23
Forces on Charged particles •Derivation •Example •Whiteboards •Motion in a circle •Direction •Northern Lights •Whiteboards

Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

  • Upload
    natara

  • View
    48

  • Download
    0

Embed Size (px)

DESCRIPTION

Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction Northern Lights Whiteboards. Recall F = IlBsin  Derive F = qvB sin  F = force on moving particle q = charge on particle (in C) (+ or -???) v = particle’s velocity  = angle twixt v and B - PowerPoint PPT Presentation

Citation preview

Page 1: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

Forces on Charged particles•Derivation•Example•Whiteboards•Motion in a circle•Direction•Northern Lights•Whiteboards

Page 2: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

RecallF = IlBsin

Derive F = qvBsin

•F = force on moving particle•q = charge on particle (in C) (+ or -???)•v = particle’s velocity = angle twixt v and B

Can a magnetic force increase a charged particle’s speed?

Page 3: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

Example - proton going 4787.81 m/s in earth’s magnetic field (5.0 x 10-5 T) What force?

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

p+

v = 4787.81 m/sq = 1.602 x 10-19 CF = qvBsin

F = qvBsin F = (1.602 x 10-19 C)(4787.81 m/s)(5.0 x 10-5 T)sin(90o)F = 3.8 x 10-20 N

Page 4: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

Consider the path of particle

F

F

F

F If at 90o

qvB = ma = mv2/r

qvB = mv2/r qB = mv/r, r = mv/(qB)r = (1.673 x 10-27 kg)(4787.81 m/s)/(1.602 x 10-19 C)/(5.0 x 10-5 T)r = 1.0000 m = 1.0 m

Force is centripetal

Page 5: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What is the path of the proton in the B field?

CW

p+

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Page 6: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What is the path of the electron in the B field?

ACW

e-

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Page 7: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What is the path of the electron in the B field?

ACW

e-

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Page 8: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What is the path of the proton in the B field?

ACW

p+

x x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x xx x x x x x x x x x x x

Page 9: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What is the path of the electron in the B field?

CW

e-

x x x x x x x x x x x x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x x

Page 10: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction
Page 11: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction
Page 12: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

Superconducting magnetsEnergy of particlesWhy we have particle accelerators

Page 13: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

Whiteboards - Force: F = qvBsin

1 | 2 | 3 | 4

Page 14: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What is the force acting on a proton moving at 2.5 x 108 m/s to the North in a .35 T magnetic field to the East?q = 1.602 x 10-19 CF = qvBsin

1.4 x 10-11 N, Downward

F = qvBsinF = (1.602 x 10-19 C)(2.5 x 108 m/s)(.35 T)sin(90o) = 1.4 x 10-11 N

Page 15: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What magnetic field would exert 1.2 x 10-12 N on an alpha particle going 17% the speed of light? alpha = 2p2nq = 2(1.602 x 10-19 C) = 3.204 x 10-19 Cv = .17x3.00 x 108 m/s = 5.1 x 107 m/sF = qvBsin

.073 T

F = qvBsin1.2 x 10-12 N = (3.204 x 10-19 C)(5.1 x 107 m/s)Bsin(90o)B = 0.073437615 T = .073 T

Page 16: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

If the electron is going 1.75 x 106m/s, and the magnetic field is .00013 T, what is the radius of the path of the electron?

7.7 cm

e-

x x x x x x x x x x x x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x xx x x x x x x x x x

m = 9.11 x 10-31 kgq = 1.602 x 10-19 CF = qvBsinF = ma, a = v2/r

F = qvBsinF = ma, a = v2/rqvB = mv2/rr = mv/qBr = 0.07655 m = 7.7 cm

Page 17: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

What B-Field do you need to make a proton going 2.13 x 107 m/s go in a 3.2 cm radius circle?

7.0 T

m = 1.673 x 10-27 kgq = 1.602 x 10-19 CF = qvBsinF = ma, a = v2/r

F = qvBsinF = ma, a = v2/rqvB = mv2/rB = mv/qrB = 6.951 T = 7.0 T

Page 18: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

Earth’s Magnetic field Explain angle to B-Field(vertical B field, velocity angled upward)

Page 19: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction
Page 20: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction
Page 21: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction
Page 22: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction
Page 23: Forces on Charged particles Derivation Example Whiteboards Motion in a circle Direction

Bubble Chamber - particles make tracks in B field.

e-

e+

Directions, spiral