10
Flexural-isostatic reconstruction of the Western Mediterranean vertical motions after the Messinian Salinity Crisis Implications for sea level and basin connectivity H. Heida 1 , D. García-Castellanos 1 , I.Jiménez-Munt 1 , F. Raad 2 , A. Maillard 3 , J.Lofi 2 1: Institute of Earth Science Jaume Almera (ICTJA-CSIC) Barcelona, Spain 2: French National Centre for Scientific Research (CNRS), Montpellier, France 3: University Paul Sabatier 3 Sabatier,Toulouse 3, Toulouse, France Author email: [email protected] SALTGIANT is a European project funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement nº 765256

Flexural-isostatic reconstruction of the Western Mediterranean … · 2020. 5. 12. · Objectives • Messinian Salinity Crisis - 5.97-5.33 Ma, ~5% of global ocean salt sequestered

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Flexural-isostatic reconstruction of the Western Mediterranean vertical motions

    after the Messinian Salinity Crisis Implications for sea level and basin connectivity

    H. Heida1, D. García-Castellanos1, I.Jiménez-Munt1, F. Raad2, A. Maillard3, J.Lofi2

    1: Institute of Earth Science Jaume Almera (ICTJA-CSIC) Barcelona, Spain 2: French National Centre for Scientific Research (CNRS), Montpellier, France

    3: University Paul Sabatier 3 Sabatier,Toulouse 3, Toulouse, France

    Author email: [email protected]

    SALTGIANT is a European project funded by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie

    grant agreement nº 765256

    mailto:[email protected]

  • Objectives

    • Messinian Salinity Crisis - 5.97-5.33 Ma, ~5% of global ocean salt sequestered in 3-stage km-scale evaporites, extensive incision of fluvial canyons and erosion or margins.

    • What was the original vertical position of Messinian markers in the Western Mediterranean?

    • What magnitude of sea-level drop is required to obtain shoreline positions observed in seismic stratigraphic record?

    • Were Messinian evaporites deposited at normal water levels or during lowstand? Were (sub)basins connected during deposition?

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    36

    44

    -1 10Detail from extension map of the MSC seismic markers in the Western Mediterranean, showing Mobile Unit (yellow), Upper Unit (green), and

    Complex Unit (blue) distributions, from: Seismic Atlas of the Messinian Salinity Crisis markers in the Mediterranean Sea - Volume 2

    (Lofi et al., 2018)

  • Methods• Flexural-isostatic modelling in pseudo-3D (map view) using TISC (Garcia-Castellanos et al. 2003)

    • Step-by-step backstripping, imposing sea level drop to match observed paleo shorelines. Crucial is extent of erosional contacts in seismic stratigraphic record, and their subaerial vs. subaqeus nature!

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    1. Schematic of current basin configuration

    2. Removal PQ sediments

    3. Impose end-MSC sea-level

    4. Schematic of end-MSC basin configuration, shoreline matched to position UU onlap

    5. Removal UU 6. Impose end-MU “dessication phase” 7. Refill (end MU deposition at normal sea-level) 8. Remove MU 9. Decompact pre-MSC sediments

  • 200 700 800 1000 1100

    0

    10

    20

    30

    40

    50

    60

    )mk(

    htpeD

    NNW SSW NNW SSEPyrenees Ebro Basin Valencia Trough Balearic Promontory Algerian Basin North Africa

    70

    80

    300100 400 500 600 900

    Coupled/Decoupled

    Te Strong rheology

    90

    100

    Isotherm 1330 ºC, thermal LAB

    Te Weak rheology

    Tensile Compressive CompressiveTensile

    Methods

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    • 2-D flexure model (tAo) combining thermal and material property variations (Carballo et al., 2015) + load stresses along Iberia-Algeria profile to obtain estimate of Effective Elastic Thickness in region. Values of 10 and 45 km used for sensitivity analysis.

    Range EET

    1˚ 0˚ 1˚ 2˚ 3˚ 4˚ 5˚ 6˚ 7˚ 8˚ 9˚36˚

    37˚

    38˚

    39˚

    40˚

    41˚

    42˚

    43˚

    44˚

  • Data

    • Comprehensive database of vintage and industry 2D seismic data (e.g. Maillard et al., 2014, Camaselle&Urgeles, 2017), plus 3D cube in Ebro delta (Urgeles et al., 2010)

    • Partially reinterpreted to obtain accurate basement depth and distribution of MSC markers on Balearic Promontory

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    36

    43

    -1 9Data used for this study, 2-D lines in white, position 3-D seismic box Ebro delta in transparent white, distribution Mobile Unit (yellow) and Upper Unit (green) and proposed extent Basal Erosion Surface under Mobile Unit from Maillard et al., 2006 (dashed)

  • Central Mallorca Depression (CMD)• Unique example of halite in intermediate

    depth basin. Was this connected to the deep basin during deposition?

    • Halite in CMD reaches thickness of 300 m.

    • Current depth top halite at ~1300 m.

    • Deflection due to Pliocene-Quaternary sediments in CMD ranges from 90 m (EET = 10 km) to 200 m (for EET = 45 km)

    • Strong lithosphere results inconsistent with modern elevation Messinian Carbonates on Mallorca

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    Thickness map of halite in the CMD, along with subsidence contours due to Pliocene-Quaternary sediments (blue for EET= 45 km, green for EET = 10 km)

    2

    2

    3

    3

    39

    10

    10

    10

    10

    10

    10

    10

    10

    50

    50

    50

    50 100

    100

    100

    100 200

    200

    300

    300

    500

    Profile

    A

    360 340 320 300 280 260 240

    220

    220

    200

    200

    180

    180

    160

    160

    160

    140

    140

    140

    120

    120

    120

    120

    100

    100

    100

    100

    80

    8080

    80

    80

    60

    60

    60

    60

    60

    40

    40

    20

    320

    300

    280

    280

    260

    260

    240

    240

    240

    220

    220

    220

    200200

    200

    200

    180

    180

    Thickness Halite

  • Topography

    −3000

    −3000

    −3000

    −3000

    −3000

    −3000

    −3000−3000

    −3000 −3000

    −2500

    −250

    0

    −250

    0

    −2000

    −2000

    −2000

    −15

    00

    −1500−1500

    −100

    0

    −1000

    −500

    −500

    −500

    0

    0

    500

    500

    500

    1000

    150015

    00

    20002000

    −4000 −2000 0 2000 4000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Water Depth

    0

    0

    500

    500

    500

    1000

    1000

    1500

    1500

    1500

    2000

    2000

    2500

    2500

    2500

    3000

    3000

    3000

    3000

    3000

    30003000

    3000

    3000

    3500

    0 1000 2000 3000 4000 5000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Deflection

    −2200

    −20

    00

    −2000

    −1800

    −180

    0

    −1600

    −160

    0

    −1400

    −120

    0

    −1200

    −1200

    −1000

    −1000

    −1000

    −100

    0

    −800

    −800

    −800

    −600

    −600

    −600

    −600

    −400

    −400

    −400

    −400

    −200

    −200

    −200

    −200

    0

    0

    0

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Decompaction

    100

    100

    100

    100

    100

    200

    200

    200

    200

    200

    200

    300

    300

    300

    300

    300

    400

    400

    400

    400

    400

    400400

    500

    500

    500

    600

    600

    700

    800

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    −2

    −1

    0

    0

    distance (km)

    Topography

    −3500

    −3500

    −3500

    −350

    0

    −3500

    −300

    0

    −3000

    −3000

    −30

    00

    −300

    0

    −2500

    −2500

    −250

    0

    −2000

    −2000

    −15

    00

    −150

    0

    −1500

    −1000

    −1000

    −500

    −500

    −500

    0

    0

    50050

    0

    50010

    00

    150015

    00

    20002000

    −4000 −2000 0 2000 4000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Water Depth

    0

    0

    500

    500

    500

    1000

    1000

    1500

    1500

    2000

    2000

    2500

    2500

    3000

    3000

    3000

    3000

    3000

    3000

    3500

    3500

    3500

    3500

    0 1000 2000 3000 4000 5000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Deflection

    −160

    0

    −1600−1400

    −140

    0

    −120

    0

    −10

    00

    −100

    0−1000

    −1000−800

    −800

    −800

    −80

    0

    −600

    −600

    −600

    −600

    −400

    −400

    −400

    −400

    −200

    −200

    −200

    −200

    0

    0

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Decompaction

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    −2

    −1

    0

    0

    distance (km)

    Topography

    −3500

    −3500

    −3000

    −3000

    −3000

    −300

    0

    −3000

    −3000

    −300

    0

    −3000

    −3000

    −2500

    −2500

    −2500

    −200

    0

    −2000

    −15

    00

    −1500

    −1000

    −1000

    −500

    −500

    −500

    0

    0

    500 5

    00

    500

    1000

    150015

    00

    20002000

    −4000 −2000 0 2000 4000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Water Depth

    0

    0

    500

    500

    500

    1000

    1000

    1500

    1500

    2000

    2000

    2500

    2500

    3000

    3000

    3000

    3000

    3000

    3000

    3500

    3500

    0 1000 2000 3000 4000 5000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Deflection

    −1400

    −1200

    −1000

    −1000

    −800

    −80

    0

    −600

    −600

    −600−600

    −400

    −400

    −400

    −400

    −200

    −200

    −200

    −200

    0

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Decompaction

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    −2

    −1

    0

    0

    distance (km)

    Bedded Unit 3

    Bedded Unit 2

    Plio-Quaternary

    Halite

    -2000

    -1800

    -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    0 10 20 30 40 50Distance (km)

    Dep

    th (

    m)

    Simbad BA-13

    WSW ENECentral Mallorca Depression• Seismic line Simbad BA-13

    • Bathymetry at the end of Halite deposition ~1200 m.

    • End-halite drawdown of ~800 m enough to isolate CMD from surrounding basins.

    • Ratio paleowaterdepth/halite thickness CMD and deep basins very similar. (1km/300 m and 3 km/1000m respectively)

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    Bathymetry CMD end halite deposition ~1,2 km

    Bathymetry CMD pre-MSC ~1,5 km

    TISC results for along profile A (along line BA-13) for a EET of 10 km. A) Current, B) End MSC after reflooding, C) End halite deposition, D) pre-MSC

    Depth-translated interpretation line BA-13 (by Fadl Raad)

    0 60

    Topography

    −250

    0

    −2500

    −2500

    −2000

    −2000

    −2000

    −1500

    −1500

    −150

    0

    −1000

    −1000

    −500

    −500

    −500

    0

    0

    500

    500

    500

    500 1000

    1000 1500

    15002000

    2000

    −4000 −2000 0 2000 4000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Water Depth

    0

    0

    500

    500500

    1000

    1000

    1500

    1500

    2000

    2500

    2500

    2500

    0 1000 2000 3000 4000 5000

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Deflection

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    Decompaction

    36

    37

    38

    39

    40

    41

    42

    43

    44

    −1 0 1 2 3 4 5 6 7 8 9

    −2

    −1

    0

    0

    distance (km)

  • Valencia Basin• ~1 km water level at end MSC best fit for

    onlap UU in Valencia Basin and Ebro Delta.

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

    Topography and shoreline (dark red) in the Valencia trough and Balearic Promontory at the end of the MSC (before flooding) with water levels at -1km

    Sensitivity of shoreline position to different sea-levels at the end of the MSC for an EET value of 10 km. Onlap Upper Unit in green.

    36

    37

    38

    39

    40

    41

    42

    43

    44

    36

    37

    38

    39

    40

    41

    42

    43

    44

    1 0 1 2 3 4 5 6 7 8 9

    1 0 1 2 3 4 5 6 7 8 9

    Shorelines drawdown sensitivity end MSC

    No drawdown 0.5 km drawdown 1 km drawdown 1.5 km drawdown

  • Conclusions1. Preliminary results indicate sea level ~1 km below modern required to match only of Upper Unit - Margin

    Erosion Surface boundary.

    2. If 2-step refill is assumed, along with subaerial nature of Bottom Erosion Surface in Valencia Trough, initial drawdown after Mobile Unit deposition could have been as high as ~2 km.

    3. CMD would have been isolated by a drawdown of ~800 m, so halite must have been deposited at high water levels, and thicknesses of halite in CMD and deep basins hint at direct relationship depth water column and accumulation rate.

    1. Objectives 2. Methods 3. Data 4. CMD 5. Valencia Basin 6. Conclusions

  • References

    Cameselle, A. L., & Urgeles, R. (2017). Large-scale margin collapse during Messinian early sea-level drawdown: the SW Valencia trough, NW Mediterranean. Basin Research, 29, 576–595. https://doi.org/10.1111/bre.12170

    Carballo, A., Fernandez, M., Torne, M., Jiménez-Munt, I., & Villaseñor, A. (2015). Thermal and petrophysical characterization of the lithospheric mantle along the northeastern Iberia geo-transect. Gondwana Research, 27(4), 1430–1445. https://doi.org/10.1016/j.gr.2013.12.012

    Garcia-Castellanos, D., Vergés, J., Gaspar-Escribano, J., & Cloetingh, S. (2003). Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2002JB002073

    Maillard, A., & Mauffret, A. (2006). Relationship between erosion surfaces and Late Miocene Salinity Crisis deposits in the Valencia Basin (northwestern Mediterranean): Evidence for an early sea-level fall. Terra Nova, 18(5), 321–329. https://doi.org/10.1111/j.1365-3121.2006.00696.x

    Maillard, A., Driussi, O., Lofi, J., Briais, A., Chanier, F., Hübscher, C., & Gaullier, V. (2014). Record of the Messinian Salinity Crisis in the SW Mallorca area (Balearic Promontory, Spain). Marine Geology, 357, 304–320. https://doi.org/10.1016/j.margeo.2014.10.001

    Urgeles, R., Camerlenghi, A., Garcia-Castellanos, D., De Mol, B., Garcés, M., Vergés, J., … Hardman, M. (2011). New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 23(2), 123–145. https://doi.org/10.1111/j.1365-2117.2010.00477.x

    https://doi.org/10.1111/bre.12170https://doi.org/10.1016/j.gr.2013.12.012https://doi.org/10.1029/2002JB002073