26
FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

Embed Size (px)

Citation preview

Page 1: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

FOURIER ANALYSISPART 2:

Continuous & Discrete Fourier Transforms

Dr.M.A.Kashem

Asst. Professor CSE,DUET

Page 2: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 2 / 26

TOPICSTOPICS

1. Infinite Fourier Transform (FT)

2. FT & generalised impulse

3. Uncertainty principle

4. Discrete Time Fourier Transform (DTFT)

5. Discrete Fourier Transform (DFT)

6. Comparing signal by DFS, DTFT & DFT

7. DFT leakage & coherent sampling

Page 3: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 3 / 26

Fourier analysis - tools Fourier analysis - tools Input Time Signal Frequency

spectrum

1N

0n

Nnkπ2

jes[n]

N

1kc~

Discrete

DiscreteDFSDFSPeriodic (period T)

ContinuousDTFTAperiodic

DiscreteDFTDFT

nfπ2jen

s[n]S(f)

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

time, tk

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

time, tk

1N

0n

Nnkπ2

jes[n]

N

1kc~

dttfπj2

es(t)S(f)

dtT

0

tωkjes(t)T

1kc Periodic

(period T)Discrete

ContinuousFTFTAperiodic

FSFSContinuous

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

time, t

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

time, t

Note: j =-1, = 2/T, s[n]=s(tn), N = No. of samples

Page 4: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 4 / 26

Fourier Integral (FI)Fourier Integral (FI)Fourier analysis tools for aperiodic signals.

0

dωt)sin(ω)B(ωt)cos(ω)A(ωs(t)

Any aperiodic signal s(t) can be expressed as a Fourier integral if s(t) piecewise smooth(1) in any finite interval (-L,L) and absolute integrable(2).

Fourier Integral TheoremFourier Integral Theorem

(3)

dt

-s(t)(2)

s(t) continuous, s’(t) monotonic(1)

dtt)cos(ωs(t)

π

1)A(ω

dtt)sin(ωs(t)

π

1)B(ω(3)

Fourier Fourier Transform Transform (Pair) - FT(Pair) - FT

dttωj

es(t))S(ω

analysis

analysis

ωdtωj

e)ωS(π2

1s(t)

synth

esis

synthesis

Complex formComplex form

Real-to-complex linkReal-to-complex link

)B(ωj)A(ωπ)S(ω

Page 5: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 5 / 26

Let’s summarise a little Let’s summarise a little

FS

Signal

Time

Frequency

FI

ak, bk A(), B()

Periodic

Aperiodic

ck C()

Domain

realcomplex

FT

Page 6: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 6 / 26

From FS to FTFrom FS to FTFS moves to FT as period T increases: continuous spectrum

2

0 50 100 150 200

f

|S(f)|

FT

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

k f

|ak|

T = 0.05

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

k f

|ak|

T = 0.1

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200

k f

|ak|

T = 0.2

Pulse train, width 2 = 0.025

T

2

t

s(t)

Note: |ak|2 a0 as k0 2 a0 is plotted at k=0

Frequency spacing Frequency spacing 0 !0 !

Page 7: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 7 / 26

Getting FT from FSGetting FT from FS

T/2

T/2

dttωkj-es(t)T

1kc

k

tωkjekcs(t)

f = /(2) = 1/T frequency spacingfrequency spacing

As f 0 , replace f , K ,

by df, 2f,

FS FS defineddefined

T/2

T/2

dttωj-es(t)Δf

ωcωΓ kk

k

k

kk

ωΔftωjeωΓs(t)

2

kk ωc

T/2

T/2

dttωj-es(t)Δfkc

k

kk

ω

tωjeωcs(t)1 dttωjes(t)ωΓ

0ΔflimS(f)

k

dfftj2πeS(f)s(t)

FT FT defineddefined

Page 8: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 8 / 26

FT & Dirac’s DeltaFT & Dirac’s DeltaThe FT of the generalised The FT of the generalised impulse impulse (Dirac) is a complex (Dirac) is a complex exponentialexponential

otherwise,0

b0taif,)0y(t

dt)0t(tδb

a

y(t)

0ttundefined,

0ttif,0

)0t(tδ

Dirac’s Dirac’s defined defined

)0y(tdt)0t(tδ

-

y(t)

Hence

FT of an infinite train of FT of an infinite train of ::

t

T

f

1/ T

mm

Tωmj

k

m)T

π2(ωδ

T

2πekT)(tδFT

a.k.a. Sampling function, Shah(T) = Щ(T) or a.k.a. Sampling function, Shah(T) = Щ(T) or “comb”“comb”NoteNote: : & Щ = “generalised “functions & Щ = “generalised “functions

0tfπ2je)0t(tδFT

FT of Dirac’sFT of Dirac’s propertyproperty

)α(ωδ2πeFT tαj

Page 9: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 9 / 26

FT propertiesFT properties

Linearity a·s(t) + b·u(t) a·S(f)+b·U(f)

Multiplication s(t)·u(t)

Convolution S(f)·U(f)

Time shifting

Frequency shifting

Time reversal s(-t) S(-f)

Differentiation j2f S(f)

Parseval’s identity h(t) g*(t) dt = H(f) G*(f) df

Integration S(f)/(j2f )

Energy & Parseval’s (E is t-to-f invariant)

Time FrequencyTime Frequency

fd)fU()fS(f

td)t

-

u()ts(t

S(f)tf2πje

s(t)fπ2je

)ts(t

-

df2S(f)

-

dt2s(t) E

dt

ds(t)

t

-

dus(u)

)f-S(f

Page 10: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 10 / 26

FT - uncertainty principle FT - uncertainty principle

Fourier uncertainty principle

t•f 1/4

ImplicationsImplications• Limited accuracy on simultaneous observation of s(t) & S(f).

• Good time resolution (small t) requires large bandwidth f & vice-versa.

For effective duration t & bandwidth f

> 0 t•f uncertainty uncertainty productproduct

Bandwidth TheoremBandwidth Theorem

For Energy Signals:E= |s(t)|2dt = |S(f)|2df <

dts(t)tE

1t 22

dfS(f)fE

1f 22

Define mean valuesDefine mean values

dts(t))t(tE

1Δt 22

dfS(f))f(f

E

1Δf 22

Define std. dev. Define std. dev.

Page 11: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 11 / 26

-20 -10 0 10 20

f/Hz

|S(f)|2

10-5

10-4

10-1

-0.1

0

0.1

0.2

-20 -10 0 10 20

f/Hz

S(f)

= 0.1

- t

s(t) 1

-0.1

0

0.1

0.2

0.3

0.4

-20 -10 0 10 20

f/Hz

S(f)

-20 -10 0 10 20

f/Hz

|S(f)|2

10-5

10-4

10-1

10-3

10-2

1

= 0.2

- t

s(t) 1

= 0.4

- t

s(t) 1

-0.2

0

0.2

0.4

0.6

0.8

-20 -10 0 10 20

f/Hz

S(f)

-20 -10 0 10 20

f/Hz

|S(f)|2

10-5

10-4

10-1

10-3

10-2

1

FT - exampleFT - exampleFT of 2-wide square window

Chooset = |s(t)/s(0) dt| = 2,f = |S(f)/S(0) df|=1/(2) = half distance btwn first 2 zeroes (f1,-1 = 1/2) of S(f)

then: t · f = 1

Fourier uncertaintyFourier uncertainty

Power Spectral Density (PSD) vs. frequency f plot. Note: Note: Phases unimportant!

S(f) = 2 sMAX sync(2f)

Page 12: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 12 / 26

FT - power spectrumFT - power spectrum

POTS = Voice/Fax/modem Phone HPNA = Home Phone Network

Phone signals PSD Phone signals PSD masksmasks

US = Upstream DS = Downstream

From power spectrum we can deduce if signals coexist without interfering!

Power Spectral Density, PSD(f) = dE/df = |S(f)|2

Page 13: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 13 / 26

FT of main waveformsFT of main waveforms

Page 14: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 14 / 26

Discrete Time FT (DTFT)Discrete Time FT (DTFT)NoteNote: continuous frequency domain! (frequency density function)

Holds for aperiodic signals

1N

0n

Nnkπ2

jes[n]

N

1kc~

n

s[n] 1 period

n

s[n]

0

nfπ2j dfS(f)e2π

1s[n]synthesis

synthesis

nfπ2j

n

es[n]S(f)

analysis

analysis

Obtained from DFS as N

DTFT defined as:DTFT defined as:

Page 15: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 15 / 26

DTFT - convolution DTFT - convolutionDigital Linear Time Invariant systemDigital Linear Time Invariant system: obeys superposition principle.

0m

h[m]m]x[nh[n]x[n]y[n]x[n] h[n]

ConvolutionConvolution

X(f) H(f) Y(f) = X(f) · H(f)

DI GI TAL LTI SYSTEM

h[n]

x[n] y[n]

h[t] = impulse response

DI GI TAL LTI

SYSTEM 0 n

[n] 1

0 n

h[n]

0 f

DTFT([n])

1

Page 16: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 16 / 26

DTFT - Sampling/convolutionDTFT - Sampling/convolution

s[n] * u[n] S(f) · U(f) ,

s[n] · u[n] S(f) * U(f)

(From FT properties)

Time Frequency

t f

s(t) S(f)

t f

ts fs u(t) U(f)

n f

s”[n] S”(f)

Sampling s(t)

Multiply s(t) by Shah = Щ(t)

Page 17: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 17 / 26

Discrete FT (DFT)Discrete FT (DFT)

1N

0k

Nnk2π

jekcs[n] ~synth

esis

synthesis

DFT defined as:DFT defined as:

Note:Note: ck+N = ck spectrum has period N~~~~

1N

0n

Nnk2π

jes[n]

N

1kc~analysis

analysis

Applies to discrete time and frequency signals.Same form of DFS but for aperiodic signals:signal treated as periodic for computational purpose

only.

DFT bins located @ analysis frequencies fm

DFT ~ bandpass filters centred @ fm

Frequency resolution

Analysis frequencies fAnalysis frequencies fmm

1N...20,m,N

fmf Sm

Page 18: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 18 / 26

DFT - pulse & sinewaveDFT - pulse & sinewave

ck = (1/N) e-jk(N-1)/N sin(k)/ sin(k/N) ~~

a) rectangular pulse, width Na) rectangular pulse, width N

r[n] =1 , if 0nN-1

0 , otherwise

b) real sinewave, frequency fb) real sinewave, frequency f00 = L/N = L/N

cs[n] = cos(j2f0n)

ck = (1/N) ej{(Nf0-k)-(Nf0 -k)/N} (½) sin{(Nf0-k)}/ sin{(Nf0-k)/N)} +

(1/N) ej{(Nf0+k)-(Nf0+k)/N} (½) sin{(Nf0+k)}/ sin{(Nf0+k)/N)}

~~

i.e. L complete cycles in N sampled points

-5 0 1 2 3 4 5 6 7 8 9 10 n 0 N

s[n] 1

0 1 2 3 4 5 6 7 8 9 10 k

1 1

ck ~

Page 19: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 19 / 26

DFT Examples DFT Examples

DFT plots are sampled version of windowed DTFT

Page 20: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 20 / 26

Linearity a·s[n] + b·u[n] a·S(k)+b·U(k)

Multiplication s[n] ·u[n]

Convolution S(k)·U(k)

Time shifting s[n - m]

Frequency shifting S(k - h)

1N

0h

h)-S(h)U(kN

1

1N

0m

m]u[ns[m]

S(k)e Tmk2π

j

s[n]Tth2π

je

DFT propertiesDFT propertiesTime FrequencyTime Frequency

Page 21: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 21 / 26

DTFT vs. DFT vs. DFSDTFT vs. DFT vs. DFS

t 0 T/ 2 T 2T f

s[n] S(f)

f

~ cK

t

s”[n] DFT I DFT

(a)

(a)Aperiodic discrete signal.

(b)

(b)DTFT transform magnitude.

(c)

(c)Periodic version of (a).

(d)

(d)DFS coefficients = samples of (b).

(e)

(e)Inverse DFT estimates a single period of s[n]

(f)

(f)DFT estimates a single period of (d).

Page 22: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 22 / 26

DFT – leakage DFT – leakage

Spectral components belonging to frequencies Spectral components belonging to frequencies between two successive frequency bins propagate between two successive frequency bins propagate to all bins.to all bins.

LeakageLeakage

Ex: 32-bins DFT of 1 VP sinusoid sampled @ 32kHz. 1 kHz frequency resolution.

(b)

(b) 8.5 kHz sinusoid

(c)(c) 8.75 kHz sinusoid

(a)(a) 8 kHz sinusoid

* N·Magnitude

*

Page 23: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 23 / 26

1. Cosine wave

DFT - leakage exampleDFT - leakage examples(t) FT{s(t)

}

2. Rectangular window4. Sampling function1. Cosine wave

0.25 Hz Cosine wave

3. Windowed cos wave5. Sampled windowed wave

Leakage caused by sampling for a non-integer number of Leakage caused by sampling for a non-integer number of periodsperiods

s[n] · u[n] S(f) * U(f) (Convolution)

Page 24: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 24 / 26

2. Rectangular window4. Sampling function1. Cosine wave

1. Cosine wave3. Windowed cos wave

5. Sampled windowed wave

DFT - coherent samplingDFT - coherent samplings(t) FT{s(t)

}

Coherent sampling: NC input cycles exactly into NS = NC (fS/fIN) sampled points.

s[n] ·u[n] S(f) * U(f) (Convolution)

0.2 Hz Cosine wave

Page 25: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 25 / 26

DFT – leakage notesDFT – leakage notes

1. Affects Real & Imaginary DFT parts magnitude & phase.

2. Has same effect on harmonics as on fundamental frequency.

3. Affects differently harmonically un-related frequency components of same signal (ex: vibration studies).

4. Leakage depends on the form of the window (so far only rectangular window).

LeakageLeakage

After coffee we’ll see how to take advantage of different windows.

Page 26: FOURIER ANALYSIS PART 2: Continuous & Discrete Fourier Transforms Dr.M.A.Kashem Asst. Professor CSE,DUET

M. E. Angoletta - DISP2003 - Fourier analysis - Part 2.1 26 / 26

COFFEE BREAKCOFFEE BREAK

Be back in ~15 minutesBe back in ~15 minutes

Coffee in room #13Coffee in room #13