8
Gas cap drive reservoirs In some instances, oil reservoirs are discovered with a segregated gas zone overlying an oil column. The overlying gas zone is referred to as a primary gas cap. In addition to free gas, gas caps usually contain connate water (/Glossary%3AConnate_water) and residual oil. The underlying oil column is sometimes referred to as an oil leg. In other instances, as reservoir pressure declines with production, gas evolves in the reservoir (see Solution gas drive reservoirs (/Solution_gas_drive_reservoirs)) and migrates to the top of the structure to add to an existing primary gas cap or to form a gas cap. If properly harnessed, gas caps can enhance oil recovery considerably. The degree with which they improve recovery depends mainly on their size and on the vertical permeability and/or formation dip. Producing wells usually are completed only in the oil leg to minimize gas production. Contents 1 Properties 2 Performance 2.1 Nonsegregation drive gas caps 2.2 Segregation drive gas caps 2.2.1 Gas reinjection 3 Materialbalance analysis 4 Nomenclature 5 Subscripts 6 References 7 Noteworthy papers in OnePetro 8 External links 9 See also Properties Broadly, gas caps are classified as segregating or nonsegregating. Table 1 summarizes the distinguishing characteristics of each. (/File%3AVol5_Page_0921_Image_0001.png) Table 1 Segregating gas caps are gas caps that grow and form an enlarged gas cap zone. Fig. 1 shows a schematic of a segregation drive reservoir. Two different segregation mechanisms are possible: 1. Expansion of and frontal displacement by preexisting gas cap gas 2. Upward migration of oilcolumn gas as solution gas is liberated and a freegas phase forms The second mechanism involves the simultaneous downward movement of oil to balance the upward flow of gas. This diametric flow pattern is referred to as counterflow. [1] Pirson [2] refers to the first mechanism as passive segregation and the latter mechanism as active segregation. Hall [1] refers to the first mechanism as segregation drive without counterflow and the second mechanism as segregation drive with counterflow. Both mechanisms are timedependent, and their displacement efficiency depends on the gas/oil density difference, the producing rate, and the vertical permeability. Both segregation mechanisms yield a progressively descending gasoil contact (/Glossary%3AGasoil_contact) (GOC). The segregationdrive mechanisms can be augmented by crestal gas injection. If neither of these segregation mechanisms is present, the gas cap is called a nonsegregating gas cap. Nonsegregating gas caps do not form an enlarged gascap zone, and their GOC appears stationary. The gascap gas expands but the displacement efficiency is so poor that the expanding gas appears to merely diffuse into the oil column. Fig.2 illustrates the distribution of water, oil, and gas in a nonsegregationdrive gascap reservoir.

Gas Cap Drive Reservoirs - Petrowiki

Embed Size (px)

DESCRIPTION

Gas Cap Drive

Citation preview

  • Gascapdrivereservoirs

    Insomeinstances,oilreservoirsarediscoveredwithasegregatedgaszoneoverlyinganoilcolumn.Theoverlyinggaszoneisreferredtoasaprimarygascap.Inadditiontofreegas,gascapsusuallycontainconnatewater(/Glossary%3AConnate_water)andresidualoil.Theunderlyingoilcolumnissometimesreferredtoasanoilleg.Inotherinstances,asreservoirpressuredeclineswithproduction,gasevolvesinthereservoir(seeSolutiongasdrivereservoirs(/Solution_gas_drive_reservoirs))andmigratestothetopofthestructuretoaddtoanexistingprimarygascaportoformagascap.Ifproperlyharnessed,gascapscanenhanceoilrecoveryconsiderably.Thedegreewithwhichtheyimproverecoverydependsmainlyontheirsizeandontheverticalpermeabilityand/orformationdip.Producingwellsusuallyarecompletedonlyintheoillegtominimizegasproduction.

    Contents

    1Properties2Performance

    2.1Nonsegregationdrivegascaps2.2Segregationdrivegascaps

    2.2.1Gasreinjection3Materialbalanceanalysis4Nomenclature5Subscripts6References7NoteworthypapersinOnePetro8Externallinks9Seealso

    Properties

    Broadly,gascapsareclassifiedassegregatingornonsegregating.Table1summarizesthedistinguishingcharacteristicsofeach.

    (/File%3AVol5_Page_0921_Image_0001.png)

    Table1

    Segregatinggascapsaregascapsthatgrowandformanenlargedgascapzone.Fig.1showsaschematicofasegregationdrivereservoir.Twodifferentsegregationmechanismsarepossible:

    1. Expansionofandfrontaldisplacementbypreexistinggascapgas2. Upwardmigrationofoilcolumngasassolutiongasisliberatedandafreegasphaseforms

    Thesecondmechanisminvolvesthesimultaneousdownwardmovementofoiltobalancetheupwardflowofgas.Thisdiametricflowpatternisreferredtoascounterflow.[1]

    Pirson[2]referstothefirstmechanismaspassivesegregationandthelattermechanismasactivesegregation.Hall[1]referstothefirstmechanismassegregationdrivewithoutcounterflowandthesecondmechanismassegregationdrivewithcounterflow.Bothmechanismsaretimedependent,andtheirdisplacementefficiencydependsonthegas/oildensitydifference,theproducingrate,andtheverticalpermeability.

    Bothsegregationmechanismsyieldaprogressivelydescendinggasoilcontact(/Glossary%3AGasoil_contact)(GOC).Thesegregationdrivemechanismscanbeaugmentedbycrestalgasinjection.

    Ifneitherofthesesegregationmechanismsispresent,thegascapiscalledanonsegregatinggascap.Nonsegregatinggascapsdonotformanenlargedgascapzone,andtheirGOCappearsstationary.Thegascapgasexpandsbutthedisplacementefficiencyissopoorthattheexpandinggasappearstomerelydiffuseintotheoilcolumn.Fig.2illustratesthedistributionofwater,oil,andgasinanonsegregationdrivegascapreservoir.

  • (/File%3AVol5_Page_0902_Image_0001.png)

    Fig.1Distributionofwater,oil,andgasandpositionofgas/oilcontact(GOC)inasegregatinggascapreservoir:(a)beforeproductionand(b)duringdepletion.

    (/File%3AVol5_Page_0922_Image_0001.png)

    Fig.2Distributionofwater,oil,andgasinanonsegregatinggascapreservoir:(a)atdiscoveryand(b)duringdepletion.

    Broadly,gascapsacttomitigatethepressuredecline,extendthelifeofthereservoir,andultimatelyimprovetheoilrecovery.Thedegreeofoilrecoveryimprovementdependsonthefollowing:

    SizeofthegascapWhetheritisasegregationdriveornonsegregationdrivegascap

    Tounderstandthemechanicsofgascapreservoirs,numericalsimulationresultsofsegregatingandnonsegregatinggascapsarepresented.EachexampleusesthefluidpropertydatainTable2.EachexamplealsousesthereservoirdatasummarizedinTable3,exceptthattheinitialpressureis1,640psiainsteadof2,000psiaandthegascapthicknessis10ft.Thegas,oil,andwatersaturationsinthegascapare60,20,and20%,respectively.Thegascapinitiallycontains270,000STBofoiland816MMscfofgastheoilleginitiallycontains210millionSTBofoiland1.718Bscfofgas.Thetotaloriginaloilinplace(OOIP)=2.37millionstocktankbarrels(STB),andoriginalgasinplae(OGIP)=2.534Bscf,andm=0.33.Forreference,thesegregatingandnonsegregatinggascapcasesarecomparedwithanidenticalreservoirwithoutagascap(basecase).

    (/File%3AVol5_Page_0904_Image_0001.png)

    Table2

    (/File%3AVol5_Page_0912_Image_0001.png)

    Table3

    Performance

    Nonsegregationdrivegascaps

    Fig.3plotspressureasafunctionofcumulativeoilrecoveryforanonsegregationdrivegascapreservoir.Forcomparison,thisfigureincludestheresultsofthenogascap(base)case.Thisfigurealsoincludestheresultsofothercases,whicharediscussedlaterinthispage.AllrecoveriesarereportedasafractionoftheoriginaloillegOOIPtomakedirectcomparisonsvalid.Thenonsegregationdrivegascapcaseconsistentlyyieldshigheroilrecoveriesatagivenpressurethanthenogascapcase,whichillustratesthesuperiorrecoveryperformanceofgascaps.Viewedanotherway,thenonsegregationdrivegascapcaseconsistentlyyieldsahigherpressureatagivenoilrecoverythanthenogascapcase,whichillustratesthesuperiorpressuremaintenanceabilityofgascaps.

    (/File%3AVol5_Page_0923_Image_0001.png)

    Fig.3TheeffectofgascapandgasreinjectiononoilrecoverasafunctionofpressureforawestTexasblackoilreservoir.

    Fig.4isacompositefigureandshowstheperformanceasafunctionoftime.Thisfigureincludesthe:

    Gas/oilratio(GOR)GassaturationOilrateOilrecoveryhistories

  • TheGORhistoryshowsthatnonsegregatinggascapseventuallyyieldhigherproducingGORsthanthenogascapreservoir.ThehigherGORiscausedbyhighergassaturationintheoilleg.Thehighergassaturationiscausedbythegascapgasmigratingfromthegascapintotheoillegasthepressuredeclines.

    (/File%3AVol5_Page_0924_Image_0001.png)

    Fig.4Performanceofagascapreservoir:(a)instantaneousproducingGOR,(b)gassaturation,(c)oilrate,and(d)oilrecoveryhistoriesforawestTexasblackoilreservoir.

    Fig.4alsoshowstheeffectofanonsegregatinggascapontheoilratehistory.Thenonsegregatinggascapconsistentlyyieldshigheroilratesthanwithoutthegascap.Ifaneconomiclimitcorrespondingtoaminimumoilrateof20STB/Disarbitrarilyassumed,thenthenogascapcaseisterminatedafter13.8yearswhilethenonsegregationdrivegascapcaseisterminatedafter15.2years.Thiscomparisonshowsthatthepresenceofagascapextendstheprimaryrecoverylifeofthereservoir.Thecurveendpointsdenotethetimeoftermination.Thenogascapcaseisslightlydifferentfromtheblackoilcasediscussedearlierduetotheassumedloweroriginalpressure.

    Fig.4includesthefractionaloilrecoveryhistoryFig.5showsthegasrecoveryhistory.Thecurveendpointsdenotethetimeoftheeconomiclimit.Table4summarizestheconditionsattheeconomiclimit.Thenogascapandnonsegregationdrivegascapcasesrecover23.7%and26.8%oftheoillegOOIP,respectively.Thus,thenonsegregatinggascaprecoversmoreoilthanwithoutthegascap.Thenonsegregatinggascapalsoisterminatedatahigherpressure,producingGOR,gassaturation,andgasratethanwithoutthegascap.Thenonsegregatinggascaprecovers74.9%oftheoillegOGIPwhilethenogascapcaserecovers52.3%oftheoillegOGIP.Thenonsegregatinggascaprecoversmoregasbecausesomeofthegascapgasinfiltratestheoillegandisproduced.Inconclusion,thepresenceofanonsegregatinggascap:

    YieldshigherultimateoilandgasrecoveriesAcceleratesrecoveryExtendstheprimaryrecoverylifeofareservoir

    (/File%3AVol5_Page_0925_Image_0001.png)

    Fig.5TheeffectofgascapandgasreinjectionongasrecoveryhistoryforawestTexasblackoilreservoir.

    (/File%3AVol5_Page_0925_Image_0002.png)

    Table4

    Theeffectofagascaponoilrecoveryisrelateddirectlytoitssizerelativetothesizeoftheoilleg.Thesizeofthegascapisdescribedeffectivelyintermsofthedimensionlessvariablem,whichisdefinedastheratiooftheinitialfreegasandfreeoilphasevolumes(seeEq.5).Ifallthefreegasislocatedinthegascap,allthefreeoilislocatedintheoilleg,andtheoillegandgascapporositiesandconnatewatersaturationsarethesame,thenmrepresentstheratioofthegascapandoillegporevolume(PV).Fig.6showstheeffectofmonthefinalfractionaloilrecoveryforannonexpandinggascapreservoir.TheresultsinFig.6usethesamereservoirdataasintheprevioussimulationsexceptdifferentgascapsizesareconsidered.Otherreservoirconditionsmayyieldslightlydifferentresults.Themostnoticeableimprovementinoilrecoverycomesasmincreasesfrom0to2.0.

    (/File%3AVol5_Page_0926_Image_0001.png)

    Fig.6Theeffectofdimenstionlessgascapsize(m)onfinalprimaryoilrecoveryandpeakproducingGORforawestTexasblackoilreservoir.RecoveriesreportedaspercentofoillegOOIP.

  • ThegascapsizealsoaffectsthepeakGOR.Asthegascapincreases,thepeakGORincreases.Fig.6showsthepeakGORasafunctionofmforthewestTexasreservoirproperties.ThepeakGORincreaseswiththegascapsizebecausemoregascapgasmigratesintotheoilcolumnasthegascapincreases.Insummary,nonsegregationdrivegascapreservoirstendtoyieldfinalfractionaloilrecoveriesintherangeof15to40%oftheOOIP.Segregationdrivegascapreservoirstendtoyieldevenhigherfinaloilrecoveries.

    Segregationdrivegascaps

    Segregatinggascapsarecharacterizedbyprogressivelydescendinggas/oilcontacts(GOCs).ThemovementoftheGOCiscausedbyactiveorpassivegravitysegregation.Activegravitysegregationisthesimultaneousmigrationofgasupwardanddrainageofoildownward.Passivesegregationisthenaturalexpansionofthegascapgas.BothoftheseprocessesinvolvefrontaldisplacementofoilattheGOC.Frontaldisplacementhelpsdriveoiltotheproducingwells.Frontaldisplacementdoesnotdominateinnonsegregationdrivegascapreservoirs.Theextenttowhichgravitysegregationoccursdependsontheverticalpermeabilityandtherateatwhichfluidsarewithdrawnfromthereservoir.Thegreatertheverticalpermeabilityandslowerthefluidwithdrawal,themorepronouncedtheeffectsofgravitysegregation.

    Figs.3through5includesimulationresultsofasegregationdrivegascapreservoir.Thesesimulationsassumepropertiesidenticaltothoseofthenonsegregationdrivegascapsimulationsexceptgravitysegregationisincluded.Thesimulationsassumenofreegasproductionfromthegascap.

    Fig.3showsthepressureasafunctionofcumulativeoilrecovery.Thisfigureshowsthatoilrecoveryinasegregationdrivegascapreservoiratagivenpressureisconsistentlygreaterthanthatinanonsegregationdrivegascapornongascapreservoir,especiallyatlowpressureswhentheeffectsofgasexpansionbecomepronounced.Theoilrecoveryperformanceisdiscussedbelow.

    Fig.4showstheeffectofasegregatinggascapontheGORhistory.OnlyamarginalincreaseintheGORisnotedafter15years,theGORactuallydecreasesslightly.ThistypeofGORbehaviorischaracteristicofsegregationdrivegascapreservoirs.[3][4][5]Thesegregatinggascapeffectivelydrivesandconcentratesoilintotheshrinkingoilleg.TheoillegshrinksastheGOCdescendsthus,thesegregatinggascapminimizesthegassaturationintheoilleg.TheGORreversalcoincideswithareversalinthegassaturation.Fig.4includesthegassaturationhistory.Thegassaturationsteadilyincreasesuntilitpeaksatapproximately0.25PVthenitdecreases.TheGORandgassaturationreversalsoccuratamoderatetolowpressurewhentheexpansionofthegascapgasbecomespronounced.ThechangeinthepositionoftheGOCyieldsameasureoftheoillegshrinkage.Attermination,theGOChasdescendedapproximately9.3ftintotheoriginal20ftoilcolumn.

    Fig.4includestheoilratehistory.Theoilrateforthesegregatinggascapisconsistentlyhigherthanforthenonsegregatinggascaporwithoutthegascap.Theoilrateeventuallyflattensouttobetween20and50STB/Dandstayswithinthisrangefor15to31years.Thismoderatebutsteadyoilrateexplainsthesuperiorperformanceandlonglifeofsegregationdrivegascapreservoirs.Table4summarizesandcomparestheprimaryrecoverylifetimesofthevariouscases:

    Segregatinggascaphasalifeof31.3yearsNonsegregatinggascaphasalifeof15.2yearsSolutiongasdrive(basecase)hasalifeof13.8years

    Fig.4includesthecumulativeoilrecoveryhistory.Thesegregatinggascapreservoirrecovers38.7%oftheoillegOOIPwhilethenonsegregatinggascapandsolutiongasdrivereservoirsrecover26.8and23.7%oftheOOIP,respectively.Suchahighrecoverylevelforasegregationdrivereservoirisnotuncommon.Itisnotuncommonforgravitydrainagereservoirstorealizerecoveriesashighas60to70%oftheOOIPhowever,theygenerallyrequirealongtimetodoso.ThecurveendpointsinFig.4denotethetimeoftheeconomiclimit.Thesegregatinggascapreservoirterminatesatapressureof508psia.

    Fig.5showsthegasrecoveryhistory.Thesegregatinggascapreservoirrecovers91.1%oftheoillegOGIP.Thisrecoverylevelisconsiderablygreaterthanthenonsegregatinggascaporsolutiongasdrivereservoirs(74.9and52.3%,respectively).Onereasonsegregatinggascapreservoirstendtoyieldsuchhighgasrecoveriesisthattheyoftenrecoversomeoftheoriginalgascapgas,whichmigratesintotheoilleg.Inaddition,theygenerallyrealizelowerterminationpressures.

    Thefinalfractionaloilrecoveryinasegregatinggascapreservoirisastrongfunctionoftheverticalcommunicationwithinthereservoir.Verticalcommunicationdictatestheextentofsegregation.Ifverticalcommunicationisgood,thenmostofthegascapgaswillbeavailableforsegregation.Itwillalsobeavailabletohelpdriveoilthroughfrontaldisplacementtotheproducingwells.Ifverticalcommunicationispoor,thenverylittle,ifany,ofthegascapgaswillsegregate.Insummary,segregationiscontrolledprincipallybythreevariables:

    VerticalreservoirpermeabilityProducingrateWellspacing

    Aswellspacingandverticalpermeabilityincreaseandastheproducingratedecreases,theeffectofgravitysegregationincreases.Fortheeffectsofgravitysegregationtobeimportant,however,thewellspacingmayneedtobeprohibitivelylargeortheproducingratemayneedtobeprohibitivelylow.Insuchreservoirs,theverticalpermeabilityisnothighenoughtopermitmuchgravitysegregation.

    Thelikelyroleofgravitysegregationcanbemeasuredintermsofagravitynumber,Ng.Ngisdefinedastheratioofthetimeittakesafluidtomovefromthedrainageradiustothewellboretothetimeittakesafluidtomovefromthebottomofthereservoirtothetop.Inoilfieldunits,thegravitynumberis

    (/File%3AVol5_page_0927_eq_001.png)....................(1)

    where:

    kv=verticalpermeability,md=densitydifference,lbm/ft3re=drainageradius,ftq=producingrateatreservoirconditions,RB/Do=oilviscosity,cp

    GravitysegregationislikelypronouncedifNg>10gravitysegregationislikelyunimportantifNg

  • Fig.3showstheeffectofgasreinjectiononpressureasafunctionofoilrecovery.OilrecoveryatagivenpressureisconsistentlyhigherforthegasreinjectioncasethanfortheothercasesinFig.3,exceptatverylowpressuresatwhichthesegregatinggascapcaseyieldssuperiorperformance.Gasreinjectionleadstohigheroilrecoveriesbecausethecompressedreinjectedgaseffectivelyaddsextraenergytothereservoir.

    Fig.4showstheeffectofgasreinjectionontheGORhistory.GasreinjectionleadstoveryhighproducingGORs,significantlyhigherthantheothercases.TheGORishigherbecausethegassaturationishigher.Thegassaturationishigherbecausereinjectedgasandinitialgascapgasmigrateintotheoillegduringpressuredepletion.Thisoccursbecausethegascapisnonsegregating.HighproducingGORsareacharacteristicfeatureofreservoirssubjecttogasreinjectionifthereislittleornoactivegravitydrainage.HighproducingGORsmeanthatlargevolumesofproducedgaswillhavetobehandledandprocessedatthesurface.

    Fig.4includestheeffectofgasreinjectionontheoilratehistory.Thisfigureshowsthattheoilrateishigherforthefirst81/2yearsforthegasreinjectioncasethanforanyoftheothercases.After81/2years,theoilrateforthesegregatinggascapcaseisslightlygreaterthantheoilrateforthegasreinjectioncase.Theseresultsdemonstratethatgasreinjectionisaneffectivemeanstoarrestthenormaloilratedeclinedramatically.

    Fig.4alsoshowstheeffectofgasreinjectiononthefractionaloilrecoveryhistoryandthatthegasreinjectioncaseissuperiortotheothercases.Thegasreinjectioncaserecovers36.7%oftheoriginaloillegOOIPatitseconomiclimitof181/2years.Onlythesegregatinggascapreservoirrecoversmoreoil(38.7%)however,thesegregatinggascapreservoirrequiresmoretimetorecovertheadditionaloil.

    Fig.5showstheeffectofgasreinjectiononthefractionalgasrecoveryhistory.ThefractionalgasrecoveryisthecumulativeproducedwellheadgasnormalizedbytheoriginaloillegOGIP.Thegasreinjectioncaserecovers177%oftheoillegOGIP(seeTable4).Morethan100%oftheoillegOGIPisproducedbecausesomeofthereinjectedgasisproduced.Because30%oftheproducedgasisnotreinjected,0.30177or53.1%oftheoillegOGIPisavailableforgassales.Thissalesgasrecoveryiscomparabletothecasewithoutgasreinjection(52%OGIP).

    Reservoirssubjecttogravitydrainageareespeciallyattractiveforgasreinjection.Crestalgasinjectionintothedevelopinggascapisthepreferredstrategybecausegravitydrainagehelpscontrolthemovementoftheinjectedgas.Excellentsweepanddisplacementefficienciesandhighoilrecoveriescanberealized.TheTensleeppoolintheElkBasinfieldinWyomingisagoodexample.[6][7][8]Thispoolwasprojectedtorecoverapproximately64%oftheOOIP.Seetheimmisciblegasinjectioninoilreservoirs(/Immiscible_gas_injection_in_oil_reservoirs)pageformoreinformationongravitydrainage.

    Materialbalanceanalysis

    Thepurposeofamaterialbalanceanalysisincludesconfirmingtheproducingmechanismandestimatingthefollowing:

    Originaloilinplace(OOIP)Originalgasinplace(OGIP)Sizeofthegascap

    Theapplicablematerialbalanceequationforinitiallysaturatedoilreservoirsis[9][10][11]

    (/File%3AVol5_page_0928_eq_001.png)....................(2)

    Thisequationisapplicabletoallinitiallysaturatedreservoirsregardlessofthedistributionoftheinitialfreegas.Forexample,thisequationisapplicabletoreservoirswhethertheinitialfreegasissegregatedintoagascaporuniformlydispersedthroughoutthereservoir.Eq.2alsoappliestowaterdriveshowever,ifthefollowingmethodsareappliedtowaterdrives(/Waterdrive_reservoirs),thewaterinfluxhistorymustbereliablyknown.Ifthewaterinflux(/Water_influx_models)historyisunknown,thenthemethodsinmaterialbalanceinwaterdrivereservoirs(/Material_balance_in_water_drive_reservoirs)mustbeapplied.

    ThequantitiesGfgiandNfoiarerelatedtoN(OOIP)andG(OGIP)bythefollowingequations:

    (/File%3AVol5_page_0929_eq_001.png)....................(3)

    and (/File%3AVol5_page_0929_eq_002.png)....................(4)

    wheremistheratioofthefreegasphaseandfreeoilphasevolumesandisdefinedby:

    (/File%3AVol5_page_0929_eq_003.png)....................(5)

    Thedimensionlessvariablemissometimescalledthedimensionlessgascapvolume.

    BecauseGfgiandNfoiareindependent,theymustbedeterminedsimultaneously.Atleasttwosetsoftheindependentvariables(F,We,Egwf,Eowf)mustbeknownattwoormorepressures(otherthantheinitialpressure)todeterminetheset(Gfgi,Nfoi).Ifthreeormoresets(F,We,Egwf,Eowf)areknown,thenmultiplesets(Gfgi,Nfoi)canbedetermined.Theoptimalsetisdeterminedbyoneoftwoleastsquaressolutiontechniques:iterativeordirectmethods.

    Intheiterativemethod,Eq.2isexpressedas

    (/File%3AVol5_page_0929_eq_004.png)....................(6)

    whereEtisthetotalexpansivityexpressedperunitvolumeofstocktankoilandisdefinedby

    (/File%3AVol5_page_0929_eq_005.png)....................(7)

    ThesolutionproceduretoestimatetheOOIPandOGIPinvolvesthefollowingsteps:

    1. ComputeF,Egwf,andEowfforeachdatapoint(i.e.,averagereservoirpressuremeasurement).2. Guessm.3. ComputeEt(m)withEq.7.4. EstimateNfoiwithaleastsquaresanalysisusingEq.8.

  • (/File%3AVol5_page_0929_eq_006.png)....................(8)

    wherejdenotesthedatapointindexandnisthetotalnumberofdatapoints.

    5. ComputetheresidualRforeachdatapointwith

    (/File%3AVol5_page_0929_eq_007.png)....................(9)

    6. Computesumofthesquaresofresidual,Rss,as

    (/File%3AVol5_page_0930_eq_001.png)....................(10)

    7. ReturntoStep2andrepeatuntilRssisminimized.8. ComputeG,N,andGfgifromEqs.3through5.

    Minimizationalgorithmsspeedsolution.Thisprocedureisideallysuitedforspreadsheetcalculation,especiallyspreadsheetprogramsthatcontainminimizationalgorithms.

    TheuseofEq.8inStep4todetermineNfoiisequivalenttotheslopeofa(FWe)vs.Et(m)plot.ThisgraphicalsolutionmethodcanbesubstitutedforEq.8inStep4if

    desired.Overall,Steps2through7areequivalenttothegraphicalprocedureofvaryingmuntilthestraightestpossible(FWe)vs.Et(m)plotisrealized.[12]Fig.7showsthequalitativeeffectofmontheshapeofthe(FWe)vs.Etplot.

    Ifmistoosmall,theplotcurvesupwardslightlyIfmistoolarge,theplotcurvesdownwardslightly

    (/File%3AVol5_Page_0930_Image_0001.png)

    Fig.7Theeffectofmonaplotof(FWe)vs.Et.

    Oncemisdetermined,thefinal(FWe)vs.Etplotisusedtoconfirmtheproducingmechanism.Thelinearityoftheplotisameasureofmaterialbalance(/Material_balance_in_oil_reservoirs)andtheapplicabilityofthepresumedproducingmechanism.Iftheplotexhibitsconsiderablecurvature,theneither:

    Thepresumedmechanismisincorrect

    or

    Additionalproducingmechanismsareactive

    Ifcurvatureexists,theshapeofthecurvatureprovidesinsightintothetrueproducingmechanism.Forinstance,iftheplotcurvesupward,thisindicatesthatnetwithdrawalexceedsnetexpansionandthatwaterinflux,forexample,hasbeenignoredorispossiblyunderestimated.

    Asanalternativetotheiterativemethod,Walsh[11][13]presentedadirectmethod.Thismethodisbasedonleastsquaresmultivariateregression.Theleastsquaresequationsaresimplebutlengthy.Thetechniqueisideallysuitedforspreadsheetcalculation.Walshsmethodisespeciallyattractivebecauseitavoidsiterationandthecomplicationsofattainingandjudgingconvergence.

    HavlenaandOdeh[12]proposedanothersolutionmethodinwhich(FWe)/Eowfisplottedvs.(Egwf/Eowf)theslopeoftheplotisequaltoGfgiandtheyinterceptisequaltoNfoi.Thismethodispopularandattractivebecauseityieldsadirectsolution.Intheory,thismethodisperfectlyacceptable.Inpractice,however,ithasshowntobeunreliable

    becauseitsuffersfromhypersensitivitytopressureuncertainty.[13][14]ThemethodhasbeenshowntoyieldhighlyerroneousGfgiandNfoiestimatesinthepresenceofonly

    smallamountsofuncertainty.Forinstance,Walsh[13]showsthatonlya5psipressureuncertaintyyieldedanerrorofmorethan150%inNfoiandanerrorofmorethan250%inGfgi.Thehypersensitivityiscausedbythefactthatthedivisor(Eowf)approacheszeroasthepressureapproachestheinitialpressure.SmallerrorsinEowf,inturn,producelargeerrorsinthequotients:(FWe)/Eowf(Egwf/Eowf)

    Tehrani[15]callsthisproblema"lossinresolvingpower."Becauseofthishypersensitivity,thismethodshouldbeusedcautiously.

    Walsh[13]testedthedirectanditerativemethodsfortheirtolerancetouncertainty.Heobservedsensitivity,butthedegreeofsensitivitywaslessthanthemethodofplotting(FWe)/Eowfvs.(Egwf/Eowf).Heconcludedthatmaterialbalancemethodsforgascapreservoirsshouldbeusedcautiously.

    Nomenclature

    Bg = gasFVF,RB/scfF = totalfluidwithdrawal,L3,RB

  • G = totaloriginalgasinplace,L3,scfGfgi = initialfreegasinplace,L3,scfEgwf = compositegas/water/rockFVF,RB/scfEowf = compositeoil/water/rockFVF,RB/STBEt = totalexpansivity,RB/STBkv = verticalpermeability,L2,mdN = totaloriginaloilinplace,L3,STBNfoi = initialfreeoilinplace,L3,STB

    Ng = dimensionlessgravitynumberq = producingrateatreservoirconditions(RB/D)orsurfaceconditions(STB/D),vL3/tre = reservoirdrainageradiusRj = residualforpointj,L3,RBRs = dissolvedGOR,scf/STBRss = sumofsquaresoftheresidual,L6,RB2

    Rv = volatilizedoil/gasratio,STB/MMscfVfgi = initialvolumeoffreegas,L3,RBVfoi = initialvolumeoffreeoil,L3,RBWe = cumulativewaterinflux,L3,RB = densitydifference,m/L3,lbm/ft3andg/cm3

    o = oilviscosity,m/Lt,cp

    Subscripts

    i = initialconditionj = index

    References

    1. 1.01.1Hall,H.N.1961.AnalysisofGravityDrainage.JPetTechnol13(9):927936.SPE1517G.http://dx.doi.org/10.2118/1517G(http://dx.doi.org/10.2118/1517G)2. Pirson,S.J.1958.OilReservoirEngineering.NewYorkCity:McGrawHillBookCo.Inc.3. Muskat,M.1949.PhysicalPrinciplesofOilProduction.NewYorkCity:McGrawHillBookCo.Inc.4. Katz,D.L.1942.PossibilitiesofSecondaryRecoveryfortheOklahomaCityWilcoxSand.Trans.,AIME146:28.5. Hill,H.B.andGuthrie,R.K.1943.EngineeringStudyoftheRodessaOilFieldinLouisiana,Texas,andArkansas.ReportInvestigation3715,USBureauofMines,

    Washington,DC,87.6. Garthwaite,D.L.andKrebill,F.K.1962.Supplement1962:PressureMaintenancebyInertGasInjectionintheHighReliefElkBasinField.InFieldCaseHistories,Oil

    Reservoirs,Vol.4.Richardson,Texas:ReprintSeries,SPE.7. Garthwaite,D.L.1975.Supplement,1975:PressureMaintenancebyInertGasInjectionintheHighReliefElkBasinField.FieldCaseHistories,OilandGas

    Reservoirs,Vol.4a.Richardson,Texas:ReprintSeries,SPE.8. Stewart,F.M.,Garthwaite,D.L.,andKrebill,F.K.1955.PressureMaintenancebyInertGasInjectionintheHighReliefElkBasinField.Trans.,AIME204:49.9. Walsh,M.P.1995.AGeneralizedApproachtoReservoirMaterialBalanceCalculations.JCanPetTechnol34(1).PETSOC950107.http://dx.doi.org/10.2118/9501

    07(http://dx.doi.org/10.2118/950107)10. Walsh,M.P.,Ansah,J.,andRaghavan,R.1994.TheNew,GeneralizedMaterialBalanceasanEquationofaStraightLine:Part2ApplicationstoSaturatedandNon

    VolumetricReservoirs.PresentedatthePermianBasinOilandGasRecoveryConference,Midland,Texas,1618March1994.SPE27728MS.http://dx.doi.org/10.2118/27728MS(http://dx.doi.org/10.2118/27728MS)

    11. 11.011.1Walsh,M.P.andLake,L.W.2003.AGeneralizedApproachtoPrimaryHydrocarbonRecovery.Amsterdam:Elsevier.12. 12.012.1Havlena,D.andOdeh,A.S.1963.TheMaterialBalanceasanEquationofaStraightLine.JPetTechnol15(8):896900.SPE559PA.

    http://dx.doi.org/10.2118/559PA(http://dx.doi.org/10.2118/559PA)13. 13.013.113.213.3Walsh,M.P.1999.EffectofPressureUncertaintyonMaterialBalancePlots.PresentedattheSPEAnnualTechnicalConferenceandExhibition,

    Houston,Texas,36October1999.SPE56691MS.http://dx.doi.org/10.2118/56691MS(http://dx.doi.org/10.2118/56691MS)14. Wang,B.andHwan,R.R.1997.InfluenceofReservoirDriveMechanismonUncertaintiesofMaterialBalanceCalculations.PresentedattheSPEAnnualTechnical

    ConferenceandExhibition,SanAntonio,Texas,58October1997.SPE38918MS.http://dx.doi.org/10.2118/38918MS(http://dx.doi.org/10.2118/38918MS)15. Tehrani,D.H.1985.AnAnalysisofaVolumetricBalanceEquationforCalculationofOilinPlaceandWaterInflux.JPetTechnol37(9):16641670.SPE12894PA.

    http://dx.doi.org/10.2118/12894PA(http://dx.doi.org/10.2118/12894PA)

    NoteworthypapersinOnePetro

    UsethissectiontolistpapersinOnePetrothatareaderwhowantstolearnmoreshoulddefinitelyread

    Externallinks

    UsethissectiontoprovidelinkstorelevantmaterialonwebsitesotherthanPetroWikiandOnePetro

    Seealso

    Primarydrivemechanisms(/Primary_drive_mechanisms)

    Solutiongasdrivereservoirs(/Solution_gas_drive_reservoirs)

    Waterdrivereservoirs(/Waterdrive_reservoirs)

    Oilfluidcharacteristics(/Oil_fluid_characteristics)

    PEH:OilReservoirPrimaryDriveMechanisms(/PEH%3AOil_Reservoir_Primary_Drive_Mechanisms)

  • (https://www.onepetro.org/search?q=Gascapdrivereservoirs) (http://scholar.google.ca/scholar?q=Gascapdrivereservoirs)

    (http://www.worldcat.org/search?q=Gascapdrivereservoirs) (http://wiki.seg.org/index.php?

    title=Special%3ASearch&redirs=1&fulltext=Search&ns0=1&ns4=1&ns500=1&redirs=1&title=Special%3ASearch&advanced=1&fulltext=Advanced+search&search=Gascap

    drivereservoirs) (http://wiki.aapg.org/index.php?

    title=Special%3ASearch&profile=advanced&fulltext=Search&ns0=1&ns4=1&ns102=1&ns104=1&ns106=1&ns108=1&ns420=1&ns828=1&redirs=1&profile=advanced&search=Gascapdrivereservoirs)