78
From Quantum Mechanics to Maxwell’s Equations The Work of Dr. Jairzinho Ramos Daniel J. Cross Department of Physics Drexel University Philadelphia, PA 19104 July 24, 2009

From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

From Quantum Mechanicsto Maxwell’s Equations

The Work of Dr. Jairzinho Ramos

Daniel J. Cross

Department of PhysicsDrexel University

Philadelphia, PA 19104

July 24, 2009

Page 2: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Outline

Fields in Physics

The Poincare group

Group Representations

Representations of the Poincare group

The Maxwell Equations

Page 3: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Fields

Quantum Field

An object which is an arbitrary linear superposition of basis statesin a Hilbert space which transforms under the Poincare group.There is no constraining equation.

↓ ?

Classical Field

An object that transforms (in a manifestly covariant way) underthe Poincare group (scalar, vector, spinor,. . . ) and is constrainedto be a solution of some differential (field) equation.

Page 4: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Fields

Quantum Field

An object which is an arbitrary linear superposition of basis statesin a Hilbert space which transforms under the Poincare group.There is no constraining equation.

↓ ?

Classical Field

An object that transforms (in a manifestly covariant way) underthe Poincare group (scalar, vector, spinor,. . . ) and is constrainedto be a solution of some differential (field) equation.

Page 5: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Fields

Quantum Field

An object which is an arbitrary linear superposition of basis statesin a Hilbert space which transforms under the Poincare group.There is no constraining equation.

↓ ?

Classical Field

An object that transforms (in a manifestly covariant way) underthe Poincare group (scalar, vector, spinor,. . . ) and is constrainedto be a solution of some differential (field) equation.

Page 6: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

The full invariance group of Special Relativity contains

Boosts

Rotations

Parity and Time-reversal

Translations

(Λ, a)v = Λv + a

(Λ, a)v =(

Λ a0 1

)(v1

)=(

Λv + a1

)

Page 7: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

The full invariance group of Special Relativity contains

Boosts

Rotations

Parity and Time-reversal

Translations

(Λ, a)v = Λv + a

(Λ, a)v =(

Λ a0 1

)(v1

)=(

Λv + a1

)

Page 8: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

The full invariance group of Special Relativity contains

Boosts

Rotations

Parity and Time-reversal

Translations

(Λ, a)v = Λv + a

(Λ, a)v =(

Λ a0 1

)(v1

)=(

Λv + a1

)

Page 9: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

(Λ2, a2)(Λ1, a1) =(

Λ2 a2

0 1

)(Λ1 a1

0 1

)

=(

Λ2Λ1 Λ2a1 + a2

0 1

)= (Λ2Λ1,Λ2a1 + a2)

(I, a)(Λ, 0) = (Λ, a) and (Λ, 0)(I, b) = (Λ,Λb)

(I, a)(Λ, 0) = (Λ, a) = (Λ, 0)(I,Λ−1a),

Page 10: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

(Λ2, a2)(Λ1, a1) =(

Λ2 a2

0 1

)(Λ1 a1

0 1

)=

(Λ2Λ1 Λ2a1 + a2

0 1

)

= (Λ2Λ1,Λ2a1 + a2)

(I, a)(Λ, 0) = (Λ, a) and (Λ, 0)(I, b) = (Λ,Λb)

(I, a)(Λ, 0) = (Λ, a) = (Λ, 0)(I,Λ−1a),

Page 11: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

(Λ2, a2)(Λ1, a1) =(

Λ2 a2

0 1

)(Λ1 a1

0 1

)=

(Λ2Λ1 Λ2a1 + a2

0 1

)= (Λ2Λ1,Λ2a1 + a2)

(I, a)(Λ, 0) = (Λ, a) and (Λ, 0)(I, b) = (Λ,Λb)

(I, a)(Λ, 0) = (Λ, a) = (Λ, 0)(I,Λ−1a),

Page 12: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

(Λ2, a2)(Λ1, a1) =(

Λ2 a2

0 1

)(Λ1 a1

0 1

)=

(Λ2Λ1 Λ2a1 + a2

0 1

)= (Λ2Λ1,Λ2a1 + a2)

(I, a)(Λ, 0) = (Λ, a) and (Λ, 0)(I, b) = (Λ,Λb)

(I, a)(Λ, 0) = (Λ, a) = (Λ, 0)(I,Λ−1a),

Page 13: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The Poincare Group

(Λ2, a2)(Λ1, a1) =(

Λ2 a2

0 1

)(Λ1 a1

0 1

)=

(Λ2Λ1 Λ2a1 + a2

0 1

)= (Λ2Λ1,Λ2a1 + a2)

(I, a)(Λ, 0) = (Λ, a) and (Λ, 0)(I, b) = (Λ,Λb)

(I, a)(Λ, 0) = (Λ, a) = (Λ, 0)(I,Λ−1a),

Page 14: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Group Representations

Definition

A representation of a group G is a mapping of G into a setof matrices which preserves group multiplication, M(gh) =M(g)M(h).

scalar: φ→ 1φvector: va → Λacv

c

tensor: T ab → ΛacΛbdT

cd

G invariance → states transform under representations of G.

representations↔ physical states

Page 15: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Group Representations

Definition

A representation of a group G is a mapping of G into a setof matrices which preserves group multiplication, M(gh) =M(g)M(h).

scalar: φ→ 1φvector: va → Λacv

c

tensor: T ab → ΛacΛbdT

cd

G invariance → states transform under representations of G.

representations↔ physical states

Page 16: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Group Representations

Definition

A representation of a group G is a mapping of G into a setof matrices which preserves group multiplication, M(gh) =M(g)M(h).

scalar: φ→ 1φvector: va → Λacv

c

tensor: T ab → ΛacΛbdT

cd

G invariance → states transform under representations of G.

representations↔ physical states

Page 17: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Representations of Quantum States

Unitary - preserve inner products (observables)〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 〈ψ|ψ〉 → U †U = 1

Irreducible - not made of smaller parts

M =(M1 00 M2

)- leaves no non-trivial subspace invariant.↔ elementary particle.

Page 18: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Representations of Quantum States

Unitary - preserve inner products (observables)〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 〈ψ|ψ〉 → U †U = 1Irreducible - not made of smaller parts

M =(M1 00 M2

)- leaves no non-trivial subspace invariant.↔ elementary particle.

Page 19: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of SO(3) & Angular Momentum

R |ψ〉 =?

RRt = I and R = I +M

M +M t = 0

So

M =

0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

= θ · J

[Ji, Jj ] = −εijkJk

Page 20: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of SO(3) & Angular Momentum

R |ψ〉 =?

RRt = I and R = I +M

M +M t = 0

So

M =

0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

= θ · J

[Ji, Jj ] = −εijkJk

Page 21: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of SO(3) & Angular Momentum

R |ψ〉 =?

RRt = I and R = I +M

M +M t = 0

So

M =

0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

= θ · J

[Ji, Jj ] = −εijkJk

Page 22: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of SO(3) & Angular Momentum

2j + 1-dimensional, j = 0, 1/2, 1, 3/2, . . .

em =∣∣jm

⟩, −j ≤ m ≤ j

Dj(θ) = exp{J(j) · θ

}J(j) are 2j + 1× 2j + 1 matrices (i/2σ for j = 1/2).

Dj∣∣jm

⟩=∣∣∣jm′⟩Dj

mm′ ,∣∣jm

⟩↔ Y j

m ↔ spherical tensor of rank j

Page 23: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a) has eigenvector |ψa〉 with eigenvalue λa

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉= λaΓ(b) |ψa〉

Γ(a) {Γ(b) |ψa〉} = λa {Γ(b) |ψa〉}

Γ(c)Γ(b) |ψa〉 = Γ(c+ b) |ψa〉

Eigenspace invariant → whole space and

Γ(a) = λaI

Every matrix is diagonal and every subspace invariant, hencethe space is 1-dimensional and Γ(a) = exp(ik(a)).

Page 24: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a) has eigenvector |ψa〉 with eigenvalue λa

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉

= λaΓ(b) |ψa〉Γ(a) {Γ(b) |ψa〉} = λa {Γ(b) |ψa〉}

Γ(c)Γ(b) |ψa〉 = Γ(c+ b) |ψa〉

Eigenspace invariant → whole space and

Γ(a) = λaI

Every matrix is diagonal and every subspace invariant, hencethe space is 1-dimensional and Γ(a) = exp(ik(a)).

Page 25: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a) has eigenvector |ψa〉 with eigenvalue λa

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉= λaΓ(b) |ψa〉

Γ(a) {Γ(b) |ψa〉} = λa {Γ(b) |ψa〉}

Γ(c)Γ(b) |ψa〉 = Γ(c+ b) |ψa〉

Eigenspace invariant → whole space and

Γ(a) = λaI

Every matrix is diagonal and every subspace invariant, hencethe space is 1-dimensional and Γ(a) = exp(ik(a)).

Page 26: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a) has eigenvector |ψa〉 with eigenvalue λa

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉= λaΓ(b) |ψa〉

Γ(a) {Γ(b) |ψa〉} = λa {Γ(b) |ψa〉}

Γ(c)Γ(b) |ψa〉 = Γ(c+ b) |ψa〉

Eigenspace invariant → whole space and

Γ(a) = λaI

Every matrix is diagonal and every subspace invariant, hencethe space is 1-dimensional and Γ(a) = exp(ik(a)).

Page 27: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a) has eigenvector |ψa〉 with eigenvalue λa

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉= λaΓ(b) |ψa〉

Γ(a) {Γ(b) |ψa〉} = λa {Γ(b) |ψa〉}

Γ(c)Γ(b) |ψa〉 = Γ(c+ b) |ψa〉

Eigenspace invariant → whole space and

Γ(a) = λaI

Every matrix is diagonal and every subspace invariant, hencethe space is 1-dimensional and Γ(a) = exp(ik(a)).

Page 28: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a) has eigenvector |ψa〉 with eigenvalue λa

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉= λaΓ(b) |ψa〉

Γ(a) {Γ(b) |ψa〉} = λa {Γ(b) |ψa〉}

Γ(c)Γ(b) |ψa〉 = Γ(c+ b) |ψa〉

Eigenspace invariant → whole space and

Γ(a) = λaI

Every matrix is diagonal and every subspace invariant, hencethe space is 1-dimensional and Γ(a) = exp(ik(a)).

Page 29: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a+ b) = Γ(a)Γ(b)

eik(a+b) = eik(a)eik(b)

= eik(a)+ik(b)

so k(a) = kµaµ = k · a.

1 =(eik·a

)(eik·a

)†= eia·(k−k

∗) → k real

Γ(a) |k〉 = eik·a |k〉

Page 30: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a+ b) = Γ(a)Γ(b)eik(a+b) = eik(a)eik(b)

= eik(a)+ik(b)

so k(a) = kµaµ = k · a.

1 =(eik·a

)(eik·a

)†= eia·(k−k

∗) → k real

Γ(a) |k〉 = eik·a |k〉

Page 31: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a+ b) = Γ(a)Γ(b)eik(a+b) = eik(a)eik(b)

= eik(a)+ik(b)

so k(a) = kµaµ = k · a.

1 =(eik·a

)(eik·a

)†= eia·(k−k

∗) → k real

Γ(a) |k〉 = eik·a |k〉

Page 32: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a+ b) = Γ(a)Γ(b)eik(a+b) = eik(a)eik(b)

= eik(a)+ik(b)

so k(a) = kµaµ = k · a.

1 =(eik·a

)(eik·a

)†= eia·(k−k

∗) → k real

Γ(a) |k〉 = eik·a |k〉

Page 33: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of Abelian Groups

Γ(a+ b) = Γ(a)Γ(b)eik(a+b) = eik(a)eik(b)

= eik(a)+ik(b)

so k(a) = kµaµ = k · a.

1 =(eik·a

)(eik·a

)†= eia·(k−k

∗) → k real

Γ(a) |k〉 = eik·a |k〉

Page 34: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

Lorentz Group defined by

ΛtηΛ = η, η = diag(−1, 1, 1, 1)

Λ = I +M → M tη + ηM = 0(−A Ct

−Bt Dt

)+(−A −BC D

)= 0

So A = 0, Bt = C, and D = −Dt.

M =

0 b1 b2 b3b1 0 θ3 −θ2

b2 −θ3 0 θ1

b3 θ2 −θ1 0

Page 35: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

Lorentz Group defined by

ΛtηΛ = η, η = diag(−1, 1, 1, 1)

Λ = I +M → M tη + ηM = 0(−A Ct

−Bt Dt

)+(−A −BC D

)= 0

So A = 0, Bt = C, and D = −Dt.

M =

0 b1 b2 b3b1 0 θ3 −θ2

b2 −θ3 0 θ1

b3 θ2 −θ1 0

Page 36: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

Lorentz Group defined by

ΛtηΛ = η, η = diag(−1, 1, 1, 1)

Λ = I +M → M tη + ηM = 0(−A Ct

−Bt Dt

)+(−A −BC D

)= 0

So A = 0, Bt = C, and D = −Dt.

M =

0 b1 b2 b3b1 0 θ3 −θ2

b2 −θ3 0 θ1

b3 θ2 −θ1 0

Page 37: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

Infinitesimal operation M = θ · J + b ·K[Ji, Jj ] = −εijkJk

[Ki,Kj ] = +εijkJk[Ji,Kj ] = −εijkKk

J(1) =12

(J + iK)

J(2) =12

(J− iK)[J

(1)i , J

(1)j

]= −εijkJ

(1)k[

J(2)i , J

(2)j

]= −εijkJ

(2)k[

J(1)i , J

(2)j

]= 0

Page 38: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

Infinitesimal operation M = θ · J + b ·K[Ji, Jj ] = −εijkJk

[Ki,Kj ] = +εijkJk[Ji,Kj ] = −εijkKk

J(1) =12

(J + iK)

J(2) =12

(J− iK)[J

(1)i , J

(1)j

]= −εijkJ

(1)k[

J(2)i , J

(2)j

]= −εijkJ

(2)k[

J(1)i , J

(2)j

]= 0

Page 39: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

J(1) → Dj and J(2) → Dj′

Djj′ = DjDj′ and∣∣∣jj′µµ′⟩ =

∣∣jµ

⟩ ∣∣∣j′µ′⟩ .Djj′(θ·J+b·K) = exp

{(θ − ib) · J(j)

}exp

{(θ + ib) · J(j′)

}

Since J = J(1) + J(2), a jj′ states is reducible under SO(3).

∣∣JM

⟩=∑m,m′

⟨j j′

mm′

∣∣∣ JM⟩ ∣∣∣jm ⟩ ∣∣∣j′m′⟩ , |j − j′| ≤ J ≤ |j + j′|.

SO(3) irreducible representations Dj0 and D0j .

D12

12 ↔ E&M potential. D10 and D01 ↔ E&M field.

Page 40: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

J(1) → Dj and J(2) → Dj′

Djj′ = DjDj′ and∣∣∣jj′µµ′⟩ =

∣∣jµ

⟩ ∣∣∣j′µ′⟩ .Djj′(θ·J+b·K) = exp

{(θ − ib) · J(j)

}exp

{(θ + ib) · J(j′)

}Since J = J(1) + J(2), a jj′ states is reducible under SO(3).

∣∣JM

⟩=∑m,m′

⟨j j′

mm′

∣∣∣ JM⟩ ∣∣∣jm ⟩ ∣∣∣j′m′⟩ , |j − j′| ≤ J ≤ |j + j′|.

SO(3) irreducible representations Dj0 and D0j .

D12

12 ↔ E&M potential. D10 and D01 ↔ E&M field.

Page 41: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Lorentz Group

J(1) → Dj and J(2) → Dj′

Djj′ = DjDj′ and∣∣∣jj′µµ′⟩ =

∣∣jµ

⟩ ∣∣∣j′µ′⟩ .Djj′(θ·J+b·K) = exp

{(θ − ib) · J(j)

}exp

{(θ + ib) · J(j′)

}Since J = J(1) + J(2), a jj′ states is reducible under SO(3).

∣∣JM

⟩=∑m,m′

⟨j j′

mm′

∣∣∣ JM⟩ ∣∣∣jm ⟩ ∣∣∣j′m′⟩ , |j − j′| ≤ J ≤ |j + j′|.

SO(3) irreducible representations Dj0 and D0j .

D12

12 ↔ E&M potential. D10 and D01 ↔ E&M field.

Page 42: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Poincare Group

|k, σ〉 = |k〉∣∣∣jm j′

m′

(I, a) |k, σ〉 = eik·a |k, σ〉 .

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉= eik·Λ

−1a(Λ, 0) |k, σ〉= eiΛk·a(Λ, 0) |k, σ〉 ,

(Λ, 0) |k, σ〉 = Mσ′,σ

∣∣Λk, σ′⟩ ,Manifestly covariant are reducible!

Page 43: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Poincare Group

|k, σ〉 = |k〉∣∣∣jm j′

m′

⟩(I, a) |k, σ〉 = eik·a |k, σ〉 .

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉= eik·Λ

−1a(Λ, 0) |k, σ〉= eiΛk·a(Λ, 0) |k, σ〉 ,

(Λ, 0) |k, σ〉 = Mσ′,σ

∣∣Λk, σ′⟩ ,Manifestly covariant are reducible!

Page 44: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Poincare Group

|k, σ〉 = |k〉∣∣∣jm j′

m′

⟩(I, a) |k, σ〉 = eik·a |k, σ〉 .

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉

= eik·Λ−1a(Λ, 0) |k, σ〉

= eiΛk·a(Λ, 0) |k, σ〉 ,

(Λ, 0) |k, σ〉 = Mσ′,σ

∣∣Λk, σ′⟩ ,Manifestly covariant are reducible!

Page 45: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Poincare Group

|k, σ〉 = |k〉∣∣∣jm j′

m′

⟩(I, a) |k, σ〉 = eik·a |k, σ〉 .

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉= eik·Λ

−1a(Λ, 0) |k, σ〉

= eiΛk·a(Λ, 0) |k, σ〉 ,

(Λ, 0) |k, σ〉 = Mσ′,σ

∣∣Λk, σ′⟩ ,Manifestly covariant are reducible!

Page 46: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Poincare Group

|k, σ〉 = |k〉∣∣∣jm j′

m′

⟩(I, a) |k, σ〉 = eik·a |k, σ〉 .

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉= eik·Λ

−1a(Λ, 0) |k, σ〉= eiΛk·a(Λ, 0) |k, σ〉 ,

(Λ, 0) |k, σ〉 = Mσ′,σ

∣∣Λk, σ′⟩ ,

Manifestly covariant are reducible!

Page 47: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

UIR of the Poincare Group

|k, σ〉 = |k〉∣∣∣jm j′

m′

⟩(I, a) |k, σ〉 = eik·a |k, σ〉 .

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉= eik·Λ

−1a(Λ, 0) |k, σ〉= eiΛk·a(Λ, 0) |k, σ〉 ,

(Λ, 0) |k, σ〉 = Mσ′,σ

∣∣Λk, σ′⟩ ,Manifestly covariant are reducible!

Page 48: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Reference 4-momentum ko and boost Λ0(k) : k0 → k.

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉=

[Λ0(Λk)Λ−1

0 (Λk)]︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)[Λ−1

0 (Λk)ΛΛ0(k)]|k0, σ〉 .

H : k0Λ0(k)→ k

Λ→ ΛkΛ−1

0 (Λk)→ k0,

H |k0, σ〉 = Dσ′,σ

∣∣k0, σ′⟩

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk)∣∣k0, σ

′⟩ ,

Page 49: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Reference 4-momentum ko and boost Λ0(k) : k0 → k.

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉

=[Λ0(Λk)Λ−1

0 (Λk)]︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)[Λ−1

0 (Λk)ΛΛ0(k)]|k0, σ〉 .

H : k0Λ0(k)→ k

Λ→ ΛkΛ−1

0 (Λk)→ k0,

H |k0, σ〉 = Dσ′,σ

∣∣k0, σ′⟩

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk)∣∣k0, σ

′⟩ ,

Page 50: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Reference 4-momentum ko and boost Λ0(k) : k0 → k.

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉=

[Λ0(Λk)Λ−1

0 (Λk)]︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)[Λ−1

0 (Λk)ΛΛ0(k)]|k0, σ〉 .

H : k0Λ0(k)→ k

Λ→ ΛkΛ−1

0 (Λk)→ k0,

H |k0, σ〉 = Dσ′,σ

∣∣k0, σ′⟩

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk)∣∣k0, σ

′⟩ ,

Page 51: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Reference 4-momentum ko and boost Λ0(k) : k0 → k.

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉=

[Λ0(Λk)Λ−1

0 (Λk)]︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)[Λ−1

0 (Λk)ΛΛ0(k)]|k0, σ〉 .

H : k0Λ0(k)→ k

Λ→ ΛkΛ−1

0 (Λk)→ k0,

H |k0, σ〉 = Dσ′,σ

∣∣k0, σ′⟩

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk)∣∣k0, σ

′⟩ ,

Page 52: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Reference 4-momentum ko and boost Λ0(k) : k0 → k.

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉=

[Λ0(Λk)Λ−1

0 (Λk)]︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)[Λ−1

0 (Λk)ΛΛ0(k)]|k0, σ〉 .

H : k0Λ0(k)→ k

Λ→ ΛkΛ−1

0 (Λk)→ k0,

H |k0, σ〉 = Dσ′,σ

∣∣k0, σ′⟩

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk)∣∣k0, σ

′⟩ ,

Page 53: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Reference 4-momentum ko and boost Λ0(k) : k0 → k.

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉=

[Λ0(Λk)Λ−1

0 (Λk)]︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)[Λ−1

0 (Λk)ΛΛ0(k)]|k0, σ〉 .

H : k0Λ0(k)→ k

Λ→ ΛkΛ−1

0 (Λk)→ k0,

H |k0, σ〉 = Dσ′,σ

∣∣k0, σ′⟩

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk)∣∣k0, σ

′⟩ ,

Page 54: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

−k · k = m2 ≥ 0

m > 0, k0 = (±1, 0, 0, 0)m = 0, k0 = (±1, 0, 0, 1)

Rotations about z-axis leave k0 invariant.Others → “infinite” spin.SO(2) abelian

Γ(φ) |ξ〉 = eiφξ |ξ〉 ,

ξ = 0, 1/2, 1, . . .Dξ′,ξ = eiφξδξ′ξ

“Helicity index”. States |k, ξ〉.

Page 55: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

−k · k = m2 ≥ 0

m > 0, k0 = (±1, 0, 0, 0)m = 0, k0 = (±1, 0, 0, 1)

Rotations about z-axis leave k0 invariant.Others → “infinite” spin.

SO(2) abelianΓ(φ) |ξ〉 = eiφξ |ξ〉 ,

ξ = 0, 1/2, 1, . . .Dξ′,ξ = eiφξδξ′ξ

“Helicity index”. States |k, ξ〉.

Page 56: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

−k · k = m2 ≥ 0

m > 0, k0 = (±1, 0, 0, 0)m = 0, k0 = (±1, 0, 0, 1)

Rotations about z-axis leave k0 invariant.Others → “infinite” spin.SO(2) abelian

Γ(φ) |ξ〉 = eiφξ |ξ〉 ,

ξ = 0, 1/2, 1, . . .Dξ′,ξ = eiφξδξ′ξ

“Helicity index”. States |k, ξ〉.

Page 57: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Λk0 = (I +M)k0 = k0 →Mk0 = 0

M =

0 b1 b2 b3b1 0 θ3 −θ2

b2 −θ3 0 θ1

b3 θ2 −θ1 0

±1001

=

b3

−θ2 ± b1θ1 ± b2±b3

= 0

M =

0 ±θ2 ∓θ1 0±θ2 0 θ3 −θ2

∓θ1 −θ3 0 θ1

0 θ2 −θ1 0

↔ 0 θ3 −θ2

−θ3 0 θ1

0 0 0

Group ISO(2) of rotations and translations in R2.

Page 58: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Λk0 = (I +M)k0 = k0 →Mk0 = 0

M =

0 b1 b2 b3b1 0 θ3 −θ2

b2 −θ3 0 θ1

b3 θ2 −θ1 0

±1001

=

b3

−θ2 ± b1θ1 ± b2±b3

= 0

M =

0 ±θ2 ∓θ1 0±θ2 0 θ3 −θ2

∓θ1 −θ3 0 θ1

0 θ2 −θ1 0

↔ 0 θ3 −θ2

−θ3 0 θ1

0 0 0

Group ISO(2) of rotations and translations in R2.

Page 59: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

The “Little” Group

Λk0 = (I +M)k0 = k0 →Mk0 = 0

M =

0 b1 b2 b3b1 0 θ3 −θ2

b2 −θ3 0 θ1

b3 θ2 −θ1 0

±1001

=

b3

−θ2 ± b1θ1 ± b2±b3

= 0

M =

0 ±θ2 ∓θ1 0±θ2 0 θ3 −θ2

∓θ1 −θ3 0 θ1

0 θ2 −θ1 0

↔ 0 θ3 −θ2

−θ3 0 θ1

0 0 0

Group ISO(2) of rotations and translations in R2.

Page 60: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Helicity and Spin States

Dj0 representation of H:

exp [(θ − ib)J] = exp [(θ3J3 + (θ1 − iθ2)J1 + (θ2 + iθ1)J2]

= exp [(θ3J3 + (θ1 − iθ2)(J1 + iJ2)]= exp [(θ3J3 + (θ1 − iθ2)(J+)]

=

eijθ3 ∗ · · · ∗

0 ei(j−1)θ3 · · · ∗...

.... . .

...0 0 · · · e−ijθ3

Dj0 [(θ − ib)J]

∣∣∣j0j0⟩ = eijθ3∣∣∣j0j0⟩

Helicity state |ξ〉 for j = ξ > 0.

Page 61: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Helicity and Spin States

Dj0 representation of H:

exp [(θ − ib)J] = exp [(θ3J3 + (θ1 − iθ2)J1 + (θ2 + iθ1)J2]= exp [(θ3J3 + (θ1 − iθ2)(J1 + iJ2)]

= exp [(θ3J3 + (θ1 − iθ2)(J+)]

=

eijθ3 ∗ · · · ∗

0 ei(j−1)θ3 · · · ∗...

.... . .

...0 0 · · · e−ijθ3

Dj0 [(θ − ib)J]

∣∣∣j0j0⟩ = eijθ3∣∣∣j0j0⟩

Helicity state |ξ〉 for j = ξ > 0.

Page 62: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Helicity and Spin States

Dj0 representation of H:

exp [(θ − ib)J] = exp [(θ3J3 + (θ1 − iθ2)J1 + (θ2 + iθ1)J2]= exp [(θ3J3 + (θ1 − iθ2)(J1 + iJ2)]= exp [(θ3J3 + (θ1 − iθ2)(J+)]

=

eijθ3 ∗ · · · ∗

0 ei(j−1)θ3 · · · ∗...

.... . .

...0 0 · · · e−ijθ3

Dj0 [(θ − ib)J]

∣∣∣j0j0⟩ = eijθ3∣∣∣j0j0⟩

Helicity state |ξ〉 for j = ξ > 0.

Page 63: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Helicity and Spin States

Dj0 representation of H:

exp [(θ − ib)J] = exp [(θ3J3 + (θ1 − iθ2)J1 + (θ2 + iθ1)J2]= exp [(θ3J3 + (θ1 − iθ2)(J1 + iJ2)]= exp [(θ3J3 + (θ1 − iθ2)(J+)]

=

eijθ3 ∗ · · · ∗

0 ei(j−1)θ3 · · · ∗...

.... . .

...0 0 · · · e−ijθ3

Dj0 [(θ − ib)J]∣∣∣j0j0⟩ = eijθ3

∣∣∣j0j0⟩Helicity state |ξ〉 for j = ξ > 0.

Page 64: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Helicity and Spin States

Dj0 representation of H:

exp [(θ − ib)J] = exp [(θ3J3 + (θ1 − iθ2)J1 + (θ2 + iθ1)J2]= exp [(θ3J3 + (θ1 − iθ2)(J1 + iJ2)]= exp [(θ3J3 + (θ1 − iθ2)(J+)]

=

eijθ3 ∗ · · · ∗

0 ei(j−1)θ3 · · · ∗...

.... . .

...0 0 · · · e−ijθ3

Dj0 [(θ − ib)J]

∣∣∣j0j0⟩ = eijθ3∣∣∣j0j0⟩

Helicity state |ξ〉 for j = ξ > 0.

Page 65: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Helicity and Spin States

D0j′ representation of H:

exp [(θ + ib)J] = exp [(θ3J3 + (θ1 + iθ2)(J−)]

=

eij′θ3 0 · · · 0∗ ei(j

′−1)θ3 · · · 0...

.... . .

...

∗ ∗ · · · e−ij′θ3

D0j′ [(θ + ib)J]

∣∣∣0 j′

0−j′⟩

= e−ijθ3∣∣∣0 j′

0−j′⟩

Helicity state |ξ〉 for −j′ = ξ < 0.

Page 66: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Physical States

For physical state |ψ〉,⟨k, jm

00

∣∣ψ⟩ = 0, and⟨k, 0

0j′

−m′

∣∣∣ψ⟩ = 0,

when m 6= j and m′ 6= j′.

{J · k− jI

} ⟨k, jm

00

∣∣ψ⟩ = 0,

k · k = 0→ ||k||2 = k21 + k2

2 + k23 = k2

t so

{J · k− jIkt}⟨k, jm

00

∣∣ψ⟩ = 0F ↓

−i{J · ∇ − j ∂

∂tI

}ψjm(x) = 0

Page 67: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Physical States

For physical state |ψ〉,⟨k, jm

00

∣∣ψ⟩ = 0, and⟨k, 0

0j′

−m′

∣∣∣ψ⟩ = 0,

when m 6= j and m′ 6= j′.{J · k− jI

} ⟨k, jm

00

∣∣ψ⟩ = 0,

k · k = 0→ ||k||2 = k21 + k2

2 + k23 = k2

t so

{J · k− jIkt}⟨k, jm

00

∣∣ψ⟩ = 0F ↓

−i{J · ∇ − j ∂

∂tI

}ψjm(x) = 0

Page 68: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Physical States

For physical state |ψ〉,⟨k, jm

00

∣∣ψ⟩ = 0, and⟨k, 0

0j′

−m′

∣∣∣ψ⟩ = 0,

when m 6= j and m′ 6= j′.{J · k− jI

} ⟨k, jm

00

∣∣ψ⟩ = 0,

k · k = 0→ ||k||2 = k21 + k2

2 + k23 = k2

t so

{J · k− jIkt}⟨k, jm

00

∣∣ψ⟩ = 0

F ↓

−i{J · ∇ − j ∂

∂tI

}ψjm(x) = 0

Page 69: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Physical States

For physical state |ψ〉,⟨k, jm

00

∣∣ψ⟩ = 0, and⟨k, 0

0j′

−m′

∣∣∣ψ⟩ = 0,

when m 6= j and m′ 6= j′.{J · k− jI

} ⟨k, jm

00

∣∣ψ⟩ = 0,

k · k = 0→ ||k||2 = k21 + k2

2 + k23 = k2

t so

{J · k− jIkt}⟨k, jm

00

∣∣ψ⟩ = 0F ↓

−i{J · ∇ − j ∂

∂tI

}ψjm(x) = 0

Page 70: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Physical States

E&M spin j = 1 and

J1 =i√2

0 1 01 0 10 1 0

, J2 =1√2

0 1 0−1 0 10 −1 0

,

J3 = i

1 0 00 0 00 0 −1

.

∂3 − ∂t ∂−1 0∂+1 −∂t ∂−1

0 ∂+1 −∂3 − ∂t

ψ1

ψ0

ψ−1

= 0

∂±1 = ∓(∂x ± i∂y)/√

2.

Page 71: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Physical States

Cartesian basis:

Jx =

0 0 00 0 10 −1 0

, Jy =

0 0 −10 0 01 0 0

,

Jz =

0 1 0−1 0 00 0 0

−i∂t ∂z −∂y−∂z −i∂t ∂x∂y −∂x −i∂t

ψxψyψz

= 0,

ψ0 = ψz and ψ±1 = ∓(ψx ± iψy)/√

2.

Page 72: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Faraday & Ampere-Maxwell Equations

∇×ψ = −i ∂∂tψ, ψ = (ψx, ψy, ψz)

ψ = B + iE→

∇× (E− iB) = −i ∂∂t

(E− iB)

∇×E = −∂B∂t

∇×B = +∂E∂t,

Page 73: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Faraday & Ampere-Maxwell Equations

∇×ψ = −i ∂∂tψ, ψ = (ψx, ψy, ψz)

ψ = B + iE→

∇× (E− iB) = −i ∂∂t

(E− iB)

∇×E = −∂B∂t

∇×B = +∂E∂t,

Page 74: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Faraday & Ampere-Maxwell Equations

∇×ψ = −i ∂∂tψ, ψ = (ψx, ψy, ψz)

ψ = B + iE→

∇× (E− iB) = −i ∂∂t

(E− iB)

∇×E = −∂B∂t

∇×B = +∂E∂t,

Page 75: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Gauß Equations

For k0 state, only ψ1 = (−ψx + iψy)/√

2 6= 0and k · ψ1 = 0 or k · ψ1 = 0.

F {k · ψ1 = 0} → ∇ · ψ1 = ∇ · (B + iE) = 0.

∇ ·E = 0∇ ·B = 0

Page 76: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

Gauß Equations

For k0 state, only ψ1 = (−ψx + iψy)/√

2 6= 0and k · ψ1 = 0 or k · ψ1 = 0.

F {k · ψ1 = 0} → ∇ · ψ1 = ∇ · (B + iE) = 0.

∇ ·E = 0∇ ·B = 0

Page 77: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

Fin

References

Jairzinho Ramos and Robert Gilmore.Derivation of the source-free maxwell and gravitationalradiation equations by group theoretical methods.Int. J. Mod. Phys. D, 15(4):505–519, 2006,arXiv:gr-qc/0604023.

Robert Gilmore.Lie Groups, Physics, and Geometry.Cambridge, Cambridge, UK, 2008.

Steven Weinberg.Photons and gravitons in perturbation theory: Derivationof maxwell’s and einstein’s equations.Physical Review, 138(4B):988–1002, 1965.

Page 78: From Quantum Mechanics to Maxwell’s Equationsdcross/academics/groups/qm_em_talk.pdf · The Maxwell Equations References Fin Fields Quantum Field An object which is an arbitrary

QM2ME

Daniel J.Cross

Introduction

Groups andRepresenta-tions

The MaxwellEquations

References

FinFin