14
Fyzika tokamaků 1: Úvod, opakování 1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle confinement time, heat transport, high and low collisionality regimes, thermal diffusion, relaxation times

Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Embed Size (px)

DESCRIPTION

Tokamak Physics3 Particle confinement time 6: Neoclassical particle and heat transport Bessel functions J 0, J 1, J 2 Fick’s II nd law Cylindrical geometry: Coulomb collisions: This estimate is wrong by 5 orders of magnitude !!

Citation preview

Page 1: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Fyzika tokamaků 1: Úvod, opakování 1

Tokamak PhysicsJan Mlynář

6. Neoclassical particle and heat transport

Random walk model, diffusion coefficient, particle confinement time, heat transport, high and low collisionality regimes, thermal diffusion, relaxation times

Page 2: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 2

Random walk model

6: Neoclassical particle and heat transport

1 1 1j j j Nj j

x x x x x x 0x

2 221

1 1

N N

j j jj j

x x x x

2

lN

x

tN

22 l

t

D

x

2

1 20.5( )x S n nt

2 1dnn n xdx

D n Γ

0n nD nt t

Γ

average step between collisions

average time between collisions

(1 dim case) [m2/s]

Fick’s Ist law

Fick’s IInd law+ transport eq.

2 0x

Page 3: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 3

Particle confinement time

6: Neoclassical particle and heat transport

Bessel functions J0 , J1 , J2

0( , ) ( , ) expp p

n n tn t n tt

r r

0

p

nD n

Fick’s IInd law

Cylindrical geometry: 1 1 0p

nr nr r r D

0 02.4 exp

p

r tn n Ja

2

22.4paD

Coulomb collisions:2Le

nei

rD

3 5 2 -120

22 10 10 m sn

nD

B T

This estimate is wrong by 5 orders of magnitude !!

Page 4: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 4

Particle confinement time

6: Neoclassical particle and heat transport

Page 5: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 5

Heat transport

6: Neoclassical particle and heat transport

-33 3 [ Wm ]2 2

iij

j

VnT nT Q p

t x

V q V

convective loss

conductiveloss

work doneby pressure

viscousheating

heat generation

conductive loss: -2 [ Wm ]n T qheat flux

no convection, no heat sources:23

T Tt

is thermal diffusion coefficient [ m2s-1 ]

cylindrical geometry0 0

2.4 expH

r tT T Ja

H E

Page 6: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 6

Ion and electron temperatures

6: Neoclassical particle and heat transport

i e thermal equilibrium:

( )1 3 02

e i ee e

eq

T n T Trn S

r r n

( )1 3 02

i i ei

eq

T n T Trn

r r n

i eT T ieq ie ei

e

mm

the slowest relaxation process2Li

iii

r

2Le

eee

r

i e i

20 202 2

3 2 -1

0.1 0.048

1.8 10 m s

cl cli e

cli

n nB T B T

Typical tokamaks: wrong by 3 orders of magnitude, in fact i nD

Page 7: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 7

Neoclassical transport

6: Neoclassical particle and heat transport

m.f.p.vT

mean free path

hydrodynamic length (~ banana, field line)

Larmor radius

HL,L Lr

collisional regime

collisionless regime

also notice:

classical diffusion coefficient:

m.f.p.D L HL

m.f.p.D L HL

1L

HL

1L

D

O.K. drift approximation

22

0

eeei L ei

nTD r

B

D ~ correlation length

Page 8: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 8

High collisionality regime

6: Neoclassical particle and heat transport

O.K.

m.f.p.v v2

2Te Te

ei pei

q Rq R

2 vn Rds

2/ip nen B

BE v B j

2 2v e eiE m pn n

B e B

22v 1 1

2

e i

e

ei

nT T nn qB T r

D

2

L eiq r D

Particles do not close full poloidal rotationi.e. cold and dense plasmas (e.g. the plasma egde)

(freq. of poloidal rotation)

Pfirsch –Schlüter diffusion:

Ohm’s law:

Due to the Pfirsch-Schlüter current

“correction” factor of ~ 10

Page 9: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 9

Low collisionality regime

6: Neoclassical particle and heat transport

physics behind the effective collision frequency

Galeev-Sagdeev (banana) transport

Banana orbits:

Banana width:

Banana period:

Effective collision frequency:

Condition:

i.e. most particles close full banana orbit before collisionGaleev – Sagdeev diffusion:

ratio of trapped particles

increase by factor ~5 compared to high collisionality

v 1v

rR

Lebqr

v vbqR qR

eieff

31 eei b

b e

TqR m

32 22

. .G S b eff L eiD q r

Page 10: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 10

Neoclassical diffusion coefficient

6: Neoclassical particle and heat transport

32

ei p b

vTeei pqR

summary: high collisionality

low collisionality

In between p and b : plateau

In the plateau, diffusion coeff. D is independent of ei

2 2 ( const.)p L p pD q r

Page 11: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 11

Neoclassical thermal diffusion

6: Neoclassical particle and heat transport

iTi ie

e

mD

m

3 32 2

3 32 2

2 22 2 2

2 22 2 2

0.89

0.68

clLe Lee e e

ee ee

clLi Lii i i

ii ii

r rq q q

r rq q q

i* 0.01eff

b

i.e. it is in the low collisionality regime

high collisionality :Pfirsch-Schlüter

low collisionality :Galeev-Sagdeev

main loss channel:

thermonuclear core plasma:

Page 12: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 12

Thermal diffusion in experiments

6: Neoclassical particle and heat transport

exp teorin experiments, 10 higher than the values on the previous slide i i

however in special regions (transport barriers) exp teori i

i.e. it indeed sets the theoretical limit for tokamak confinement !!

in experiments, , 3x lower than e i iD

but in theory it should be lower!!42i

e

mm

e nDand are anomalous.

Notice: Functional dependencies are wrong, too.

e.g. Instead of the externally heated

plasmas follow rather

22p

E

T Bn

2

1.8pE

BnT

(see also the next talk)

Page 13: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 13

Summary: Relaxation times

6: Neoclassical particle and heat transport

Relaxation times (~ Maxwellisation, thermalisation)

: : : : :

1 : : 1 : : :

E E E Eee ii ei ie ie ei

m m mm i i iim m mm e e ee

Te ,Ti equilibratione i nD

notice that : 2 2/ // /

i Li Le i e i ii n

n ii ei e ei e

r r m m m mD

D m mm m

p E also notice : ( OK sound reasonable )

Page 14: Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 6. Neoclassical particle and heat transport Random walk model, diffusion coefficient, particle

Tokamak Physics 14

Neoclassical thermal diffusion

6: Neoclassical particle and heat transport