20
Formation and Evolution Formation and Evolution of of Compact Binaries Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris

Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Formation and EvolutionFormation and Evolutionofof

Compact BinariesCompact Binaries

Niels Bohr International Academy Summer School 2009Thomas Tauris

Page 2: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Lecture topics:Lecture topics:

HMXBs and LMXBs HMXBs and LMXBs –– a cartoon overviewa cartoon overview

RocheRoche--lobe overflow (RLO): case A, case B, case Clobe overflow (RLO): case A, case B, case C

Stability criteria for mass transfer / stellar evolutionStability criteria for mass transfer / stellar evolution

The orbital angular momentum balance equationThe orbital angular momentum balance equation

Common envelope + spiralCommon envelope + spiral--inin

NBI 2009 T. Tauris 2

Common envelope + spiralCommon envelope + spiral--inin

Formation of millisecond pulsarsFormation of millisecond pulsars

•• Detailed evolution of LMXBsDetailed evolution of LMXBs

Page 3: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

LMXB cartoon

common

envelope

ZAM

S

Roche-lobe

overflow

+ spiral-in

15.0 1.6

1200 days

0.0 Myr

ag

e

P orb

1538 days

13.87 Myr

0.83 days 13.87 Myr

13.1 1.6

4.86

eccentricity: 0.0

NBI 2009 T. Tauris 3

LMX

B

white dwarfmillisecond

pulsar

supernov

a

helium

star

neutron

star

3.99

1.6

1.3 1.6

1.6 0.303

1.10 days 14.95 Myr

80.75 days

15 Myr

1.3 1.59558 days 2.39 Gyr

4.11 days 2.29 Gyr

eccentricity: 0.93

eccentricity: 0.0

Page 4: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

HMXB cartoon

supernova

helium

star

ZAM

S

Roche-lobe

overflow

neutron

How to make a double pulsar

Perfect playground for:

- population synthesis

- Monte Carlo simulations

Things you need to consider:

- stellar evolution (incl. He-star evoution)

- various binary interactions

(mass transfer, accretion, CE

tidal interactions, GWR)

NBI 2009 T. Tauris 4

HMX

B

young

pulsar

recycled

pulsar

neutron

star

common

envelope+ spiral-in

supernova

tidal interactions, GWR)

- asymmetric supernovae

Page 5: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

standard Xstandard X--ray binariesray binaries

timescale: 10 – 10 yr5 6

- wind accretion

- beginning atmospheric

Roche-lobe overflow

NBI 2009 T. Tauris 5

timescale: 10 – 10 yr8 9- Roche-lobe overflow

Page 6: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

BeBe--star Xstar X--ray binaryray binary

neutron

star

Be-starexpelled material

NBI 2009 T. Tauris 6

star

orbP

time

X-ray flux

Page 7: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Aspects of Roche-lobe overflow

Accretion ?

super-Eddington ?

jet ?

B-field, spin ?

Stability ?response of donor star ?

dynamically stable ?

NBI 2009 T. Tauris 7

B-field, spin ?

Mode of mass loss ?specific orbital angular momentum ?

Page 8: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Equipotential surfacesEquipotential surfaces

2

2

3

2

2

2

1

1r

r

GM

r

GM Ω−−−=Φ

effective gravitationaleffective gravitationalpotential:potential:

RocheRoche--lobe radius:lobe radius:

coco--moving framemoving frame

( )3/13/2

3/2

1ln6.0

49.0

qq

q

a

RL

++=

RocheRoche--lobe radius:lobe radius:

Page 9: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Stellar evolution

RLO case B

RLO case C

NBI 2009 T. Tauris 9

RLO case A

RLO case B

Page 10: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

22

2

ln

ln

ln

ln

M

R

M

R LLdonor

∂≡∧

∂≡ ζζ

Stability criteria for mass transferStability criteria for mass transfer

exponents of radius to mass:exponents of radius to mass: ζMR ∝

adiabatic or thermal response of the donor star to mass lossadiabatic or thermal response of the donor star to mass loss

initial stability criteria:initial stability criteria: ζζ ≤initial stability criteria:initial stability criteria: donorL ζζ ≤

2

2

2

22

2 M

MR

t

RR donorM

&& ζ+

∂=

2

2

2 M

MR

t

RR LLM

LL

&& ζ+

∂=

nuclear burningnuclear burning tidal spintidal spin--orbit couplingsorbit couplingsgravitational wave radiationgravitational wave radiation

LRR && =2 yields mass loss rateyields mass loss rate!!

Page 11: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

The Orbital Angular Momentum Balance EquationThe Orbital Angular Momentum Balance Equation

orbital angular momentum2221 1 eaM

MMJorb −Ω=

The Orbital Angular Momentum Balance EquationThe Orbital Angular Momentum Balance Equation

|| prJ ×=

⇓⇓

logarithmic differentiationlogarithmic differentiation

(e=0, tidal circularization)(e=0, tidal circularization)

MMMMJa &&&&&& +

orb

ml

orb

ls

orb

mb

orb

gwr

orb

orb

J

J

J

J

J

J

J

J

J

J &&&&&

+++=

|| prJorb ×=

M

MM

M

M

M

M

J

J

a

a

orb

orb 21

2

2

1

1 222&&&&&& +

+−−=

Page 12: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

1

4

21

5

3

5

32 −−= sa

MMM

c

G

J

J

orb

gwr&

Gravitational wave radiation:Gravitational wave radiation:

LowLow--mass stars:mass stars: magnetic wind!magnetic wind!⇒⇒ loss of spin angular momentumloss of spin angular momentum

In tight binaries the systemIn tight binaries the system

Magnetic braking:Magnetic braking:

342GMRkJmb −∝

&

In tight binaries the systemIn tight binaries the systemis tidally locked (synchronized)is tidally locked (synchronized)and spinand spin--orbit couplings operateorbit couplings operate

⇒⇒ loss of orbital angular momentumloss of orbital angular momentum P < 2 daysP < 2 daysorborb

M < 1.5 MM < 1.5 M22 oo..

SpinSpin--orbit couplings:orbit couplings:

orb

ls

J

J&

(as a result of nuclear burning or mass loss)(as a result of nuclear burning or mass loss)

-- fx . change in stellar moment of inertiafx . change in stellar moment of inertia

21

5MMaJorb

mb −∝

(uncertain)(uncertain)

Page 13: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

2

2

22

1

)1(

M

M

q

qq

J

J

orb

ml&&

+

+++=

γδβα

Mass loss:Mass loss:

αα: direct fast wind: direct fast wind

-- fx. in a relativistic jetfx. in a relativistic jet

ββ: mass ejected from accretor: mass ejected from accretor

(isotropic re(isotropic re--emission)emission)

( )0,||

||max

2

2

M

MM Edd

&

&& −=β

accretion efficiency: accretion efficiency: εε = 1= 1-- αα -- ββ -- δδ ((∂∂M = M = -- εε ∂∂M ) M ) NSNS 22

coplanar toroid withcoplanar toroid with

radius: radius: γγ aa22

δδ: mass loss via circumbinary: mass loss via circumbinary

Page 14: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Common envelope + spiralCommon envelope + spiral--in evolutionin evolution

dynamically dynamically ununstable mass transfer:stable mass transfer:

•• deep convective envelope of donor stardeep convective envelope of donor star

(rapid expasion in response to mass loss) (rapid expasion in response to mass loss)

•• M > M M > M

(orbit shrinks in response to mass loss)(orbit shrinks in response to mass loss)

donordonor accretoraccretor

⇓⇓ RunRunRunRunRunRunRunRun--------away processaway processaway processaway processaway processaway processaway processaway process!!!!!!!!!!!!!!!!

common envelopecommon envelope

drag force drag force →→ dissipation of orb. ang. mom. + deposition of E in the envelopedissipation of orb. ang. mom. + deposition of E in the envelopeorb orb

outcome:outcome:

•• huge reduction of orbital separationhuge reduction of orbital separationrejection of stellar enveloperejection of stellar envelope

merging of NS + coremerging of NS + core(Thorne(Thorne--Zytkow object / black hole)Zytkow object / black hole)

(NS orbiting a naked helium star)(NS orbiting a naked helium star)

Needed to explain observed tight systems!!

Page 15: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

How to define M ?core

- quite important!

NBI 2009 T. Tauris 15Tauris & Dewi (2001)

Page 16: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Intermediate Mass XIntermediate Mass X--ray Binariesray BinariesWhy are so few IMXBs observed ?Why are so few IMXBs observed ?

HMXB: wind accretion (beginning atmospheric RLO)HMXB: wind accretion (beginning atmospheric RLO)

RLO is dynamically RLO is dynamically unstableunstable and a CE formsand a CE forms

210M M>

IMXB: wind accretion is too weak, andIMXB: wind accretion is too weak, and

RLO is often unstable (or very short)RLO is often unstable (or very short)

LMXB: stable RLO LMXB: stable RLO

21.5M M≤

Page 17: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Formation of millisecond pulsars (MSPs)Formation of millisecond pulsars (MSPs)

First binary pulsar discovered in 1974: PSR 1913+16 (today ~50 systems are known)First binary pulsar discovered in 1974: PSR 1913+16 (today ~50 systems are known)

First pulsar discovered in 1967 (today ~1800 pulsars are known) First pulsar discovered in 1967 (today ~1800 pulsars are known)

First millisecond pulsar discovered in 1982: PSR 1937+21 (P=1.5 msec)First millisecond pulsar discovered in 1982: PSR 1937+21 (P=1.5 msec)

Millisecond pulsar characteristics:Millisecond pulsar characteristics:

•• high incidence of binaries among millisecond pulsarshigh incidence of binaries among millisecond pulsars

•• rapid spin (P < 20 msec)rapid spin (P < 20 msec)

P-Pdot diagram

old neutron stars which have been old neutron stars which have been ””recycledrecycled””

via accretion of mass and angular momentumvia accretion of mass and angular momentum

•• relatively weak magnetic fields (B=10 relatively weak magnetic fields (B=10 -- 10 G)10 G)88 99

Page 18: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Single millisecond pulsarsSingle millisecond pulsars

All single millisecond pulsars are born in a binary system.

Once a recycled millisecond pulsar turns on its emission of ultra-relativistic particles, it is often able to completely evaporate its companion and thus end up as an isolated millisecond pulsar.

Observational evidence:Observational evidence:

eclipsing MSPs with 0.02 M companionseclipsing MSPs with 0.02 M companions

the ”planetary pulsar”, PSR 1257+12 the ”planetary pulsar”, PSR 1257+12

oo........

as an isolated millisecond pulsar.

Page 19: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Double degenerate systems:X-ray progenitor systems

NS+WD millisecond pulsars slow binary pulsars

LMXBs

millisecond X-ray pulsars (SAX 1808.8-3658)

WD+WD super-soft X-ray sources M > M 2 WD

novae-like systems M < M 2 WD

(CO) WD + (CO) WD

(AM CVn systems, RLO)

WD+NS old WD + young pulsar

(PSR 2303+46)

?

observed systems

WD+BH (not possible)

WD

NS+NS recycled pulsar + young pulsar

(PSR 1913+16)

HMXBs

BH+NS BH + young pulsar (no detections)

HMXBs (Cyg X-1)

NS+BH semi-recycled pulsar + BH

(no detections yet)

HMXBs

BH+BH (only detectable via gwr) HMXBs

BH+WD (no detections) SXTs

Tauris & Sennels (1999)

NS

Page 20: Formation and Evolution ooff Compact Binaries - Indico fileFormation and Evolution ooff Compact Binaries Niels Bohr International Academy Summer School 2009 Thomas Tauris. Lecture

Summary:Summary: To study the formation and evolution of compact binaries To study the formation and evolution of compact binaries

one must have a detailed knowledge stellar evolution and one must have a detailed knowledge stellar evolution and binary interactionsbinary interactions

Common envelope + spiralCommon envelope + spiral--in explain very narrow orbitsin explain very narrow orbits

Millisecond pulsars are old ”rejuvenated” pulsarsMillisecond pulsars are old ”rejuvenated” pulsars

HMXBs and LMXBs are wellknown b/c they are detectedHMXBs and LMXBs are wellknown b/c they are detected

–– IMXBs are not detectedIMXBs are not detected

Common envelope + spiralCommon envelope + spiral--in explain very narrow orbitsin explain very narrow orbits

Perfect scenario for Monte Carlo simulationsPerfect scenario for Monte Carlo simulations