25
Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1 , J.J.M. Law 1 , H.W. Chiang 1 , A. Sivananthan 1 , C. Zhang 1 , B. J. Thibeault 1 , W.J. Mitchell 1 , S. Lee 1 , A.D. Carter 1 , C.-Y. Huang 1 , V. Chobpattana 2 , S. Stemmer 2 , S. Keller 1 , M. J.W. Rodwell 1 IEEE Device Research Conference, June 24-27 2013, Notre Dame 1 ECE and 2 Materials Departments University of California, Santa Barbara, CA

Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Embed Size (px)

Citation preview

Page 1: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy*D. Cohen-Elias1, J.J.M. Law1, H.W. Chiang1, A. Sivananthan1, C. Zhang1, B. J. Thibeault1, W.J. Mitchell1, S. Lee1, A.D. Carter1, C.-Y. Huang1, V. Chobpattana2, S. Stemmer2, S. Keller1, M. J.W. Rodwell1

IEEE Device Research Conference, June 24-27 2013, Notre Dame

1ECE and 2Materials DepartmentsUniversity of California, Santa Barbara, CA

Page 2: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Goal: FinFET with 2-4 nm Body Thickness

Intel Lg=60nm III-V FinFET (IEDM 2011)

30 nm fin: too thick at 60 nm gate length

For good electrostatics,need fin thickness ~ (gate length/2)S. H. Park et al., NNIN Symposium Feb 2012.

8nm gate length → need <4 nm thick fin

Page 3: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Goal: Tall Fins for High Drive Current

Goal: fin height >> fin pitch (spacing)

Goal: large on-current from small transistor footprint.

pitch fin

height finJ

width transistor

currentsurface

Hei

ght

Pitch

S

D

Transistor Width

J surfJ su

rfJ surfJ su

rf

Page 4: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Goal: Fins with Integrated N+ Source/Drain

regrowth→ small S/D pitch → High Integration Density

Page 5: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Why Not Dry-Etch a 2nm Fin ?

serious process challenges

Goal: 2-4 nm thickness, 100+ nm height

*metallization-induced damage increases Dit: Burek et al, JVST B. 29,4, Jul/Aug 2011;Dry-etching may well do similar surface damage

Page 6: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

FinFETs by Atomic Layer Epitaxy

Fin thickness defined by Atomic layer epitaxy (ALE)

thin, tall fins → few-nm Lg , high currents

Fin~8nm

HfO2→ nm thickness control

→ 200 nm high fins

Fin height defined by sidewall growth

TiN

Page 7: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

ALE-Defined finFET: Process Flow

Fin Template Channel ALE Dummy Gate

S/D RegrowthRelease Fins

Gate DielectricGate MetalS/D Metal

Page 8: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Fin Template

(011)

SiN hard mask: Ridges oriented along [011]

H3PO4 : HCL etch: facet-selective, material-selective forms vertical (011) sidewalls stops on InGaAs etch-stop

InGaAs etch-stop: defines template height→ defines fin height

Page 9: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Channel Growth by Atomic Layer Epitaxy

Using UCSB MOCVD :1.7 Monolayer of InGaAs / Cycle(Not true ALE mode)

1 monolayer growth per cycle.

30 31 32 33100

102

104

106

Angle

Inte

ns

ity

100 cycles of 10sec pulse InGaAs growth @ 450C Thickness~50nm

TBA flow H2 flow TMI+ TMGa flow

H2 flow→ → →

InGaAs monolayer ~ 2.9A

→S.P. DenBaars, P.D. Dapkus Journal of Crystal Growth, 98 (1989)

Page 10: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Channel Growth by Atomic Layer Epitaxy

Growth: lattice-matched InGaAs 20 ALE cycles → <10 nm channel

Details: one ALE cycle = 10 sec TMGa/TMI, 10 sec H2 , 10 sec TBAs, 10 sec H2

450 C growth

Masked growth: no InGaAs growth on top of template

Page 11: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Dummy Gate: Patterns Source and Drain

HSQ

Mask HSQ* : E-beam definable SiO2

ALD Al2O3 mask sub-layer: adhesion

*HSQ: Hydrogen silsesquioxane

Page 12: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Source Drain Regrowth

So

urc

eD

rain

HSQ

MOCVD Regrowth 600C lattice-matched N+ InGaAs, 5*1019/cm3 doping

Page 13: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

S/D Regrowth: Filling vs. Sidewall Regrowth

Present process: S/D regrowth partly fills spaces between fins

Target process: S/D sidewall regrowth by ALE → large contact area → low access resistance

Page 14: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Source Drain Regrowth

So

urc

eD

rain

HSQ

Page 15: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Fin Release

fin release: H3PO4:HCl selective wet-etch etches InP stops on InGaAs

Page 16: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Fin Release

fin with N+ regrowth

fin without N+ regrowth

N+

N+

Page 17: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Why Not Release Fins Before S/D Regrowth ?

Images of released ~10 nm fins:

S/D regrowth provides mechanical support

Page 18: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

ALD Gate Dielectric, ALD Gate Metal

HfO2 and TiN ALD gate Stack

Source

Drain

Page 19: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Source and Drain Metal

Source Metal

Drain M

etal

Gate

Page 20: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

TEM Images

Fin~8nm

HfO2

TiN

Page 21: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Where is the DC Data ?

Present finFETs: very high leakage

Planar FET: thermal Ni gatefinFET: ALD TiN gate

interface damage ?

Planar FET: 100 interfacefinFET: 011 interfaces

ALD surface preparation ?-0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Gm

(mS

/m)

Curr

ent D

ensi

ty (m

A/

m)

Gate Bias (V)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8 40 nm 70 nm 90 nm

VDS

= 0.5 V

Planar InAs/InGaAs MOSFETLee et al, 2013 VLSI symposium

Page 22: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

3-D Transistors to Extend Moore's Law

Lundstrom: high S/D tunneling @ 4-7 nm Lg

→ increase m* as Lg decreases

Implication: FETs won’t improve with scaling increased m* → decreased vinj

→ decreased Ion , increased CV/I

Alternative: 3-D integration

If we scale only to increase the IC packing density, why reduce Lg ?

height>> pitch

...or other geometries...

Page 23: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

FinFETs by Atomic Layer Epitaxy

ALE-defined fin → few-nm thick channels → scaling to 8nm gate length

S

D

pitchfin

heightfin J

widthtransistor

currentsurface

J surfJ su

rfJ surfJ su

rf

Fin~8nm

HfO2

TiN

200 nm fin height →enhance drive current

Page 24: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,

Thank You

Page 25: Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias 1, J.J.M. Law 1, H.W. Chiang 1, A. Sivananthan 1,