide to constant impedance TEM mode. The WAD code ideally models this transformation. The model is based on Marcuvitz. The guide impedance is the frequency dependent wave impedance of the TE10 mode in rectangular guide. The electrical length is zero.

Touchstone Translation:

None Default SPICE Translation:

None

Page 262: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

252

Rectangular Waveguide Line (WLI) This symbol is available in SCHEMAX in the WAVE Toolbar.

Netlist Syntax:

WLI n1 n2 Width= [Height=] Length= [Name=] Note: This model requires a substrate definition.

Parameters:

Guide Width Width of line (A). Guide Height Height of line (B). This parameter is optional. Guide Length Length of line.

Example:

WLI 1 2 A=100 B=50 L=800 Range:

TE10 mode assumed The dimensional units be established by a SUB call prior to WLI. The model is based on Marcuvitz. The characteristic impedance is the wave impedance of the TE10 mode and is dispersive. The electrical length is also frequency dependent.

The transmission amplitude, but not transmission phase, is also modeled below cutoff.

Touchstone Translation:

RWG n1 n2 A= B= L= ER= RHO= Default SPICE Translation:

None

Page 263: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

253

Chapter 16 EM Based Transmission Lines

SMTLP and MMTLP SMTLP: Single-mode transmission line.

MMTLP: Multi-mode transmission lines.

Both of these models require mode data created by EMPOWER.

These symbols are available in SCHEMAX in the T-LINE Toolbar.

Netlist Syntax:

SMTLP n1 n2 Length= Filename= [Name=] MMTLPx n1 n2..n(x) Length= Filename= [Name=]

Note: This model requires a substrate definition.

Parameters:

Length Length of line. File Name Full path and file name containing EMPOWER generated mode data.

Example:

MMTLP4 6 12 1 5 LENGTH=100 FILENAME=PART1.L2 Touchstone Translation:

None Default SPICE Translation:

None

Page 264: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 265: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

255

Chapter 17 Antenna

Dipole antenna (DIPOLE) Dipole antenna with finite thickness. This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

DIPOLE n1 LEN= LD= [Name=] Parameters:

LEN Total length of dipole (mm). LD Ratio of total length to diameter (dimensionless).

Examples:

DIPOLE 1 LEN=150 LD=100 Note: This model obtains the input impedance referenced to input terminals, not to current maximum.

Touchstone Translation:

DIPOLE n1 n2 L=LEN LD= Default SPICE Translation:

NONE

Page 266: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

256

Monopole Antenna (MONOPOLE) Ideal monopole above ground. This symbol is available in SCHEMAX in the LUMPED toolbar.

Netlist syntax:

MONOPOLE n1 LEN= LR= [Name=] Parameters:

LEN Length of monopole not including image (mm). LR Length as defined above, LEN, divided by radius (dimensionless).

Examples:

MONOPOLE 1 L=75 LR=100 Note: This model calculates input impedance at input terminals, not referenced to current maximum.

Touchstone Translation:

MONOPOLE n1 L= LR= Default SPICE Translation:

None

Page 267: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

257

Chapter 18 Transmission Line Type Reference

Microstrip The substrate thickness, which is by definition the height of the strip above the ground plane, may have any value. The effects of dispersion decrease for thinner substrates, so the upper frequency limit for accurate results may be increased by using thinner substrates. One millimeter substrates give accurate results to about 30 GHz [8]. The highest frequency for accurate results is given as an output parameter based on the selected substrate thickness.

The accurate range for the microstrip width is between 0.01 and 100 times the height. This results in accurate impedance ranges of 400 to 3.61 ohms and 166 to 1.16 ohms for thin lines with dielectric constants of 1 and 10, respectively.

The accurate range of strip thickness is 0 to h (height) or to w (width), whichever is smaller.

The accurate frequency range is DC to 30 GHz/h (millimeters).

The accurate range for the substrate relative dielectric constant is 1 to 128.

There are no limits to the resistivity relative to copper, surface roughness or loss tangent, except that the equations assume low loss lines. In other words, the lines are used primarily for transmission, and loss is a secondary phenomenon.

The critical height of the cover above the strip is computed and given as an output parameter. If the cover height exceeds this critical value, it will effect line parameters less than 1%. The critical height is based on the work of Bedair [9]. Higher dielectric constants and narrower strips allow closer covers.

The critical spacing for sidewalls is also discussed by Bedair. Wall spacings greater than 2.5 times the substrate thickness are generally adequate for negligible effects.

Literally hundreds of papers have been written on the subject of microstrip. The paper by Bryant and Weiss published in 1968 was truly a benchmark work [10]. It presented a rigorous theoretical analysis based on the use of Green’s function for both single and coupled microstrip. Graphs of results for a range of dielectric constants were also given. A computer program based on this work saw popular use [11]. Unfortunately, it was a static treatment and didn’t consider frequency dependence.

The first treatments of dispersion appeared in the late 1960s. Getsinger’s work on dispersion was widely referenced for a number of years [12][13]. A parade of authors working to improve the dispersion model followed.

In 1983, Jansen and Kirschning proposed a power-current formulation for the microstrip problem, and gave new closed form equations for single microstrip [8]. These equations added new and more accurate dispersion effects to the work of Hammerstad and Jensen [14]. The equations of Jansen and Kirschning significantly improved the accuracy of the

Page 268: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

258

microstrip model for higher frequencies and higher dielectric constants. They are regarded as the best available equations.

The Jansen and Kirschning equations don’t include metal thickness of the strip. For single microstrip, the thickness corrections of Wheeler [15] and March [16] have been applied to these equations. The reader is cautioned to use only the thickness correction from this paper. The effects of cover height are inaccurately modeled in this paper, except for a narrow range of strip widths.

The equations for microstrip loss in TLINE are based on the work of Schneider [17] with corrections for roughness from Hammerstad and Bekkadal [18].

Page 269: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

259

Suspended Microstrip Suspended and inverted microstrip are important because they have less loss than conventional microstrip. The introduction of an additional parameter in comparison to conventional microstrip (b for suspended microstrip and a for inverted microstrip) as well as less frequent use because of inconvenient manufacturing, has resulted in sparse modeling by the industry. While discontinuity and coupled line models remain elusive, models for the basic lines have been presented by a few workers.

TLINE uses the models offered by Schellenberg [34]. These models were developed for a wider range of parameters than other models and more importantly they offer formula which are correct for limiting cases of parameters and dielectric constants. The models were tested specifically with dielectric constants of 3.78 and 12.9. Excellent limiting case behavior suggests these models should be valid for dielectric constants in the range of 2.2 to 12.9 for commonly used dielectric materials.

These models do not include the effects of dispersion. This is a reasonable approach at this point in time because dispersion is less pronounced in suspended and inverted microstrip.

The range of parameters over which the models were developed are w/h from 0.1 to 10, h2/h from 1.2 to infinity and h1/h from 0 to 0.8. Reported accuracy is 1% worse case and 0.5% typical. Errors are probably greater for dielectric constants other than 3.78 and 12.9

Page 270: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

260

Inverted Microstrip For remarks on inverted microstrip please refer to suspended microstrip.

Page 271: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

261

Coupled Microstrip Many of the coupled microstrip input parameter range considerations are similar to microstrip. The greater complexity of the coupled microstrip problem places some narrower restrictions on the input parameter ranges, but the accurate ranges are sufficiently comprehensive to cover most applications.

The substrate thickness, which is by definition the height of the strip above the ground plane, may have any value. The effects of dispersion decrease for thinner substrates, so the upper frequency limit for accurate results may be increased by using thinner substrates. One millimeter substrates give accurate results to about 30 GHz [32]. The highest frequency for accurate results is given as an output parameter based on the selected substrate thickness.

The accurate range for the coupled microstrip width is between 0.1 and 10 times the height. This results in accurate impedance ranges for thin lines with wide spacing of 263 to 29.0 ohms and 107 to 9.92 ohms with dielectric constants of 1 and 10, respectively.

The accurate range of strip thickness is 1E-6 to 0.1*h or to 0.2*s, whichever is smaller. The accurate range for the line spacing, s, is 0.1 to 10 times the substrate thickness, h. The accurate frequency range is DC to 30 GHz/h (millimeters).

The accurate range for the substrate relative dielectric constant is 1 to 18.

There are no limits to the resistivity relative to copper, surface roughness or loss tangent, except that the equations assume low loss lines. In other words, the lines are used primarily for transmission, and loss is a secondary phenomena.

The comments regarding a cover in the microstrip section apply to coupled microstrip as well.

Much of the history of single microstrip analysis applies to coupled microstrip. Shortly after the 1983 single microstrip paper, Jansen and Kirschning gave closed form equations for coupled microstrip [32].

These Jansen and Kirschning equations don’t include metal thickness of the strip. The thickness corrections of Jansen [33][18] have been applied.

The equations for microstrip loss in TLINE are based on the work of Schneider [17] and Jansen [33] with corrections for roughness from Hammerstad and Bekkadal [18].

Page 272: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

262

Round Microstrip Round microstrip consists of a round wire resting on a sheet of dielectric above a ground plane. Round microstrip is assumed to be pseudo-TEM. Higher dielectric contstants reduce radiation. Reference [33] provides the computational formula but does not specify their accuracy. Data is provided for wire diameters from 0.03 to 398 times the substrate height, h.

Page 273: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

263

Coplanar Waveguide The ground plane to ground plane spacing may have any value. The highest frequency for accurate results is given as an output parameter based on the selected spacing and also on the effects of dispersion.

The range of center strip width for accurate results is 0.222*g < w < 8*g. This results in accurate impedance ranges for thin metalization and thick substrate of 221 to 82.7 ohms and 94.3 to 35.3 ohms for dielectric constants of 1 and 10, respectively.

The accurate range of strip thickness is 0 to 0.1*g. The substrate thickness must exceed approximately 0.1*g. This is a thin substrate. If a thinner substrate is specified, the math overflow message may appear. The frequency range limit is given as an output parameter and is also discussed above. The accurate range for the substrate relative dielectric constant is ³1.0.

There are no limits to the resistivity relative to copper, surface roughness or loss tangent, except that the equations assume low loss lines. In other words, the lines are used primarily for transmission, and loss is a secondary phenomena.

One of the early definitive works on coplanar waveguide was by Wen [25]. The dielectric substrate was assumed infinitely thick in this work. Ghione and Naldi [26] gave equations for the case of finite thickness substrates, based on the earlier work of Davis, et. al. [27]. These references assume infinitesimally thin metalization. The correction of Bahl and Garg are applied for metalization thickness[28].

All of these references assume a quasi-static mode of propagation, but dispersion does exist for coplanar waveguide. The results will therefore understate the characteristic impedance and effective dielectric constant for X-band and higher frequencies on high dielectric substrates, unless small ground to ground spacings are used.

Loss calculations are from Gupta, et. al. [22], based on the Wheeler incremental inductance formula [29].

Page 274: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

264

Coplanar Waveguide with Ground The ground plane to ground plane spacing may have any value. The highest frequency for accurate results is given as an output parameter based on the selected spacing and also on the effects of dispersion. The range of center strip width for accurate results is 0.222*g < w < 8*g. This results in accurate impedance ranges for thin metalization and thick substrate of 221 to 82.7 ohms and 94.3 to 35.3 ohms for dielectric constants of 1 and 10, respectively.

The accurate range of strip thickness is 0 to 0.1*g.

The substrate thickness may be as small as 0.1*g, but a thinner substrate may cause the math overflow message to appear. To insure propagation primarily in a coplanar mode, the substrate thickness should in fact be much larger. The loss calculations for this line assume a coplanar mode, so loss data isn’t given for substrate thickness less than b, the ground to ground spacing. The frequency range limit is given as an output parameter and is also discussed above. The accurate range for the substrate relative dielectric constant is ³1.0.

There are no limits to the resistivity relative to copper, surface roughness or loss tangent, except that the equations assume low loss lines. In other words, the lines are used primarily for transmission, and loss is a secondary phenomena.

The numerical analysis and equations of Ghione and Naldi [30] give equations for the case of finite thickness substrates. This reference assumes thin metalization. The correction of Bahl and Garg is applied for metalization thickness [28].

All of these references assume a quasi-static mode of propagation, but dispersion does exist for coplanar waveguide. The results will therefor understate the characteristic impedance and effective dielectric constant for X-band and higher frequencies on high dielectric substrates, unless small ground to ground spacings are used.

Loss calculations are from Gupta, et. al. [22], based on the Wheeler incremental inductance formula [29]. These equations assume the absence of a lower ground plane. Therefore the results are only valid for db. Loss data isn’t given for substrates thinner than this limit.

Page 275: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

265

Stripline The term stripline was originally used to describe any planar transmission line structure. Modern usage assigns the term stripline to the specific structure shown in the figure below. The practical use of stripline predates the use of microstrip by several years. Microstrip grew in popularity as it became more common to mount components on the PWB which is inconvenient in stripline.

The dominant mode of propagation in stripline is TEM and only a static analysis is required. Cohn [20] gave a simple relation derived using conformal mapping for zero thickness stripline which is essentially exact. Wheeler [21], as reported by Gupta, et. al. [22], gave an expression which includes the effect of finite thickness.

Stripline loss is based on the work of Bahl and Garg [23][24] with corrections for surface roughness from [18].

Page 276: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

266

Coupled Stripline The ground plane to ground plane spacing, b, may have any value. The highest frequency for accurate results is given as an output parameter based on the selected spacing. The maximum frequency is limited by TE10 mode cutoff [19].

The minimum stripline width for accurate results is 0.35*b, the ground to ground spacing. For a maximum width of 10*b, the accurate impedance range for thin lines and wide spacing are 119 to 9.02 ohms and 37.7 to 2.85 ohms with dielectric constants of 1 and 10, respectively.

The accurate range of strip thickness is 0 to 0.1*b (spacing) or to w (width), whichever is smaller.

The accurate range of spacings, s, is from 5*t, the thickness, to 5*b, the ground to ground spacing. Greater spacings may result in the math overflow message.

The accurate range for the substrate relative dielectric constant is ³1.0.

The highest frequency for accurate results is based on the ground to ground spacing and cutoff, and is given as an output parameter.

There are no limits to the resistivity relative to copper, surface roughness or loss tangent, except that the equations assume low loss lines. In other words, the lines are used primarily for transmission, and loss is a secondary phenomena.

The dominant mode of propagation in stripline is TEM and only a static analysis is required. Gupta, et. al. [22] gives equations for coupled stripline based on work by Cohn [20].

Coupled stripline loss is from Gupta, et. al. [22] with corrections by Eagleware and corrections for surface roughness from [18].

Page 277: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

267

Broadside Horizontal Coupled Stripline The required spacing to achieve coupling greater than 6 to 8 dB is unreasonably close for conventional microstrip and stripline. Couplings of 3 dB are totally unachievable.

Tighter couplings are available by facing the coupled strips broadside. One such structure is broadside horizontal coupled stripline.

TLINE models from [33] again utilize ratios of elliptic integrals and assume zero thickness strips but are otherwise accurate provided that (W/b)/(h/b) exceeds 0.35.

Page 278: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

268

Broadside Vertical Coupled Stripline Vertical coupled, as apposed to horizontal coupled stripline, is more difficult to manufacture and voltage breakdown occurs at lower power level.

Page 279: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

269

Rounded Edge Stripline Rounded edge stripline is useful for higher power applications. The avoidance of sharp edges reduces field strengths and therefore breakdown occurs at a higher voltage.

While very similar to conventional stripline, the analysis method used in TLINE is based more on slabline. Notice that when W/b equals t/b this line is identical to slabline. The range of validity for t/b is 0.1 to 0.5 for accuracy better than 1% and to 0.7 for accuracy better than 10%.

Page 280: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

270

Slabline Slabline is suited for high unloaded Q applications, such as for narrow bandpass filters and low loss requirements.

The ground plane to ground plane spacing, b, is unlimited. The highest frequency for accurate results is limited by higher-order modes and is given as an output parameter once b is entered in the program.

An approximate formula for slabline given by Frankel has been used widely since 1942. The model in TLINE is a curve fit to data by Stracca, Macchiarella and Politi [31] which is more accurate than the Frankel expression, particularly for larger rod diameter. Stracca’s data is believed to be within a small fraction of a percent of the precise impedance. Their curve fit to the data is discarded in favor of a more accurate Eagleware curve fit.

The ground plane is assumed to extend well beyond the rod. The accuracy is within a fraction of a percent for d/b from 0.10 to 0.90.

Page 281: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

271

Square Slabline/Coax The ends of the slabline ground planes are closed to form square slabline. It could obviously be considered to be coax with a square outer conductor. However, analysis proceedures are more closely related to those used for slabline. The TLINE model is based on the method of Frankel described in reference [33].

This line type is often used in the construction of dielectrically loaded resonators commonly used in the UHF frequency range.

The range of validity for d/b id from 0.1 to 0.65 for precise impedance values to 0.8 for approximately 1.5% error.

Page 282: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

272

Coupled Slabline Slabline is suited for high unloaded Q applications such as narrow bandpass filters and low loss requirements.

The ground plane to ground plane spacing, H, is unlimited. The highest frequency for accurate results is limited by higher-order modes and is given as an output parameter once H is entered in the program. The ground plane is assumed to extend well beyond the rod. The recommended parameter ranges are D/H from 0.20 to 0.80 and S/H from 0.1 to 3.0

An approximate formula for individual slabline given by Frankel has been used widely since 1942. The model in TLINE is a curve fit to coupled slabline data by Stracca, Macchiarella and Politi [31]. Stracca’s data is believed to be within a small fraction of a percent of the precise impedance. Their curve fit to the data has errors up to 3% and is discarded in favor of an Eagleware curve fit with a maximum error of approximately 0.25%.

Page 283: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

273

Coaxial Conventional coax is a self-shielding TEM mode transmission line with a homogeneous dielectric. Below the cutoff frequency of higher order modes (Highest Accurate Frequency displayed in the output screen) the computation of coaxial line parameters is exact for both analysis and synthesis. The allowable range of input parameters is unlimited. Coax is the only T/LINE type where the user may specify the relative permeability of the dielectric material.

Note: In circuit simulation, radius is entered instead of diameter.

Page 284: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

274

Eccentric Coaxial The center conductor is offset from concentric in this form of coaxial line. The offset may be intentional or this line type may be used to compute the mismatch which results from unintented errors in the exact placement of the center conductor in conventional coax. This line type is further described in reference [33].

Page 285: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

275

Partially Filled Coax With partially filled coax the center conductor is supported by a wedge of dielectric material. The reduced dielectric filling factor reduces loss and increases the propagation velocity. The dielectric is non-homogeneous and propagation is not strictly TEM mode. As with microstrip, this line type may be analyzed as pseudo-TEM. Further details are given in reference [33].

Page 286: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

276

Square Coaxial Square coax consists of a square center and outer conductor. The symmetry of the structure lends well to analysis by conformal transformation. Results using the ratio of complete elliptic integrals are virtually exact for an unlimited range of parameters.

Page 287: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

277

Coaxial Stripline Coaxial stripline has few if any advantages over conventional coax. It is included in the event that other reasons dictate its use. The dielectric is homogeneous and the characteristic impedance may be found by conormal mapping techniques. Further details are given in reference [33].

The results are believed to be exact for zero strip thickness.

Page 288: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

278

Equal-Gap Rectangular Coax The characteristics of transmission lines with rectangular center and outer conductors are surprisingly difficult to find. A solution for the equal gap case with equal broad and narrow side spacing is less elusive.

Page 289: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

279

Unscreened Twin Wire This line type consists of two parallel cylindrical wires. It was popular in the early days of radio and television because it involved simple manufacturing processes. The spacing is maintained by embedding the the wires in a ribbon of dielectric or in rods perpendicular the the wires forming “ladder line”. The small amount of dielectric material reduces loss. The characteristic impedance is high and is well matched to folded dipoles and tuned feeder lines common in that day. At the higher frequencies in use today, very small spacing are required to reduce radition loss in this unshielded medium. Small spacings are less practical and increase conductor loss.

T/LINE assumes the space surrounding the lines is a homogeneous dielectric. For very small dielectric loading, such as ladder line, the dielectric may be assumed to be air. This line type is further discussed in reference [33].

Page 290: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

280

Single Wire Above Ground A single wire above ground forms a simple and convenient transmission line. This line type may also be used to compute the effective inductance of a wire in the presence of a ground plane, such as a bond wire. This line type is unshielded, and as the operating frequency is increased, the wire to ground plane spacing must be decreased to avoid radiation.

The line is assumed to be entirely embedded in dielectric. As the dielectric constant is increased over that of air, radiation is reduced. If the dielectric is not homogeneous but is a planar sheet resting on the ground plane, the line becomes round microstrip.

Page 291: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Transmission Line Type Reference

281

Trough Line Trough line offers the advantage of access to the center conductor during operation. It is also of theoretical interest because the characteristic impedance is exactly one-half the odd mode impedance of coupled slabline with the bottom of the trough midway between the slablines.

The sidewalls are assumed to extend to infinity. In practice, the accuracy is reduced little if they extend beyond the center conductor several times the center conductor to sidewall gap. The accuracy is probably very good for d/b less than 0.5 to 0.7 and h/b less than 0.5.

Page 292: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 293: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

283

Chapter 19 Substrate Parameter Tables

Loss Tangent The dielectric loss tangents of some common materials are:

Material tanD at 100 MHz tanD at 10 GHz Air 0.0 0.0 Polyolefin, irradiated 3E-4 3E-4 PTFE (Teflon) 2E-4 1.5E-4 RT/Duroid 5880, PTFE microglass 5E-4 9E-4 Teflon, glass microfiber 5E-4 9E-4 Teflon, woven quartz 6E-4 6E-4 Teflon, woven glass 1.5E-3 2E-3 Polystyrene, cross linked 2E-4 7E-4 Polystyrene, glass microfiber 4E-4 2E-3 Quartz, fused 2E-4 6E-5 G10 Epoxy glass 8E-3 No Data Pyrex glass 3E-3 7E-3 Alumina, 99.5% 1E-4 1E-4 RT/Duroid 6010.5, PTFE ceramic 2E-3 2.3E-3 The dielectric loss tangents for some materials commonly used in coaxial cables are:

Material tanD at 100 MHz tanD at 3 GHz Air 0.0 0.0 Teflon 2E-4 15E-4 PolyEthylene, DE-3401 2E-4 3.1E-4 Polyolefin, irradiated 3E-4 3E-4 Polystyrene 1E-4 3.3E-4 Polyvinal formal (Formvar) 1.3E-2 1.1E-2 Nylon 2E-2 1.2E-2 Quartz, fused 2E-4 6E-5 Pyrex Glass 3E-3 5.4E-3 Water, distilled 5E-3 1.6E-1 Note: This data is for solid materials. Foamed materials have lower loss tangents. These data are approximate. Consult manufacturer for critical applications.

See Also: Surface Roughness Dielectric Constant

Page 294: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

284

Metal Thickness The thickness of the conductor metalization for planar structures. The algorithms for microstrip are most accurate for thin metalization, but both loss and Zo are corrected for thickness.

For stripline, the algorithms are more accurate to thicker metalization. Thickness to 0.1*b or to the width is permissible.

Commonly used thicknesses:

Metallization Type Thickness (mm) Thickness (mils)

½ ounce copper 0.018 0.71

1 ounce copper 0.036 1.42

2 ounce copper 0.072 2.83

See Also: Relative Dielectric Constants Loss Tangent

Page 295: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Substrate Parameter Tables

285

Relative Dielectric Constants Er is the substrate or dielectric constant, relative to free space. Following are constants of some common materials:

Material Dielectric Constant Air 1.0 Alumina, 99.5% 10 G10/FR4 Epoxy glass 4.8 (varies) PolyEthylene, DE-3401 2.26 Polyhexamethyleneadipamide (Nylon) 2.9 Polyolefin, irradiated 2.32 Polystyrene 2.53 Polystyrene, cross linked 2.53 Polystyrene, glassed cross linked 2.62 PolyTetraFluoroEthylene (Teflon) 2.10 Polyvinal formal (Formvar) 2.8 PTFE, glass microfiber 2.35 PTFE (Teflon) 2.10 PTFE, woven glass 2.55 PTFE, woven quartz 2.47 Pyrex glass 4.84 Quartz, fused 3.8 RT/Duroid 2.20 RT/Duroid, PTFE ceramic filled 10.5 Water, distilled 77 Note: Foamed materials have lower dielectric constants. These data are approximate; consult manufacturer for critical applications.

See Also: Loss Tangent Resistivity

Page 296: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

286

Relative Permeability MUr is the substrate permeability, relative to free space. Most line types do not allow substrates or dielectrics with magnetic properties.

See Also: Loss Tangent Resistivity

Page 297: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Substrate Parameter Tables

287

Resistivity The line’s metalization resistivity relative to copper.

Some common values are:

Material Resistivity Relative to Copper

Copper, annealed (1.7e-8 ohm meters) 1.00

Copper, hard drawn 1.03

Silver 0.95

Gold 1.42

Aluminum 1.64

Tungsten 3.25

Zinc 3.4

Brass 3.9

Cadmium 4.4

Nickel 5.05

Phosphor-bronze 5.45

Platinum 6.16

Stainless Steel, 18-8 52.8 See Also: Surface Roughness Loss Tangent

Page 298: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

288

Surface Roughness Sr is the metalization surface roughness, using the current units.

Conductor losses increase with larger values of surface roughness. Approximate values for copper PWB surface roughness:

Electrodeposited Copper Sr value (mm) Sr value (mils) ½ ounce 0.0019 0.075 1 ounce 0.0024 0.094 2 ounce 0.0029 0.114

Rolled Copper Sr value (mm) Sr value (mils) ½ ounce 0.0014 0.055 1 ounce 0.0014 0.055 2 ounce 0.0014 0.055 See Also: Loss Tangent Dielectric Constant

Page 299: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

289

Chapter 20 References

GENESYS References [1] Ralph S. Carson, High-Frequency Amplifiers, John Wiley & Sons, New York, 1982.

[2] Jerome L. Altman, Microwave Circuits, D. Van Nostrand, Princeton, NJ, 1964.

[3] Application Note 95, S-Parameters-Circuit Analysis and Design, Hewlett-Packard, Palo Alto, CA, September 1968.

[4] Application Note 154, S-Parameter Design, Hewlett-Packard, Palo Alto, CA, April 1972.

[5] V. Rizzoli and A. Lipparini, "Computer-Aided Noise Analysis of Linear Multiport Networks of Arbitrary Topology," IEEE Trans. MTT-33, No. 12, December 1985.

[6] H. Hillbrand and P. Russer, "An Efficient Method for Computer Aided Nose Analysis of Linear Amplifier Networks," IEEE Trans. Circuits Syst., Vol. CAS-23, April 1976.

[7] H.A. Watson, ed., Microwave Semiconductor Devices and Their Circuit Applications, McGraw-Hill, New York, 1969, pp. 271-278.

[8] Lloyd P. Hunter, ed., Handbook of Semiconductor Electronics, 3rd edition, McGraw-Hill, New York, 1970, pp. 11-3 to 11-19.

[9] H.E. Green, "The Numerical Solution of Transmission Line Problems," Advances in Microwaves, Vol. 2, Academic Press, New York, 1967, pp. 327-393.

[10] K.C. Gupta, et al., Computer-Aided Design of Microwave Circuits, Artech House, Dedham, Massachusetts, 1981, pp. 131-134.

[11] P.I. Somlo, "The Computation of Coaxial Line Step Capacitances," IEEE Trans. MTT, Vol MTT-15, January 1967, pp. 48-53.

[12] W. Alan Davis, Microwave Semiconductior Circuit Design, Van Nostrand Reinhold, New York, 1984, pp. 118-119.

[13] P. Wolf, "Microwave Properties of Schottky-barrier Field-effect Transistors," IBM Journal of Research and Development, March 1970, pp. 125-141.

[14] "Device Modeling," Avantek Microwave Semiconductors: GaAs and Silicon Products, Avantek, Santa Clara, 1989, pp. 8-12 to 8-13.

[15] M. Kirshning, et al., "Measurement and Computer-Aided Modeling of Microstrip Discontinuities by an Improved Resonator Method," MTT-S Digest, 1983, pp. 495-497.

[16] M. Kirshning, et al., "Accurate Wide-Range Design Equations for the Frequency Dependent Characteristics of Parallel Coupled Microstrip Lines," IEEE MTT-32, 1984, pp. 83-90. Errata, MTT-33, 1985, p. 288.

Page 300: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

290

[17] Rolf H. Jansen, "High-Speed Computation of Single and Coupled Microstrip Parameters Including Dispersion, High-Order Modes, Loss and Finite Strip Thickness," MTT-26, 1978, pp. 75-81.

[18] M.V. Schneider, "Microstrip Lines for Microwave Integrated Circuits," The Bell System Technical Journal, May-June 1969, pp. 1421-1444.

[19] E.O. Hammerstad, "Equations for Microstrip Circuit Design," Proc. 5th European Microwave Conference, Hamberg, 1975, pp. 268-272.

[20] P. Benedek and P. Silvester, "Equivalent Capacitance for Microstrip Gaps and Steps," IEEE MTT-20, November, 1972, pp. 729-733.

[21] R. Jansen and M. Kirschning, "Arguments and an Accurate Model for the Power-Current Formulation of Microstrip Characteristics Impedance," AEU, Band 37, 1983, Heft 3/4, pp. 108-112.

[22] Harold A. Weeler, "Transmission-Line Properties of a Strip on a Dielectric Sheet on a Plane," IEEE MTT-25, 1977, pp. 631-647.

[23] H. Atwater, "Microstrip Reactive Circuit Elements," IEEE MTT-31, June 1983, pp. 488-491.

[24] J.P. Vinding, "Radial Line Stubs as Elements in Stripline Circuits," NEREM Rec., pp. 108-109, 1967.

[25] A. Farrar and A.T. Adams, "Matrix Methods for Microstrip Change in Width and Cross-Junctions," IEEE MTT-20, August 1972, pp. 497-504.

[26] A. Gopinath, "Equivalent Circuit Parameters of Microstrip Change in Width and Cross-Junctions," IEEE MTT-24, March 1976, pp. 142-144.

[27] M.E. Goldfarb and R.A. Pucel, "Modeling Via Hole Grounds in Microstrip," IEEE Microwave and Guided Wave Letters, Vol. 1 No. 6, June 1991, pp. 135-137.

[28] G.B. Stracca, G. Macchiarella and M. Politi, "Numerical Analysis of Various Configurations of Slab Lines," MTT-34, No. 3, March 1986, p. 359-363.

[29] H.M. Altschuler and A.A. Oliner, "Discontinuities in the Center Conductor of Symmetric Strip Transmission Line" IRE MTT-8, May 1960, pp. 328-339.

[30] Seymour B. Cohn, "Shielded Coupled-Strip Transmission Line," MTT-3, 1955, pp. 29-38.

[31] S.B. Cohn, "Characteristic Impedance of Shielded Strip Transmission Line," MTT-2, 1954, pp. 52-55/

[32] H.A. Wheeler, "Transmission Line Properties of a Stripline Between Parallel Planes," MTT-26, 1978, pp. 866-876.

[33] I.J. Bahl and R.Garg, "A Designer's Guide to Stripline Circuits," Microwaves, Jan. 1978, pp. 90-96.

[34] Private phone conversation between R.W. Rhea and I.J. Bahl, October 1987.

[35] N. Marcuvitz, Waveguide Handbook, Peter Peregrinus Ltd., London, 1986.

Page 301: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

References

291

[36] Phillip H. Smith, "Transmission Line Calculator," Electronics, Vol. 12, Jamuary 1994, p. 29.

[37] Phillip H. Smith, Electronic Applications of the Smith Chart, 2nd edition, Noble Publishing, Atlanta, 1995.

[38] Guillermo Gonzales, Microwave Transistor Amplifiers: Analysis and Design, 2nd edition, Prentice-Hall, New York, 1997.

[39] H.C. Miller, "Inductance Formula for a Single-Layer Circular Coil," Proc. IEEE, Vol. 75, pp. 256,257, 1987.

[40] R.G. Medhurst, "H.F. Resistance and Self-Capacitance of Single-Layer Solenoids," Wireless Engineer, pp. 80-92, 1947.

[41] C.A. Balanis, Antenna Theory: Analysis & Design, John Wiley & Sons, New York, 1982, pp. 292-295.

[42] A. Weisshaar and V.K. Tripathi, "Perturbation Analysis and Modeling of Curved Microstrip Bends," IEEE MTT, Vol. 38(10), 1990, pp. 1449-1454.

[43] S.S. Gevorgian, et.al., "CAD Models for Multilayered Substrate Interdigital Capacitors," IEEE MTT-44, 1996, pp. 896-904.

[44] F.W. Grover, Inductance Calculations, Dover Publications, Inc., New York, 1962.

[45] J.I. Smith, "The Even- and Odd-Mode Capacitance Parameters for Coupled Lines in Suspended Substrate," IEEE MTT-19, 1971, pp. 424-431.

[46] R.L. Remke and G.A. Burdick, "Spiral Inductors for Hybrid and Microwave Applications," Proc. 24th Electron Components Conf., 1974, pp. 152-161.

[47] C.R. Burrows, "The Exponential Transmission Line," Bell System Technical Journal, Vol. 37, 1938, pp. 555-573.

[48] R.E. Collin, Field Theory of Guided Waves, McGraw-Hill, New York, 1960, pp. 185-195.

[49] H.M. Greenhouse, "Design of Planar Rectangular Microelectronic Inductors," IEEE Trans. Parts, Hybrids, and Packaging, PHP-10(2), June 1974, pp. 101-109.

[50] B.C. Wadell, Transmission Line Design Handbook, Artech House, Boston, 1991.

[51] C.L. Ruthroff, "Some Broad-Band Transformers," Proc. IRE, Vol. 47, 1959, pp. 1337-1342.

[52] D.M. Krafcsik and D.E. Dawson, "A Closed-Form Expression for Representing the Distributed Nature of the Spiral Inductor," 1986 Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1986, pp. 87-92.

Transmission Line & Filter Shape Reference [1] A.I. Zverev, Handbook of Filter Synthesis, John Wiley and Sons, New York, 1967.

[2] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Massachusetts, 1980

Page 302: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

292

[3] H. J. Blinchikoff and A. I. Zverev, Filtering in the Time and Frequency Domains, Krieger Publishing, Malabar, Florida, 1987.

[4] H.J. Blinchikoff and M. Savetman, “Least-Squares Approximation to Wideband Constant Delay,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 387-389, July 1972.

[5] P. Amstutz, “Elliptic Approximation and Elliptic Filter Design on Small Computers,” IEEE Trans. Circuits and Systems, vol. CAS-25, No. 12, Dec. 1978.

[6] A.B. Williams and F.J. Taylor, Electronic Filter Design Handbook, McGraw-Hill, New York, 2nd ed., 1988.

[7] W.C. Johnson, Transmission Lines and Networks, McGraw-Hill, New York, 1950, pp. 86-89.

[8] R. Jansen and M. Kirschning, “Arguments and a Accurate Model for the Power-Current Formulation of Microstrip Characteristic Impedance,” AEU, Band 37, 1983, Heft 3/4, pp. 108-112.

[9] S.S. Bedair, “Predict Enclosure Effects on Shielded Microstrip,” Microwaves & RF, July 1985, pp. 97-98,100.

[10] T.G. Bryant and J.A. Weiss, “Parameters of Microstrip Transmission Lines and of Coupled Pairs of Microstrip Lines,” MTT-16, 1968, pp. 1021-1027.

[11] T.G. Bryant and J.A. Weiss, MSTRIP (parameters of microstrip), MTT-19, 1971, pp. 418-419.

[12] W.J. Getsinger, “Microstrip Dispersion Model,” MTT-21, 1973, pp. 34-39.

[13] W.J. Getsinger, “Dispersion of Parallel-Coupled Microstrip,” MTT-21, 1973, pp. 144-145.

[14] E. Hammerstad and O. Jensen, “Accurate Models for Microstrip Computer-Aided Design,” MTT-S Symposium Digest, 1980, pp. 407- 409.

[15] H.A. Wheeler, “Transmission-Line Properties of a Strip on a Dielectric Sheet on a Plane,” MTT-25, 1977, pp. 631-647.

[16] S. March, “Microstrip Packaging: Watch The Last Step,” Microwaves, December 1981, pp. 83-84,87-88,90,92,94. Errata, Microwaves, February 1982, p. 9. Errata, Microwaves, July 1982, p. 8.

[17] M.V. Schneider, “Microstrip Lines for Microwave Integrated Circuits,” The Bell System Technical Journal, May-June 1969, pp. 1421-1444.

[18] E.O. Hammerstad and F. Bekkadal, Microstrip Handbook,ELAB Report STF 44A74169, Univ. Trondheim, Norway, February 1975.

[19] G.D. Vendelin, “Limitations on Stripline Q,” Microwave Journal, May 1970, pp. 63-69.

[20] S.B. Cohn, “Characteristic Impedance of Shielded Strip Transmission Line,” MTT-2, 1954, pp. 52-55.

Page 303: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

References

293

[21] H.A. Wheeler, Transmission Line Properties of a Stripline Between Parallel Planes, MTT-26, 1978, pp. 866-876.

[22] K.C. Gupta, R. Garg and R. Chadha, Computer-Aided Design of Microwave Circuits, Artech House, Dedham, Massachusetts, 1981, pp. 57-58.

[23] I.J. Bahl and R. Garg, “A Designer’s Guide to Stripline Circuits,” Microwaves, January 1978, pp. 90-96.

[24] I.J. Bahl, Private phone conversation, October 1987.

[25] Cheng P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” MTT-17, 1969, pp. 1087-1090.

[26] G. Ghione and C. Naldi, “Analytical Formulas for Coplanar Lines in Hybrid and Monolithic MICs," Electronics Letters, 16th February 1984, Vol. 20, No. 4, pp. 179-181.

[27] M.E. Davis, E.W. Williams and A.C. Celestini, “Finite-Boundry Corrections to the Coplanar Waveguide Analysis,” MTT-21, 1973, pp. 594-596.

[28] I.J. Bahl and R. Garg, “Simple and Accurate Formulas for Microstrip with Finite Strip Thickness,” Proc. IEEE, Vol. 65, 1977, pp. 1611-1612.

[29] H.A. Wheeler, “Formulas for the Skin Effect,” Proc. IRE, Vol. 30, 1942, pp. 412-424.

[30] G. Ghione and C. Naldi, “Parameters of Coplanar Waveguides with Lower Ground Plane,” Electronics Letters, 1st September 1983, Vol. 19, No. 18, pp. 734-735.

[31] G.B. Stracca, G. Macchiarella and M. Politi, “Numerical Analysis of Various Configurations of Slab Lines,” MTT-34, No. 3, March 1986, p.359-363.

[32] R. Jansen and M. Kirschning, “Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristics of Parallel Coupled Microstrip Lines," MTT-32, 1984, pp. 83-90. Errata, MTT-33, 1985, p. 288.

[32] R.H. Jansen, “High-Speed Computation of Single and Coupled Microstrip Parameters Including Dispersion, High-Order Modes, Loss and Finite Strip Thickness,” MTT-26, 1978, pp. 75-81.

Page 304: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide
Page 305: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

295

Index

* *INP................................................................... 164 *LINE.................................................................. 10 *OUT................................................................. 177 *SGND.............................................................. 178 *TEXT................................................................. 12

1 1-Port Data File.................................................. 45 1-port element .................................................... 42

2 2-Port Data File.................................................. 46 2-port element .................................................... 42

3 3-Port Data File.................................................. 44

A ABC ..................................................................... 47 ABCD.................................................................. 47 Absorptive switch ......................................90, 106 AC ..............................................................162, 170 AC Current ....................................................... 162 AC Current Source .......................................... 162 AC Power Source............................................. 180 AC Voltage Source .......................................... 181 Air core inductor................................................ 13 AIRIND1............................................................ 13 Ammeter............................................................ 176 Amplifier, RF...................................................... 88 ANTC.................................................................. 61 Antenna Loss Path............................................. 86 Antenna, Coupled .............................................. 61 ASCII.............................................................43, 46 Asymmetrical .................................................... 225 Attenuator ........................................................... 62 Attenuator, Variable .......................................... 64 ATTN .................................................................. 62 ATTN_VAR....................................................... 64

B Bandpass Filter, Bessel .................................... 111

Bandpass Filter, Butterworth ......................... 112 Bandpass Filter, Chebyshev ........................... 113 Bandpass Filter, Elliptic .................................. 114 Bandpass Filter, Pole/Zero ............................ 115 Bandstop Filter, Bessel.................................... 117 Bandstop Filter, Butterworth ......................... 118 Bandstop Filter, Chebyshev ........................... 119 Bandstop Filter, Elliptic .................................. 120 Bandstop Filter, Pole/Zero............................ 121 Bends ................................................................. 237 BIP ....................................................................... 48 BIPNPN............................................................ 139 BIPNPN4 ......................................................... 139 Bipolar transistor........................................48, 139 Bipolar transistor model ................................... 48 BIPPNP............................................................. 139 BIPPNP4 .......................................................... 139 Bond-wire inductances...................................... 52 BPF_BESSEL .................................................. 111 BPF_BUTTER................................................. 112 BPF_CHEBY................................................... 113 BPF_ELLIPTIC .............................................. 114 BPF_POLES .................................................... 115 Broadside Coupled Stripline........................... 235 Broadside Horizontal Coupled Stripline ...... 267 Broadside Vertical Coupled Stripline............ 268 BSF_BESSEL................................................... 117 BSF_BUTTER................................................. 118 BSF_CHEBY ................................................... 119 BSF_ELLIPTIC............................................... 120 BSF_POLES .................................................... 121

C CABLE.............................................................. 197 CAP...................................................................... 14 CAP_POLARIZED............................................ 9 CAPACITOR...........................................9, 14, 18 Capacitor, Modelithics ...................................... 18 Capacitor, Nonlinear ....................................... 150 Capacitor, Thin Film ......................................... 35 Capacitors ........................................................... 14 CCC ..................................................................... 50 CCCS ................................................................. 141 CCV ..................................................................... 51 CCVS ................................................................. 141 CEN................................................................... 200 CGA................................................................... 201 Chamfered......................................................... 209 CHASSIS_GROUND ........................................ 9

Page 306: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

296

Chebyshev Filters, Duplexer.......................... 123 CIR....................................................................... 68 CIR3 .................................................................... 67 Circulator ...................................................... 67, 68 CLI..................................................................... 202 CLI4................................................................... 203 Coax................................................................... 273 Coaxial Cable.................................................... 197 Coaxial Cable Types ........................................ 198 Coaxial center conductor gap ........................ 201 Coaxial conductor step ................................... 207 Coaxial End ...................................................... 200 Coaxial Line.............................203, 205, 206, 274 Coaxial open end ............................................. 200 Coaxial Stripline ............................................... 277 Coaxial transmission line ................................ 202 Combline..................................210, 231, 238, 247 Conducting Wire.............................................. 196 Coplanar........................................... 249, 263, 264 Coplanar Gap ................................................... 204 Coplanar Microstrip Line ............................... 249 Copper.......................................................261, 287 Coupled lines.................................................... 185 Coupled Microstrip ......................................... 261 Coupled Microstrip Lines............................... 211 Coupled Slabline ......................................232, 272 Coupled Stripline ............................................. 266 Coupled striplines ....................................235, 239 coupled transmission lines.............................. 247 Coupler, Dual Directional ................................ 66 Coupler, Hybrid 90 Degree.............................. 77 Coupler, Single Directional .............................. 69 COUPLER1 ....................................................... 69 COUPLER2 ....................................................... 66 Cover ................................................................. 261 CPL............................................................185, 247 CPN................................................................... 247 CPNn................................................................. 247 CPW .................................................................. 249 CPWCGAP ...................................................... 204 CPWG............................................................... 249 Creating

four-port ........................................................ 41 n-port.............................................................. 43 three-port ....................................................... 44 two-port ......................................................... 46

Creating ............................................ 41, 43, 44, 46 CSQLI ............................................................... 205 CSQLX.............................................................. 206 CST .................................................................... 207 Current controlled current source................... 50 Current controlled voltage source................... 51 Current Probe................................................... 176 current source..................................................... 50 Current Source, Voltage Controlled ............... 59

current sources................................................. 141 Curtice2 FET ................................................... 142 CURTICE2_N................................................. 142 CURTICE2_P.................................................. 142 CURTICE3_N................................................. 144 CURTICE3_P.................................................. 144 Custom Current Waveform Source .............. 175 Custom Voltage Waveform Source .............. 184

D DC .................................................... 162, 163, 176 DC Current...............................................162, 163 DC Current Source.......................................... 163 DC Voltage....................................................... 178 De-embed ............................................................42 Dielectric........................................................... 283 Dielectric Constant..................................261, 285 DIODE......................................................... 9, 146 Diode, PIN..........................................................56 DIPOLE........................................................... 255 Dipole antenna................................................. 255 Directivity ............................................................69 Dispersion.................................................220, 261 Distortionless TEM Transmission Line....... 192 Distributed RC Transmission Line ............... 187 Duplexer ........................................................... 123 Duplexer with Elliptic Filters......................... 125 DUPLEXER_C............................................... 123 DUPLEXER_E............................................... 125 Duplicate................................................................9

E Eccentric Coaxial ............................................. 274 Elements ................................................................1 Elliptic Filters, Duplexer ................................ 125 Exponential TEM Transmission Line.......... 194 Extrapolate ................................ 41, 43, 44, 45, 46

F FET transistor model.........................................52 FET Transistor Models .................................. 152 FOU......................................................................41 Four Terminal coaxial line.............................. 203 Four-Port Data ...................................................41 FREQ_DIV.........................................................71 FREQ_MULT ....................................................74 Frequency Divider ..............................................71 Frequency Multiplier ..........................................74 Frequency-independent Impedance ................15

Page 307: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Index

297

G GAIN................................................................... 76 Gap.............................................................204, 241 GND.................................................................. 161 GROUND ....................................................9, 161 Gummel-Poon.................................................. 139 GYR..................................................................... 54 Gyrator ................................................................ 54

H Highpass Filter, Bessel .................................... 127 Highpass Filter, Butterworth.......................... 128 Highpass Filter, Chebyshev............................ 129 Highpass Filter, Elliptic................................... 130 Highpass Filter, Pole/Zero ............................ 131 HPF_BESSEL.................................................. 127 HPF_BUTTER................................................ 128 HPF_CHEBY .................................................. 129 HPF_ELLIPTIC.............................................. 130 HPF_POLES.................................................... 131 HYBRID1........................................................... 77

I IAC..................................................................... 162 IDC ............................................................162, 163 Ideal gain block .................................................. 76 Ideal isolator ....................................................... 79 Ideal monopole ................................................ 256 Ideal splitter ........................................................ 92 Ideal Transformer .............................................. 37 IMP ...................................................................... 15 Impedance Inverter ......................................... 186 IND...................................................................... 16 INDQ .................................................................. 17 Inductor.........................................................13, 16 Inductor with Q ................................................. 17 Inductor, Toroidal ............................................. 36 INP..................................................................... 164 INP_IAC........................................................... 165 INP_IDC .......................................................... 166 INP_IPULSE ................................................... 167 INP_IPWL........................................................ 168 INP_PAC.......................................................... 169 INP_VAC ......................................................... 170 INP_VDC......................................................... 171 INP_VPULSE.................................................. 172 INP_VPWL...................................................... 173 Input .................................................................. 164 Input, AC Current............................................ 165 Input, AC Power.............................................. 169 Input, AC Voltage............................................ 170

Input, Custom Current Waveform................ 168 Input, Custom Voltage Waveform................ 173 Input, DC Current ........................................... 166 Input, DC Voltage ........................................... 171 Input, Pulsed Current...................................... 167 Input, Pulsed Voltage...................................... 172 Insertion loss ................................................62, 64 Interdigital ................................210, 231, 238, 247 Interdigital Capacitor....................................... 217 Interpolate..................................41, 43, 44, 45, 46 Inverted Microstrip..................................218, 260 Iprobe ................................................................ 176 IPULSE............................................................. 174 IPWL ................................................................. 175 ISO....................................................................... 78 ISOLATOR..................................................78, 79

J JFET_N............................................................. 147 JFET_P ............................................................. 147

L Lang Coupler .................................................... 219 LDMOS............................................................. 156 LED....................................................................... 9 LINE ................................................................... 10 Log Detector ...................................................... 80 LOG_DET......................................................... 80 Loss Tangent ............................................261, 283 Lowpass Filter, Bessel ..................................... 133 Lowpass Filter, Butterworth .......................... 134 Lowpass Filter, Chebyshev............................. 135 Lowpass Filter, Elliptic ................................... 136 Lowpass Filter, Pole/Zero ............................. 137 LPF_BESSEL .................................................. 133 LPF_BUTTER................................................. 134 LPF_CHEBY................................................... 135 LPF_ELLIPTIC............................................... 136 LPF_POLES .................................................... 137 Lumped capacitance .......................................... 14 Lumped resistance ............................................. 27

M Marcuvitz .......................................................... 251 MBN.................................................................. 209 MCN.................................................................. 210 MCP................................................................... 211 MCR................................................................... 212 MCURVE ......................................................... 214 MEN.................................................................. 215 Metal Thickness .......................................261, 284

Page 308: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

298

Metalization resistivity..................................... 287 MGA.................................................................. 216 Microstrip........................ 218, 226, 257, 261, 262 Microstrip Bend ............................................... 209 Microstrip Cross .............................................. 212 Microstrip Curved Bend ................................. 214 Microstrip Gap................................................. 216 Microstrip Interdigital Capacitor ................... 217 Microstrip Line................................................. 220 Microstrip Linearly Tapered Line.................. 227 Microstrip Open End...................................... 215 Microstrip Radial Stub .................................... 223 Microstrip Rectangular Inductor ................... 221 Microstrip Spiral Inductor.............................. 224 Microstrip Step................................................. 225 Microstrip Tee Junction.................................. 228 Microstrip Via Hole......................................... 230 MIDCAP........................................................... 217 Millimeter substrates ....................................... 261 MINV................................................................ 218 MIXER......................................................9, 81, 83 Mixer Table......................................................... 83 MIXER_TBL ..................................................... 83 MIXERA ............................................................ 81 MIXERP............................................................. 81 MLANG ........................................................... 219 MLANG6 ......................................................... 219 MLANG8 ......................................................... 219 MLI.................................................................... 220 MMTLP ............................................................ 253 Model......................................................................1 Modelithics ......................................................... 18 MONOPOLE.................................................. 256 Monopole Antenna ......................................... 256 MOS1_N........................................................... 148 MOS1_P ........................................................... 148 MOSFET .......................................................... 148 Motorola LDMOS........................................... 156 MRIND............................................................. 221 MRS ................................................................... 223 MSPIND........................................................... 224 MST ................................................................... 225 MSUS................................................................. 226 MTAPER.......................................................... 227 MTE .................................................................. 228 MUCQx .............................................................. 20 MUI ..................................................................... 19 Multi-mode ....................................................... 253 Multiple coupled .............................................. 247 Multiple Coupled Microstrip Lines ............... 210 Multiple Coupled Rods ................................... 231 Multiple Coupled Striplines............................ 238 MUr ................................................................... 286 Mutually Coupled Coils .................................... 20 Mutually Coupled Inductors ............................ 19

MVH.................................................................. 230

N NEG1...................................................................42 NEG2...................................................................42 NET......................................................................11 NET Block ..........................................................11 Netlist ...................................1, 161, 162, 163, 176 Netlist Syntax ..........................161, 162, 163, 176 NLCAP ............................................................. 150 NLCCCS........................................................... 141 NLRES.............................................................. 151 Nonlinear Capacitor ........................................ 150 Nonlinear Resistor........................................... 151 NPOn...................................................................43 N-Port Data File .................................................43

O Offset Stripline................................................. 243 ONE.....................................................................45 One-port S-Parameter........................................45 OPA......................................................................55 Operational amplifiers .......................................55 OUT .................................................................. 177 Output............................................................... 177

P PAC ................................................................... 180 Parallel L-C Network .........................................23 Parallel L-C resonator ................................. 21, 22 Parallel R-C Network.........................................24 Parallel R-L Network .........................................25 Parallel R-L-C Network.....................................26 Partially Filled Coax......................................... 275 Parts dialog ............................................................9 PATH, Antenna Path Loss ...............................86 Peak Amplitude................................................ 162 Permeability ...................................................... 286 PFC.......................................................................21 PFL .......................................................................22 PH...................................................................... 162 PHASE.............................................................. 162 Phase Shift (Ideal)...............................................87 Piece-wise linear............................................... 175 Piezoelectric resonator.......................................40 PIN .......................................................................56 PLC.......................................................................23 Port Impedance/Filename ............................. 164 Power Sources.........................162, 163, 176, 180 PRC.......................................................................24 PRL.......................................................................25

Page 309: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Index

299

PRX...................................................................... 26 Pulsed Current.................................................. 167 Pulsed Current Source..................................... 174

R RCLIN............................................................... 187 RCN................................................................... 231 RCP.................................................................... 232 Rectangular Coax ............................................. 278 Rectangular Waveguide Line .......................... 252 Rectangular waveguide-to-TEM.................... 251 Rectangular Wire.............................................. 195 Reference........................................................... 289 Reflective switch ........................................90, 106 Relative Dielectric Constants ......................... 285 Relative Permeability ....................................... 286 RES ...................................................................... 27 Resistivity ..................................................261, 287 Resistor ............................................................9, 27 Resistor, Nonlinear .......................................... 151 Resistor, Thin Film ............................................ 58 Resonator, Piezoelectric.................................... 40 RF Isolator .......................................................... 78 RFAMP ............................................................... 88 RG58.................................................................. 198 RG6.................................................................... 198 RIBBON ........................................................... 195 RLI ..................................................................... 233 Roughness .................................................261, 288 Round Microstrip.....................................262, 280 Rounded Edge Stripline .................................. 269 Ruthroff transformer......................................... 39

S Samples.................................................................. 5 SBCP.................................................................. 235 SBN.................................................................... 237 SCHEMAX.......................................... 9, 161, 163 SCN.................................................................... 238 SCP..................................................................... 239 SEN.................................................................... 240 Series L-C Network ........................................... 30 Series L-C Resonator...................................28, 29 Series R-C Network........................................... 32 Series R-L Network ........................................... 33 Series R-L-C Network....................................... 34 SFC....................................................................... 28 SFL....................................................................... 29 SGA ................................................................... 241 SGND................................................................ 178 Signal Ground .................................................. 178 Single Wire Above Ground............................ 280

Single-mode ...................................................... 253 Slabline .....................................231, 233, 270, 272 SLC ................................................................29, 30 SLI...................................................................... 242 SLIO .................................................................. 243 SMTLP .............................................................. 253 Source Frequencies.......................................... 162 SPA ...................................................................... 57 S-parameter...................................................44, 57 S-Parameter file .................................................. 46 SPDT ................................................................... 90 SPICE................................................................ 161 SPICE Translation........................................... 161 SPIND................................................................. 31 Spiral Inductor.................................................... 31 SPLIT2 ................................................................ 92 SPLIT2180.......................................................... 94 SPLIT290 ............................................................ 96 SPLIT3 ................................................................ 98 SPLIT4 .............................................................. 100 SPLIT5 .............................................................. 102 Splitter...........................................92, 98, 100, 102 Splitter, Combiner 2-way ............................94, 96 Splitter, Combiner 3-way .................................. 98 Splitter, Combiner 4-way ................................ 100 Splitter, Combiner 5-way ................................ 102 SPST .................................................................. 106 Square Coax Line .....................................205, 206 Square Coaxial .................................................. 276 Square Slabline/Coax ...................................... 271 Sr 288 SRC ...................................................................... 32 SRL....................................................................... 33 SRX...................................................................... 34 SSP ..................................................................... 244 Standard Input.................................................. 164 STATZ_N......................................................... 152 STATZ_P ......................................................... 152 STE .................................................................... 245 Stripline .......... 238, 242, 243, 265, 266, 269, 277 Stripline Bend ................................................... 237 Stripline gap ...................................................... 241 Stripline Open End.......................................... 240 Stripline Step..................................................... 244 Stripline Tee Junction...................................... 245 Striplines....................................................235, 239 Substrate........................................... 261, 285, 286 Surface Roughness...................................261, 288 Suspended ......................................................... 259 Suspended Microstrip...................................... 226 Switch ................................................. 90, 104, 106 SWITCHn......................................................... 104 Symbol................................. 9, 161, 162, 163, 176 Symbol button...................................................... 9 Symbols ................................................................. 5

Page 310: GENESYS 2003 Enterprise Element Catalogliterature.cdn.keysight.com/litweb/pdf/genesys2003/... · 2008. 7. 24. · Ideal three port circulator (CIR3) ... Chapter 14 Coplanar Waveguide

Element Catalog

300

Symmetrical ...................................................... 225

T TanD ................................................................. 283 Tapped Transformer ......................................... 38 TERM statements............................................ 164 Test Point.......................................................... 179 TEST_POINT................................................. 179 Text...................................................................... 12 TFC...................................................................... 35 TFR...................................................................... 58 Thicknesses....................................................... 284 Thin film capacitor ............................................ 35 Thin Film Resistor............................................. 58 THR..................................................................... 44 Three Port circulator ......................................... 67 Three-port........................................................... 44 Time Delay ......................................................... 70 TLE.................................................................... 188 TLE4 ................................................................. 189 TLP.................................................................... 190 TLP4.................................................................. 191 TLRLDC........................................................... 192 TLRLGC........................................................... 193 TLX ................................................................... 194 TOM_N............................................................ 154 TOM_P............................................................. 154 TOM2_N.......................................................... 158 TOM2_P........................................................... 158 TORIND ............................................................ 36 Toroidal Core Inductor .................................... 36 Touchstone....................................................... 161 Touchstone Translation.................................. 161 Transformer........................................................ 37 Transformer, Ruthroff ...................................... 39 Transformer, Tapped ........................................ 38 Transformers ...................................................... 19 Transistor ...................................................... 48, 52 Transistor, TOM Models................................ 154 Transistor, TOM2 Models ............................. 158 Transmission Line .188, 189, 190, 191, 202, 253 TRF...................................................................... 37 TRFCT ................................................................ 38 TRFRUTH ......................................................... 39 Trough Line...................................................... 281

TWO.....................................................................46 Two-port..............................................................46

U Uniform TEM Transmission Line ................ 193 Unscreened Twin Wire ................................... 279 User-assigned model ............................................9

V VAC................................................................... 181 Varactor..................................................................9 Variable attenuator .............................................64 Variable Gain Amplifier ................................. 108 VCC......................................................................59 VCCS................................................................. 141 VCV......................................................................60 VCVS................................................................. 141 VDC ..........................................................181, 182 VGA .................................................................. 108 Voltage .............................................................. 170 Voltage Controlled Current Source .................59 Voltage Controlled Voltage Source .................60 voltage source......................................................51 Voltage Source, AC ......................................... 181 Voltage Source, Custom Waveform ............. 184 Voltage Source, DC......................................... 182 Voltage Source, Pulse...................................... 183 Voltage Source, Voltage Controlled ................60 VPULSE ........................................................... 183 VPWL................................................................ 184

W Waveguide......................................................... 251 Waveguide-to-TEM Adapter ......................... 251 WIRE .......................................................... 10, 196 WLI.................................................................... 252 Wolf model..........................................................52

X XTL ......................................................................40