Author
shana-stafford
View
263
Download
5
Tags:
Embed Size (px)
*Chapter 5: Fourier Transform
FOURIER TRANSFORM:*Definition of the Fourier transformsRelationship between Laplace Transforms and Fourier TransformsFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParsevals theoremEnergy calculation in magnitude spectrum
Definition of Fourier Transforms*Fourier Transforms:
Inverse Fourier Transforms:*
Example 1:Obtain the Fourier Transform for thefunction below:*
Solution:Given function is:*
Fourier Transforms:*
FOURIER TRANSFORM:*Definition of the Fourier transformsRelationship between Laplace Transforms and Fourier TransformsFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParsevals theoremEnergy calculation in magnitude spectrum
Relationship between Fourier Transforms and Laplace Transforms*There are 3 rules apply to the use of Laplace transforms to find Fourier Transforms of such functions.
Example:*
Replace s=j*
Rule 2: Inverse negative function*
Example:*Negative
Fourier Transforms*
Rule 3:Add the positive and negative function*
Thus,*
Example 1:*
Fourier transforms:*
Example 2:Obtain the Fourier Transforms for the function below:
*
Solution:*
Example 3:*
Solution:*
Example 4:*
Solution:*
*
FOURIER TRANSFORM:*Definition of the Fourier transformsRelationship between Laplace Transforms and Fourier TransformsFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParsevals theoremEnergy calculation in magnitude spectrum
Fourier Transforms in the limitFourier transform for signum function (sgn(t))*
*
*
assume 0,*
Fourier Transforms for step function:*
Fourier Transforms for cosine function*
*
Thus,*
FOURIER TRANSFORM:*Definition of the Fourier transformsRelationship between Laplace Transforms and Fourier TransformsFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParsevals theoremEnergy calculation in magnitude spectrum
Properties of Fourier TransformsMultiplication by a constant*
Addition and subtraction *
Differentiation*
Integration*
Scaling*
Time shift*
Frequency shift*
Modulation
*
Convolution in time domain*
Convolution in frequency domain:*
Example 1:Determine the inverse Fourier Transforms for the function below:*
Solution:*LAPLACETRANSFORMS
A and B value:*
*