42
Gapless Hamiltonians for non-injective Matrix Product States. Carlos Fernández González Dpto. Fisica de los Materiales - (joint work with N. Schuch - M. M. Wolf - , J. I. Cirac - and D. Pérez-García - ) May 10, 2012 Networking Tensor Networks, Benasque 2012. Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Gapless Hamiltonians for non-injective MatrixProduct States.

Carlos Fernández GonzálezDpto. Fisica de los Materiales -

(joint work with N. Schuch -

M. M. Wolf - ,

J. I. Cirac -

and D. Pérez-García - )

May 10, 2012

Networking Tensor Networks, Benasque 2012.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 2: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Outline

Non-robustness of parent Hamiltonian construction (underperturbation of the tensor description).Construction of uncle Hamiltonians (for non-injective MPSs).Properties of uncle Hamiltonians: ground space and spectrum.Injective MPS case.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 3: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Matrix Product State description

A translationally invariant with p.b.c. MPS can be written as

|M(A)〉 =d∑

i1,...,iL=1

tr [Ai1 · · · AiL ]|i1, ..., iL〉,

with Aij ∈MD .

Canonical form: after blocking a finite number of spins, one can chosethe matrices Aij with either span{Aij } =MD (called injective) or

span{Aij } =

MD1

MD2

..

.MDk

,

∑Di = D (called block-injective).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 4: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Matrix Product State description

A translationally invariant with p.b.c. MPS can be written as

|M(A)〉 =d∑

i1,...,iL=1

tr [Ai1 · · · AiL ]|i1, ..., iL〉,

with Aij ∈MD .Canonical form: after blocking a finite number of spins, one can chosethe matrices Aij with either span{Aij } =MD (called injective) or

span{Aij } =

MD1

MD2

..

.MDk

,

∑Di = D (called block-injective).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 5: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Matrix Product State description

Normalization conditons:

1)∑

i AiA∗i = I:

A

A=

2)∑

i A∗i ΛAAi = ΛA:

AΛ A

A= Λ A ,

for certain diagonal full rank diagonal positive matrix ΛA with tr(ΛA) = 1.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 6: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Parent Hamiltonian construction

The tensor A induces a map from the virtual to the physical level

ΦA(|k, l〉) = A k l =∑

j

〈k|Aij |l〉|ij〉

A injective ⇒ ΦA injective.

A block-injective ⇒ ΦA is not injective.

A =

AD1 0 0 0 0 00 AD2 0 0 0 00 0 . 0 0 00 0 0 . 0 00 0 0 0 . 00 0 0 0 0 ADk

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 7: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Parent Hamiltonian construction

The tensor A induces a map from the virtual to the physical level

ΦA(|k, l〉) = A k l =∑

j

〈k|Aij |l〉|ij〉

A injective ⇒ ΦA injective.

A block-injective ⇒ ΦA is not injective.

A =

AD1 0 0 0 0 00 AD2 0 0 0 00 0 . 0 0 00 0 0 . 0 00 0 0 0 . 00 0 0 0 0 ADk

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 8: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Parent Hamiltonian construction

We then consider the map induced by the contracted tensor at two (or

more) sites, A c A = A A , also injective or block-injective (as

A is). One must then define the local Hamiltonian as the projector withkernel range(ΦA c A): hloc = I− Πrange(ΦA c A).H =

∑hloc is the parent Hamiltonian.

Ground space = ker(H) = ∩ ker(hloc).

Key properties: parent Hamiltonian is local, frustration free, gappedover the ground space, has as unique ground state the MPS (injectivecase) or is k-fold degenerate (k-block injective case, ground spacespanned by the different blocks).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 9: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Parent Hamiltonian construction

We then consider the map induced by the contracted tensor at two (or

more) sites, A c A = A A , also injective or block-injective (as

A is). One must then define the local Hamiltonian as the projector withkernel range(ΦA c A): hloc = I− Πrange(ΦA c A).H =

∑hloc is the parent Hamiltonian.

Ground space = ker(H) = ∩ ker(hloc).

Key properties: parent Hamiltonian is local, frustration free, gappedover the ground space, has as unique ground state the MPS (injectivecase) or is k-fold degenerate (k-block injective case, ground spacespanned by the different blocks).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 10: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Robustness of the parent Hamiltonian construction

Perturbing A means perturbing hloc.Let P be the perturbation tensor and A + εP the perturbed tensor, whichturns to be generally injective.

A injective ⇒ dim(range(φA)) = dim(range(φA+εP)) = D2. Good wayback when ε→ 0.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 11: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Robustness of the parent Hamiltonian construction

A non-injective ⇒ dim(range(φA)) < dim(range(φA+εP)) = D2. Newdirections appear when ε→ 0. Parent Hamiltonian not robust in thiscase.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 12: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonian

A

0 ε

MPS perturbation

H'

Parent H.

H P,εH ≠

A A+εP

= = =

Σhloc Σh'loc ≠ ΣhlocP,ε 0 ε

Loca

l H

amilt

onia

nsParent H.

UNCLE H.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 13: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

GHZ parent Hamiltonian ’perturbed’

GHZ unnormalized state: |GHZ〉 = |00 · · · 0〉+ |11 · · · 1〉.

|GHZ〉 =∑d

i1,...,iL=1 tr [Ai1 · · · AiL ]|i1, ..., iL〉,

with A0 =

(1 00 0

)and A1 =

(0 00 1

)Parent Hamiltonian: hloc = I− Πrange(ΦA c A c A).ker hloc = span{|000〉, |111〉}.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 14: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

GHZ parent Hamiltonian ’perturbed’

Under a generic perturbation P0 =

(a0 b0c0 d0

)and P1 =

(a1 b1c1 d1

),

we get a new injective tensor A + εP.

The new parent Hamiltonians have as local Hamiltonian hεloc theprojection with kernel spanned by

|000〉+ O(ε), (b0 + b1)(|001〉+ |011〉) + O(ε),

(c0 + c1)(|100〉+ |110〉) + O(ε), |111〉+ O(ε).

If b0 + b1 6= 0 and c0 + c1 6= 0, the limit as ε→ 0 is h′loc, with kernelspanned by|000〉, |001〉+ |011〉, |100〉+ |110〉, |111〉.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 15: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

General construction of uncle Hamiltonians

MPS tensor C =

(A 00 B

), perturbation tensor P = ε

(PA RL PB

)Two-sites perturbed tensor: (A + εP) c (A + εP) =(

A c A + O(ε) ε(A c R + R c B) + O(ε2)ε(B c L + L c A) + O(ε2) B c B + O(ε)

).

In the limit, the tensor determining the local Hamiltonian projector h′loc,Pis(

A c A A c R + R c BB c L + L c A B c B

),

as long as this last tensor is injective (which happens almost surely).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 16: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

General construction of uncle Hamiltonians

MPS tensor C =

(A 00 B

), perturbation tensor P = ε

(PA RL PB

)Two-sites perturbed tensor: (A + εP) c (A + εP) =(

A c A + O(ε) ε(A c R + R c B) + O(ε2)ε(B c L + L c A) + O(ε2) B c B + O(ε)

).

In the limit, the tensor determining the local Hamiltonian projector h′loc,Pis(

A c A A c R + R c BB c L + L c A B c B

),

as long as this last tensor is injective (which happens almost surely).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 17: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

General construction of uncle Hamiltonians

For the projector h′loc,P induced by the tensor(A c A A c R + R c B

B c L + L c A B c B

),

the local kernel is A BAX

,B BBY

,A BRZ

+R BBZ

,

B BL W

+L BA

W,X ,Y ,Z ,W

.

The uncle Hamiltonian is then H ′P =∑

h′loc,P .

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 18: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

General construction of uncle Hamiltonians

For the projector h′loc,P induced by the tensor(A c A A c R + R c B

B c L + L c A B c B

),

the local kernel is A BAX

,B BBY

,A BRZ

+R BBZ

,

B BL W

+L BA

W,X ,Y ,Z ,W

.

The uncle Hamiltonian is then H ′P =∑

h′loc,P .

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 19: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonian ground space

H ′P =∑

h′loc,P ⇒ ker(H ′P) = ∩ ker(h′loc,P)Many consecutive kernels intersected (not all!):

GHZ: ∩ ker(h′loc) =span

{⊗m |0〉,⊗m|1〉,

∑i |0 · · · 01i1 · · · 1〉,

∑i |1 · · · 11i0 · · · 0〉

}

Non-injective MPSs: ∩ ker(h′loc,P) = A BAX

, BY

B ,∑

posRA R B BB

Z∑posL

B L A BA W

,X ,Y ,Z ,W

.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 20: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonian ground space

H ′P =∑

h′loc,P ⇒ ker(H ′P) = ∩ ker(h′loc,P)Many consecutive kernels intersected (not all!):

GHZ: ∩ ker(h′loc) =span

{⊗m |0〉,⊗m|1〉,

∑i |0 · · · 01i1 · · · 1〉,

∑i |1 · · · 11i0 · · · 0〉

}Non-injective MPSs: ∩ ker(h′loc,P) = A BA

X, B

YB ,

∑posR

A R B BBZ∑

posLB L A BA

W,X ,Y ,Z ,W

.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 21: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonian ground space

H ′P =∑

h′loc,P ⇒ ker(H ′P) = ∩ ker(h′loc,P)

Closing the loop:

GHZ case:ker(H ′) = span

{⊗L |0〉,⊗L|1〉,(((((((((hhhhhhhhh

∑i |0 · · · 01i1 · · · 1〉,(((((((((hhhhhhhhh

∑i |1 · · · 11i0 · · · 0〉

}

For non-injective MPSs:

ker(H ′P) = span

{A A A , B B B

}.

ker(H ′P) = ker(H), for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 22: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonian ground space

H ′P =∑

h′loc,P ⇒ ker(H ′P) = ∩ ker(h′loc,P)

Closing the loop:

GHZ case:ker(H ′) = span

{⊗L |0〉,⊗L|1〉,(((((((((hhhhhhhhh

∑i |0 · · · 01i1 · · · 1〉,(((((((((hhhhhhhhh

∑i |1 · · · 11i0 · · · 0〉

}For non-injective MPSs:

ker(H ′P) = span

{A A A , B B B

}.

ker(H ′P) = ker(H), for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 23: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonian ground space

H ′P =∑

h′loc,P ⇒ ker(H ′P) = ∩ ker(h′loc,P)

Closing the loop:

GHZ case:ker(H ′) = span

{⊗L |0〉,⊗L|1〉,(((((((((hhhhhhhhh

∑i |0 · · · 01i1 · · · 1〉,(((((((((hhhhhhhhh

∑i |1 · · · 11i0 · · · 0〉

}For non-injective MPSs:

ker(H ′P) = span

{A A A , B B B

}.

ker(H ′P) = ker(H), for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 24: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonians are gapless

GHZ Uncle:BLUE PURPLE

N N

|ϕN〉 =∑

i∈BLUEj∈PURPLE

|00 · · · 0i11 · · · 1j0 · · · 0〉

〈ϕN |ϕN〉 = Θ(N2) and 〈ϕN |H ′|ϕN〉 = Θ(N)

The states |ϕN〉 are orthogonal to the ground space, and have energyO(1/N).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 25: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonians are gapless

Non-injective MPSs Uncle:

|ϕN〉 =∑

i∈BLUEj∈PURPLE

jA LA A AA BBR B

iBR BB BBA N N N NBB

〈ϕN |ϕN〉 = Θ(N2) and 〈ϕN |H ′P |ϕN〉 = Θ(N)

The states |ϕN〉 tend to be orthogonal to the ground space(exponentially), and have energy O(1/N).

The uncle Hamiltonians are gapless, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 26: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Uncle Hamiltonians are gapless

Non-injective MPSs Uncle:

|ϕN〉 =∑

i∈BLUEj∈PURPLE

jA LA A AA BBR B

iBR BB BBA N N N NBB

〈ϕN |ϕN〉 = Θ(N2) and 〈ϕN |H ′P |ϕN〉 = Θ(N)

The states |ϕN〉 tend to be orthogonal to the ground space(exponentially), and have energy O(1/N).

The uncle Hamiltonians are gapless, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 27: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′) = R+

H ′ acting on the closure of S = ∪i<j | · · · 00i 〉⊗C2⊗· · ·⊗C2⊗|0j00 · · · 〉.

Low energy vectors:|ϕN〉 =

∑−N<i<−1

1<j<N| · · · 00〉 ⊗ |0−N0 · · · 0i11 · · · 1j0 · · · 0N〉 ⊗ |00 · · · 〉

∃λj ∈ σ(H ′), λj → 0, with ’approximated eigenvectors’ (Weyl sequences)in S such that ‖(H ′ − λj I )|ϕλj ,k〉‖ < 1/k .

H ′(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉) =

= | · · · 0H ′(00ϕλj ,k00)000ϕλl ,k00 · · · 〉+ | · · · 00ϕλj ,k000H ′(00ϕλl ,k00)0 · · · 〉∼∼ (λj + λl )(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉)

And λj + λl ∈ σ(H ′). The same procedure for any finite sum.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 28: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′) = R+

H ′ acting on the closure of S = ∪i<j | · · · 00i 〉⊗C2⊗· · ·⊗C2⊗|0j00 · · · 〉.

Low energy vectors:|ϕN〉 =

∑−N<i<−1

1<j<N| · · · 00〉 ⊗ |0−N0 · · · 0i11 · · · 1j0 · · · 0N〉 ⊗ |00 · · · 〉

∃λj ∈ σ(H ′), λj → 0, with ’approximated eigenvectors’ (Weyl sequences)in S such that ‖(H ′ − λj I )|ϕλj ,k〉‖ < 1/k .

H ′(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉) =

= | · · · 0H ′(00ϕλj ,k00)000ϕλl ,k00 · · · 〉+ | · · · 00ϕλj ,k000H ′(00ϕλl ,k00)0 · · · 〉∼∼ (λj + λl )(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉)

And λj + λl ∈ σ(H ′). The same procedure for any finite sum.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 29: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′) = R+

H ′ acting on the closure of S = ∪i<j | · · · 00i 〉⊗C2⊗· · ·⊗C2⊗|0j00 · · · 〉.

Low energy vectors:|ϕN〉 =

∑−N<i<−1

1<j<N| · · · 00〉 ⊗ |0−N0 · · · 0i11 · · · 1j0 · · · 0N〉 ⊗ |00 · · · 〉

∃λj ∈ σ(H ′), λj → 0, with ’approximated eigenvectors’ (Weyl sequences)in S such that ‖(H ′ − λj I )|ϕλj ,k〉‖ < 1/k .

H ′(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉) =

= | · · · 0H ′(00ϕλj ,k00)000ϕλl ,k00 · · · 〉+ | · · · 00ϕλj ,k000H ′(00ϕλl ,k00)0 · · · 〉∼∼ (λj + λl )(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉)

And λj + λl ∈ σ(H ′). The same procedure for any finite sum.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 30: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′) = R+

H ′ acting on the closure of S = ∪i<j | · · · 00i 〉⊗C2⊗· · ·⊗C2⊗|0j00 · · · 〉.

Low energy vectors:|ϕN〉 =

∑−N<i<−1

1<j<N| · · · 00〉 ⊗ |0−N0 · · · 0i11 · · · 1j0 · · · 0N〉 ⊗ |00 · · · 〉

∃λj ∈ σ(H ′), λj → 0, with ’approximated eigenvectors’ (Weyl sequences)in S such that ‖(H ′ − λj I )|ϕλj ,k〉‖ < 1/k .

H ′(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉) =

= | · · · 0H ′(00ϕλj ,k00)000ϕλl ,k00 · · · 〉+ | · · · 00ϕλj ,k000H ′(00ϕλl ,k00)0 · · · 〉∼∼ (λj + λl )(| · · · 000ϕλj ,k00000ϕλl ,k000 · · · 〉)

And λj + λl ∈ σ(H ′). The same procedure for any finite sum.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 31: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

H ′P acting on the closure of

S =

{MMA i jA A A , i < j

}.

Low energy vectors:

|ϕN〉 =∑

i∈bluej∈purple

jA L A AA BBR B

iBR BB BB N N NBB A

Concatenation must me made separating the ’core’ blocks enough.

Finite sums of any sequence tending to 0 is dense in R+, and thespectrum is closed.

The spectra of the thermodynamic limit of the uncle Hamiltonians areequal to R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 32: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

H ′P acting on the closure of

S =

{MMA i jA A A , i < j

}.

Low energy vectors:

|ϕN〉 =∑

i∈bluej∈purple

jA L A AA BBR B

iBR BB BB N N NBB A

Concatenation must me made separating the ’core’ blocks enough.

Finite sums of any sequence tending to 0 is dense in R+, and thespectrum is closed.

The spectra of the thermodynamic limit of the uncle Hamiltonians areequal to R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 33: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

H ′P acting on the closure of

S =

{MMA i jA A A , i < j

}.

Low energy vectors:

|ϕN〉 =∑

i∈bluej∈purple

jA L A AA BBR B

iBR BB BB N N NBB A

Concatenation must me made separating the ’core’ blocks enough.

Finite sums of any sequence tending to 0 is dense in R+, and thespectrum is closed.

The spectra of the thermodynamic limit of the uncle Hamiltonians areequal to R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 34: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

H ′P acting on the closure of

S =

{MMA i jA A A , i < j

}.

Low energy vectors:

|ϕN〉 =∑

i∈bluej∈purple

jA L A AA BBR B

iBR BB BB N N NBB A

Concatenation must me made separating the ’core’ blocks enough.

Finite sums of any sequence tending to 0 is dense in R+, and thespectrum is closed.

The spectra of the thermodynamic limit of the uncle Hamiltonians areequal to R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 35: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

H ′P acting on the closure of

S =

{MMA i jA A A , i < j

}.

Low energy vectors:

|ϕN〉 =∑

i∈bluej∈purple

jA L A AA BBR B

iBR BB BB N N NBB A

Concatenation must me made separating the ’core’ blocks enough.

Finite sums of any sequence tending to 0 is dense in R+, and thespectrum is closed.

The spectra of the thermodynamic limit of the uncle Hamiltonians areequal to R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 36: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

Approximated eigenvectors for λ1, . . . , λn embedded (or approximatelyembedded) in some finite size chain ⇒ existence of eigenvalues close toλ1, . . . , λn.

The spectra of the uncle Hamiltonians on finite size chains tend to bedense in R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 37: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

σ(H ′P) = R+

Approximated eigenvectors for λ1, . . . , λn embedded (or approximatelyembedded) in some finite size chain ⇒ existence of eigenvalues close toλ1, . . . , λn.

The spectra of the uncle Hamiltonians on finite size chains tend to bedense in R+, for almost every perturbation.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 38: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Injective MPSs

For an injective MPS with tensor description A, one can consider anon-injective tensor description:(

A 00 A

)In this case ker(H ′) =

span{ A A A ,∑

posRA R A BA .

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 39: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Further work

Uncle Hamiltonians for G -injective PEPS.

For ’orthogonal’ perturbations, example with the toric code atarXiv:1111.5817v2

Uncle Hamiltonian for toric code: toric code as ground space, local,frustration free, gapless, with spectrum equal to R+

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 40: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Summary

We have perturbed the MPS description of a state and consideredthe corresponding parent Hamiltonian.As the limit of these Hamiltonians we have gotten a new family: theuncle Hamiltonians.The uncle Hamiltonians are local and frustration free and have thesame ground space as the parent Hamiltonian (for non-injectiveMPSs).The uncle Hamiltonians are generally gapless, and their spectra aregenerally equal to R+, in contrast with the gap that the parentHamiltonian exhibits.

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 41: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Some references

O. Bratteli and D.W. Robinson, Operator Algebras and QuantumStatistical Mechanics I and II, Springer Verlag, 1979.X. Chen, B. Zeng, Z.-C. Gu, I. L. Chuang, X.-G. Wen, Tensorproduct representation of topological ordered phase: necessarysymmetry conditions, Phys. Rev. B 82, 165119 (2010).B. Nachtergaele, The spectral gap for some spin chains with discretesymmetry breaking, Commun. Math. Phys., 175 (1996) 565-606.B. Nachtergaele, Quantum Spin Systems, arXiv:math-ph/0409006v1.D. Pérez-García, F. Verstraete, M.M. Wolf and J.I. Cirac, MatrixProduct State Representations, Quantum Inf. Comput. 7, 401(2007).N. Schuch, I. Cirac, D. Pérez-Garcia, PEPS as ground states:degeneracy and topology, Annals of Physics 325, 2153 (2010).

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States

Page 42: Gapless Hamiltonians for non-injective Matrix Product States.benasque.org/2012network/talks_contr/102_CarlosFdez.pdf · loc). Keyproperties: parentHamiltonianislocal,frustration free,gapped

Thank you very much for your attention!

Carlos Fernández González Gapless Hamiltonians for non-injective Matrix Product States