9
... .u_.. n._ ~ u __ (~OO~ ~5J,Q9.~~J:. 'Q.f5Hç.1NT  NA:i:1q~~.l: ASSQ9:t~t l9.N t9l:Ls B~ ~t~~~_SPAIIJ .\LSI~ Uc;T~§E§: JASS... ,~ . GENER TI ONOF FOLD LEDOMESFORMED Y UNDLE MODULESWITH QU DR NGUL R SE EmilioMartinGutierrez, Juan B. Perez Valcarcel Doetors ofArchiteeture. Professors of Department ofTechnology ofCons tr uetion ofA Coruna University SUMMARY The purpose of this article is to deseribe a possible way of configw ing domes formed by quadrangular base bundle modules. As for the foldable systems the corresponding joints should permit certain control/ed movements which in their turn would cause the processes offolding and unfolding of theframework The base module is basical/y composed of our bars connected with each other near their central point by means of an auxiliary element and pins. Apart from the above me nt ioned itcan incorporate auxiliary elementsfor stif fening andfastening apossible textil e covering. Keywords: Foldable Structures Domes Tr us ses. 1. INTRODUCTION. BACKGROUND The quadra ngul ar bundle module presents a series of properties that make it especially complex. Actuallythe only foldable structures, ma de up af ter the aforementioned module, owe to the Spanish architect Emilio P6rez Pifiero.in 1964hecreate d a mobile exhibition payilion having four types of precinct s with a maximum volume tr ic size of 1.40x 1. 00xl.80 m.whenfoldedand 12.60x9.50xl .00 m. when completely unfolded. Among the condi- tioning factors of the project were : The mobili ty of the exhibition; the necessity of its adaptation to the physical char ac teri st ics of di fferent places; ease of assembli ng, disassembling and transporting; and l ttle time for projecting and realization five months in total . The majority of the elements cons tituting the mo dule are of aluminium sheets of 0. 50xO.90m.,sothat the repercussi onofthe weight of the struct ur e and the roof is about 12.50kglm2.i t should be taken into account than once the base syste m is unfolded it isnece ssaryto introduceaddi- tional barsto pr ovide the stability of the comple x. The second proposal not re lized comes up in 1971 after a collaboration with Salvador DaU for the prepar at ion of the Theatre Muse um ofFiguer as . It treats a non structural mechanism which would unfold according to a vertical plan until covering the mouth in the form of 18m. high and 10m. wide mi d- point arch. The system should incorporate 36 rigid panels covering totally one of its faces with joints up to the top to serve as a b se for a layout of DaH. The two projects respond to completely plane configur at ions,a conditionthat pr ovides in advance the geometrical compatibilit y of the system both at the final and different intermediate stages of the process of unfolding. In the case of the domes this problemtums outtobeverycomplexas itisshown in the fol lowingparagr aph s. 2. GENERATIONOF THE SYSTEMIN UN- FOLDEDPOSmON Figure1 Having analyzed different altematives, the procedure presented by F6lix Escrig from Seville University was chosen to be adapted for the  

Generation of Foldable Domes Formed by Bundle Modules

Embed Size (px)

DESCRIPTION

article

Citation preview

  • ... .u_.. n._ ~ u __

    (~OO~

    ~5J,Q9.~~J:."'Q.f5H.1NTf!NA:i:1q~~.l:ASSQ9:t~tl9.N.t9l:LsB~!~t~~~_SPAIIJ.\LSI~Uc;T~E:JASS...,~..

    GENERATIONOF FOLDABLE DOMESFORMEDBY BUNDLEMODULESWITHQUADRANGULARBASE

    EmilioMartinGutierrez,Juan B.PerezValcarcelDoetorsofArchiteeture.ProfessorsofDepartmentofTechnologyofConstruetionofA CorunaUniversity

    SUMMARY

    Thepurposeof thisarticleis todeseribeapossiblewayof configw-ingdomesformedbyquadrangularbasebundlemodules.As for thefoldable systemsthe correspondingjoints shouldpermit certaincontrol/edmovementswhichin theirturnwouldcausetheprocessesoffoldingandunfoldingof theframeworkThebasemoduleis basical/ycomposedoffour barsconnectedwitheachotherneartheircentralpointbymeansofanauxiliaryelementandpins.Apartfromtheabovementioned,it canincorporateauxiliaryelementsfor stiffeningandfasteningapossibletextilecovering.

    Keywords: Foldable Structures,Domes,Trusses.

    1. INTRODUCTION. BACKGROUND

    Thequadrangularbundlemodulepresentsa seriesof propertiesthatmakeit especiallycomplex.Actuallytheonlyfoldablestructures,madeupaftertheaforementionedmodule,oweto theSpanisharchitectEmilioP6rezPifiero.in 1964hecreatedamobileexhibitionpayilionhavingfour typesofprecinctswithamaximumvolumetricsizeof 1.40x1.00xl.80m.whenfoldedand12.60x9.50xl.00m.when completelyunfolded.Amongthe condi-tioningfactorsof theprojectwere:Themobilityoftheexhibition;thenecessityof itsadaptationtothephysicalcharacteristicsof differentplaces;easeofassembling,disassemblingandtransporting;andlittle time for projectingand realization(fivemonthsin total).The majorityof theelementsconstitutingthemoduleareof aluminiumsheetsof0.50xO.90m.,sothattherepercussionoftheweightof thestructureandtheroofisabout12.50kglm2.itshouldbetakenintoaccountthanoncethebasesystemisunfoldedit isnecessarytointroduceaddi-tionalbarstoprovidethestabilityofthecomplex.

    The secondproposal(notrealized)comesup in1971aftera collaborationwithSalvadorDaUforthepreparationoftheTheatreMuseumofFigueras.It treatsa nonstructuralmechanismwhichwouldunfoldaccordingto a verticalplanuntilcoveringthemouthintheformof 18m.highand10m.widemid-pointarch.Thesystemshouldincorporate36rigidpanelscoveringtotallyoneof itsfaceswithjointsuptothetoptoserveasabasefora layoutofDaH.

    The two projectsrespondto completelyplaneconfigurations,aconditionthatprovidesinadvancethegeometricalcompatibilityof thesystembothatthefinal anddifferentintermediatestagesof theprocessof unfolding.In thecaseof thedomesthisproblemtumsouttobeverycomplexasit isshowninthefollowingparagraphs.

    2. GENERATIONOF THE SYSTEMIN UN-FOLDEDPOSmON

    Figure1

    Having analyzed different altematives,theprocedurepresentedby F6lixEscrigfromSevilleUniversitywas chosento be adaptedfor the

    133

  • -~i

    resolutionof quadrangularbundlemoduledomes.In this caseapiane grid of a squaremodule,situatedatthelevelof thesite,is projectedoverasphericalareatakingas a focusthe pointthatminimizesthe possibledimensionalerrors ofadjustmentcorrespondingtodifferentjointsof thesystem(Fig.1). .

    In resolutionwith the differentparametersthatinitiallydefinetheprojectionprocess,theonesthataredirectlyconnectedwith thecreativeprocesshave been chosen,I.e. those that would beinterestingfromthemerelyformalpointofview:

    Sideof thesiteor of thebasereticlethatissupposedtobecoveredbythefoldingstructure.

    Discretizationfrequencyor thenumberof thefractionsofthepreviousparameter.

    Domethicknessin unfoldedposition.Thismagnitudedefinesthefinal distancebetweenthetwoframeworknodesthataremaintainedoverthevertical,drawnthroughthecenterofthesphere.

    Theinteriororupperpoleheightof thesphereovertheplanethatcontainstheinitialreticle.

    Thedeterminationof coordinatesisrealizedbytheintersectionof thespherewith thestraightlinesbetweenthecenterandthenodesofthereticle.Theresultantpositionsarestoredin a matrixformandtransferredto a PC-aideddesignenvironmentbymeansof interchangefiles.

    Whentheprojectionis over,thedeterminationofthe angularsegments,comprehendedfrom thecenterof the sphere,is approachedfrom anequationsystemthatacquiresboththeconditioning

    134

    factorsof unfoldabilityandthederivativesof thesphericalconfiguration(Fig.2):

    . Thesphericalsurfacecontainsall thecrossingofthetrussbeams(C).Thementionedpositionsshouldbededucedby subdivisionsof angularsegmentscomprehendedbetweentheprojectedpointsclosetoeachotherandthecenterof thespherecomplyingwith the conditionsoffoldability.

    . Thenodesof theprojectedreticleareof type(D),includingthesuperiorpole.Asaresultthesuperior(A) and inferior(B) nodesof thestructuralsystemwill belocalizedontheradiiwhich,whenpassingthroughthecenter,crossthepositions(D).

    . In orderto obtaina feasiblefolding,theequalityof consecutiveangularsegmentsshouldbe fulfilled:Xbi=Xbj;(ij) beingthemagnitudesthatareproducedonbothsidesofthesameposition(D).

    . The semiopeningof thecross(di) mustbealwayssuperiorto thecorrespondingangularsegment(Xbi);inthecontrarycasethestructureisbent,hencethefoldingisnolongerfeasible.

    /'('Yii

    ___)X

    Figure3

    Theresultingsystemappearstobeincompatibletoa degreethatincreasesnotproportionallyto thediscretizationfrequency.Nevertheless,it is de-tected,thatall the redundanciesproducingthe

  • -JOURNAL OF THE INTERNATIONAL ASSOCIATIONFOR'SHELL AND SPATIAL STRUCTURES: lASS

    . .' ~

    mentioned incompatibility are related to thediagonalsparallel to the bisector plane. As aconsequence,it is possible to avoid suchexpressionswithoutendangeringthefoldabilityofthe grid (Fig.3). This matteronlyrelatesto themajoror minoradequacyof theresultingstructureto thesphericalformwhich,judgingby the finalresults, tums out to be visually completelyirrelevant.

    Reconstructingthe equationsystemwith suchcriteria,anindeterminatesetis obtainedwhereanadditionalexpressionis precisedin anycase.Theoptimalsupplementaryconditionrequirestheorthogonalityof X-shapedcrossedconformingthefirsttruss,neededfordevelopingaquadrantwhichis alsosymmetricalin regardtothebisectorplane.Taking this into account,a compatibleanddeterminatesetis obtainedthatcanberesolvedapplyingthe directmethodof Gauss,properlyreinterpretedbymeansofapivottechnique,asthequantityof nuHtermsthatpresentsthematrixcoefficientsishigh.

    Figure4

    j

    The correspondinglongitudesof the bars aredeterminedfromthepreviousanglesapplyingthesinetheoremtothetrianglesformedbythecenterof the sphere,the interiorarticulationandtheextrernejoints(Fig.4).in ourworkthecorrespon-dingsemiopeningof thecrosshasbeendeducedinitsturnonthebasisof thedomethicknessdefinedatitshighestpointandwhentotallyunfolded.

    Beforeproceedingto thedomegenerationfromthepreviouslongitudes,adetaileddeseriptionisneededfor theelementalmoduleattendingitsform,consti-

    tutingelements,numerationpattemand coveringpossibilities.Eachframeworkmoduleis conformedby a trussof four barsconfiguringa quadrangularbase,prism. The mentioned scheme can beoptionallycompletedby cablesonthesuperiorandinferior faces and with a centralpieceproperlystiffenedto thetrussextremesthatcouldserveasa

    sustenanceof thecoveringtextile(Fig. 5).

    Figure5

    Startingfrom the previousconfigurationthedeterminationof the final coordinateis laid outwhich,in its turn,is structuredin threedifferentroutines:Configurationof the first module,formationof subsequenttrussesandprocessingofthelastmoduleof eachlayer.in thefirstcasethelocalizationof theprincipalcrossnodesis realizedby meansof intersectionof circumferencesandsimplerelationsofproportionality.Onthecontrary,thetransversalcrossrequiresadditionalconditionscompatiblewiththeinitialhypothesisandwiththeconfigurationof the dome:Conservationof thecrossaperture,belongingto thesameplanethatcontainsthe centerof the sphere,and perpen-dicularitywithrespectoftheprincipalcross.

    As a continuationa doublepathis established,displacingus alongthe differentlayersof theframework,fromthe,secondto thelastone,andoverthemodulesthatformthem,fromthefirsttothelastbutone.Eachoneis builtbeginningfromthe neighbouringmodulesituatedon its left,resolvingthepositionof thecentraljoint by the

    135

  • r VOL. 43 (2002) n.140." r~.

    intersectionof threespheres(Fig.6).Thelasttrussof eachlayerrequiresa specialtreatmentas itsprincipalcrossmustbenecessarilysituatedin thebisectorplaneto adequatelysatisfythe requi-rementsofsymmetry.

    5

    Figure7

    In thelasttworoutinesmorethannecessarycondi-tionsarededuced,whichobligesto quantifythepossibleerrorsof geometricaladjustments.Forminirnizingthementioneddivergences,theprocessis resumedin twonestedloopsthatcoverrespec-tivelythepossibleareasfor theinteriorheightofthedomeandforpositioningthedenominatedfocusof projeetion.Combiningtheseparameterswithdifferentdomethicknessesand variousdiscre-tizationfrequencies,wecometotheconcIusionthatthemethodof projectionis viableandleadsto acompatiblesystemwhentotallyunfolded(Fig.7).

    136

    Thatis,choosingadequatelythevaluesofthemag-nitudesthatconstitutetheproblem,it is possibletodelirnitthemaximummaladjustmentsinsuchawaythattheywill notsurpasstheproperdimensionaltolerancesinherenttotheassemblingofthenodes.

    INTERIOR HEIGHT OF DOME (Aim.)

    Figure8

    As for the interiorheigbtthevalidityrangeofcertainamplitudeisdeduced.Onlynoticeablyplaneconfigurationsandcoveringscloseto a semisphe-ricalshapearediscarded(Fig. 8).Figure9 showstheextremesituationsthatdefinethementionedarea.

    On the otherhandthe optimalpositionof theprojectionfocusis placedaroundtheinferiorpoleofthesphere,sligbtlybelowit,whenthereisnoanymathematicaldependenceof anyof the involvedparameters(Fig. 10).

    Thedomethicknessdoesnotsignificantlyaffectthefinal levels of the error, nor influences thedeterminationof the optimalfocus exceptfor thegridscIosetotheplaneconfiguration.

    'ST ODlmalvalue

    38 - - - - - - - - -1--- - 1---- - - - - - -

    34 - - - - - - - - foo- - - foo-- - - - - - -33 - - - - - - - - - - - - - - -32 - - - - - - - - foo-- - - - - - - - -31- - - - - - - - foo- - - - - - - - - -

    29-- - - - - - - - - -- - - foo- - - - - - - - - - -28 - - - - - - - - -- - - - - - - - - - - -11 - - - - - - - - - - - - - - - - -29-- - - - - - - - - - - - - - - - -

  • --- . --"-'- --. - -_.

    ~ J()LJRNALOF IHEJ'f\lIE_RNATiONA.iA,ssociA'riNFOR'si-rE[LAr\fD~sPAl'IALsrR6TuRES'~iAss'_'0_'_ nC__ .'", .,,'. _' ,'., . _0:_' ' _o _,,, -- ':., . 0'-- -.- "..., '.-' "__ o.. " ' --- ~ ' " _ .

    Figure9

    ~i!5

    W

    ~.ci.i&.Oen

    ~~.f,Oi&.OZO

    ~.ci.

    ~~

    i.

    INTERIORHEGHTOFDOME(AI m.)

    Figure10

    A majorfrequencyof discretizationusuallyincre-mentsthevaluesof maladjustments,as muchastheyareaccumulatedaccordingto thenumberoflayers.Nevertheless,in usualsituationsthepro-blemsofcompatibilitysurpassingacceptablerangesarenotdetected.

    Whenthepreviousoperationsarefinished,startstheprocedureofcornpletingthequarterofthedorneby rneansof consideratiohsof symrnetryandconfiguringthecompletefrarneworkby rneansofrotationroutines.In anycase,thelinksdefinedin.thedesignprocessareautornaticallyassignedfromthe developedinformaticsapplicationand thedifferenthypothesisofpossibleloadsarestructuredforanalyzingthebehaviourof thefrarneworkinthesituationofservice.

    3. GENERATION OF INTERMEDIATE POSI-TIONS IN THE PROCESS OF UNFOL-DING

    Thedefinitionof thestructuralsystemmustalsoconsiderthe differentphasesof the apertureprocess,withthepurposeof showingitscompati-bilityandanalyzingtheparticularitiesin itsbeha-viouralongthepath.

    Forthisreasonthepreviousgenerationroutinesareusedbutvaryingconsequentlythepositionof twoinitialpointsof thesystem(1,2).Thefinaldistancebetween.thesepointscoincideswiththethicknessofthedome,whilein thecompactpackagepositionitreachesthesumof exteriorandinteriorlongitudesofthefirstangularsegment(Ll, L3).

    8 o )X7

    Figure11

    137

    " .. .. ..

    i - - - - - - - - -1--- - - - - - - - -- - - - - - - - - -- - - - - - - - -- - - - - - - - -1-.- - - - - - - -- - - - - - .1-.- - - - - - -- ffii - - - - - - - - -- - - - - - - - - if- - - - - - - - - - - - - - - - en- - - - - - - - - - - - - - - - w

    - - - - - - - - - - - - - - - - j!:i= i&.LI. - - - - - - - - - - - - - - - - _ oo - - - - - - - - - - - - - - - =- - - - - - - - - - - - - -- - - - - - - - - - - - - - -

    Lg;ci::o - - - - 'S.:=- - ;;,;"'---1---- - - - -- -=1

    1-__ i:a: - - - 1-- - - - - _ ww j!:- - - - - - -1---- - - - - - - - i&.o- - - - - - - -1---- - - - - - -=

    - - - - - -1---- - - - - - -- - - - - - - -1---- - - - - - --1 -- - - - - - - -1---- - - - - - -- - - - - - - -- - - - - - - - -- - - - - - - -- - - - - - - - -

    - - - - - - - -1---- - - - - - - --1 - .. .. S!;:---- 8!RN

  • . ..', ~._._.........- VOL.43 (2002fn. 140. A' _,,,~-,-","_".n_"__",,,,._,._,,Thefirstconelusionof theinvestigationis thatthestraightlines34and56,whichconnectthesuperiorandinferiorextremesofthetransversalcrossinthefirstmodule,donotcrossin theoriginof coor-dinatesA, butdo it in thepositionA' situatedbelowthepreviousone(Fig. II). The distancebetweenthetwopointsincreaseswiththeprocessof foldingin sucha waythatthejumpsbetweenconsecutivefocusesA' areproducedwithsimilarmagnitudes(Fig.12).Thepercentageerrorineachphasedescribesadiagramelearlydescendingtotheoptimalposition,nearwhich it is practicallyahorizontalplateauofvariablewidth.

    -1-....--

    Jii..

    j:"-

    '-'T~'tT'1~'"OPTIMAL. POSmONSOFTHEFOCUSFOREACHPHASE

    Figure12

    Themaximumerrorsareproducedin themodulesof thelastlayer.However,aireadyin thesecondlayertheerrorlevelsarenotnegligibleandlatertheyaccumuIateandgrowwiththeassemblingofthesubsequentmodules.Thissituationsdiscardsapossiblealternativewhichwouldconsistin main-tainingcertainnodesdisconnectedfromeachotherduringtheunfoldingofthegrid.

    POSmON OF THE FOCUS FOR FORMINGTHE TRANSVERSAL

    CROSS OF THE RRST MODUlE (m~

    1110,810,434

    Figure13

    Ontheotherhandthelevelof theresultingerrordescribesa curvedpathwith an intermediatemaximumwhichcannotbeassumedwiththeusual

    138

    tolerancesoftheassembling(Fig.13).Theseresultspointouta possiblehypothesisaccordingtowhichthesystemisnottotallycompatiblethroughouttheseriesprecisingcertainenergeticinflowduringthecentralphases.

    Thefactthattheerrorsproducedinthesecondlayeraresignificant,continuesto pointout one firstmodule,therealcoordinatesof whicharenotyetevaluated.If thehypothesisformulatedbeforeiscorrect,it canbealsodeducedthatthementionedmodulewill be,in someway,forcedduringthementionedphases;a questionwhichhasnotyetbeen contemplatedin the known processofgeneration.

    _~~ bar~ modbar

    edge i ulesi

    Figure14

    Foranalyzingthispossibility,aquarterof thedomeis assembledwherealltheconnectionsbetweenthemodulesof contiguousbandsareuntiedexceptfortheonesthatcorrespondtothenodesplacedonthebisectorplane.It meansthatthe sequencesofmodulesarecreatedintheL-form(rowandcolumnof equalorder)whichareconnectedonlywiththepreviousandfollowingseriesby meansof thenodeson the45 degreesymmetryplane.All theeliminatedlinksaresubstitutedby newficticiousbarswiththepurposeofachievingtheconvergenceof itsextremenodestothesamepositionasofthedeformedone(Fig.14).it meansthatthesystemissubjected,throughaprocessof cakulus,tocharac-teristiceffortsnecessaryforobtainingtheadequateconnectionswithminimalenergeticinflow.

    a a a a a a a a2 is.Ift -- -- -- -- -- -- -- - - -- -- -- ---- ---- -- -- 2 to: _J.[;".. -- -..-- -- --i i19-- -- .i.--- -- -..-- t- -- -- _J.-- ol._--+-- i i i ii .i._ _.i. t- _J. t- nt'-- - -- i -- -- i -- -- -- i ---

  • . n.

    JOURNAL OF THE INTERNATIONAL ASSOCIATION FORSHELL AND SPATIAL STRUCTURES: lASS. - -- . -,

    Ji

    i

    tt

    i

    Parallellyandconsideringthecomplexunfoldingofthewholedome,it is notpossiblefor theedgesXand Y to be separatedfrom the correspondingplanes XZ and YZ, a phenomenonwhich wasobservedbefore.To resolve it, the insertionofficticiousbars,whichlink eachpointof theedgeX -(Y) with its orthogonalprojectionover the planeXZ (YZ), is similarly used. The mentionedprojectionshavetobecompelledin theirtransversaldisplacement,to assurethattheedgepointswill befinallysituatedin theadequateplane.

    At the endof theca1culusprocessthe correctconfigurationof theframeworkis obtainedandtheevaIuationof both the eriergyof defonnation,associatedwitheacheffort,andtheenergyrelativetothetotalityofthegrid,ismadepossible.

    1000

    900

    800

    o1 2 3 4 5 6 7

    PHASE OF UNFOLDING

    Figure15

    8

    Taking intoconsiderationtheresults,it is deducedthat the structure is not strictly compatiblethroughoutits aperture.However,the lattercandevelopif an externalinflow of energy,havingvariablemagnitudeaccordingto thephasethatthesystemgoesthrough,is produced.The mentionedparameterpresentsa variationcurvewith anintennediatemaximumvalue, elearly acceptablewithadjustmenttousualrealizationprocedures,anda path, descendingin accordancewith themovementtowards any of the two extreme

    situations(Fig. 15).On theotherhand,as it isshownonthediagramtherequirementsnoticeablydescendwiththeincreaseofthedomethickness.

    Figure16

    Theenergyintroducedintothesystemis usedforreachingafeasiblepositionateachmoment,actingoverits.barsbasicallythroughthemechanismsofflexure.The associateddefonnationsimplicateminimalstressresponsein thepiecesalwaysbeingbelowthelimitofelasticityofmateriaL.As aresult,thedescribedproposalprovesthattheprocessesoffoldingandunfoldingarefeasiblewitha reasonableconcurrenceof energyandshowsthatduringitsdevelopmentthesystempresentsa correctbeha-viourinastatealwaysfarfromplasticenvironment(Fig.16).Thisdoesnotmeananylimitationinthepractice.Even if the structurewas totallycompatible,anenergeticinflowwouldbenecessarytoovercomethefriction.

    9 4. GEOMETRICAL COMPATmILITY INTHE CENTRAL NODE OF THE TRUSS

    Thedescribedmodu1esaredefinedinthefirstplacebythefactthattheirfourprincipalbarsarejoinedwith eachotherby meansof their intennediatenode.This connectionis resolvedthroughtheinterpositionofacylindricalpiece.Thismechanismmakesthe mentionedbarsmovelaterallywithrespectto their theoreticalintersection.Theeccentricitycan be of a local character,whencurvedorbrokenpathbarsareused,orconsistinahomogeneoustranslationofthewholestraighttube.Thesecondpossibility,shownonthediagram,leadstotheextremenodes,havingthesamescaleasof

    139

  • :1

    i

    i

    !

    i

    i

    [9] Eserig, F.; Valeareel,J. P.; Sanehez,J."Deployablestructuressquaredin plandesignandconstruction".InternationalSymposiumonSpatial Structures:Heritage,PresentandFuture.Vol. 1,pp.483-493.Milan,1995.

    [10]Valeareel,J. P. "Cupulas.desplegablesdegrandeslucesconmodulosdeaspas".i En-cuentroInternacionalde estructurasligerasparagrandesluces.FundacionEmilio PerezPifiero.pp.109-136.1992.

    [11]Valeareel,J. P.; Eserig,F. "La obraarquitec-tonicadeEmilioPerezPifiero".BoletinAcade-micodela EscuelaT. S. deArquitecturadeA Comfia.N 17,pp.35-45.1993.

    Figure19

    [12]Valeareel,J. P.; Eserig, F.; Martin, E."Expandabledomeswithincorporatedrootingelements".Four InternationalConferenceonSpaceStructures.Vol. 1,pp.804-812.Surrey,1993.

    [13]Valeareel,J. P.; Eserig,F.; Martin,E."Expandablespacestructureswithself-foldingtextilecover".InternationalConferenceonRapidlyAssembledStructures.Vol. 8,pp.283-295.Southampton,1991.

    [14]Valeareel,J. P.; Eserig, F.; Estevez,J.;Martin,E. "Largespanexpandabledomes".InternationalCongresson InnovativeLargeSpanStructures.Vol. 2,pp.617-627.Toronto,1992.

    141

    .. ,. '.;" ..t',io".,..' " '\,'.. .'. ._" .,' I,") . . ;

  • J-'.

    the interiorjoint, thatin its tum causeseccen-tricitiesinthementionedconnections.

    Figure17

    Thediamet~roftheinteriorjointpieceturnsouttobe fundamentalfor thepossibleevolutionof themoduleinsofarasaminoraperturecorrespondstoaminordimension:Withtherotationof thebarsacontactmaybeproducedbetweenthembeforethepositionoftotalunfoldingisreached(Fig.J 7).

    The parametersthatdefinetheproblemcanberelatedthroughthefollowingexpression:

    tan 13=sina . Dc =cos13 .(~ +sina

    )Db sma

    . De Diameterofthejointpiece.Db Diameterofthebars.a Angle formedby the bar with its

    horizontalprojectionovertheinferiorfaceofthemodule(Fig.18).

    ..

    Figure18

    140

    lt isnecessarytotakeintoaccountthatagratevalueDeofdiameter,pushingasideaestheticalquestions,implicatesmajoreccentricitiesin thebehaviourofthe forces of the element.For reducingthementioneddimensionto acceptablelimits thedescribedangleis tobeincreased,whichmeanstoalterthethicknessofthedomeorthediscretizationfrequency.

    The applicationprogramdesignedin accordancewiththisworkpermittedtoconfiguredomesasit isdescribedintheexampleof Fig.19,thatwouldco-vertheprecinctof35x35m.withthepossibilityofincorporatinginteriorandexteriorcoveringtextIles.

    s. REFERENCES

    [I] Eserig,F. "Estructurasespacialesde barrasdesplegables".Informesde la Construcci6n.Vol.36,nO365,pp.35-46.Madrid,1984.

    [2]Eserig,F. "Expandablespaceframestructu-res".ThirdInternationalConferenceon SpaceStructures.pp.845-850.Surrey,1984.

    [3]Eserig, F. "Expandablespacestructures".InternationalJournalofSpaceStructures.Vol.I,nO2,pp.79-91.1985.

    [4]Eserig,F.; Valeareel,J. P. "Curvedexpanda-ble spacegrids".InternationalConferenceonthe Design and Constructionon Non-conventionalStructures.Vol. 2, pp. 157-166.Edinburgh,1987.

    [5]Eserig,F.; Valeareel,J. P. "Geometryof ex-pandable space structures".InternationalJournalof SpaceStructures.Vol 8. nO1-2,pp.71-84.1993.

    [6]Eserig,F.; Valeareel,J. P. "To covera swim-ming pool with an expandablestructure".InternationalConferenceonRapidlyAssembledStructures.Vol. 8, pp.273-282.Southampton,1991.

    [7]Eserig,F.; Valeareel,J. P.; G,o. "Designofexpandablesphericalgrids". Ten yearsofprogressin shell and spatial structures.CEDEX-IASS.Vol.4.Madrid,1989.

    [8]Eserig, F.; Valeareel,J. P.; Sanehez,J."Deployablecoveron a swimmingpool inSeville".Journalof the InternatIonalAsso-ciationforShellandSpatialStructures.Vol.37,nO120,pp.39-70.1996.