1

Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Flat Optics and

Metasurfaces

Daniel Wintz

Patrice Genevet, Mikhail Kats, Antonio Ambrosio, Nanfang Yu, Francesco Aieta, Romain Blanchard, Alex

Woolf, Alan She, Zeno Gaburro, Federico Capasso

Andor Academy April 8th, 2015

School of Engineering and Applied Sciences, Harvard University

Page 2: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Overview

Introduction to flat optics

Examples of optical elements using phase discontinuities

Controlled steering of surface plasmon wakes

Active metalens for tunable focusing of surface waves

Page 3: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Conventional Optics

Transformation Optics

Ward, Pendry, J. Mod. Opt. 43 (1996)

Diffractive Optics

Page 4: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Can we replace bulky optical components with

nanoscale, flat ones?

Page 5: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

• Goal: control amplitude, phase, and polarization of light

with a low footprint, nanoscale device

• 3 ideals and challenges: high efficiency, high bandwidth,

reconfigurability

• Metasurfaces: Optically thin, subwavelength arrays of

optical elements for engineering wavefronts

The Vision of Flat Optics

Smart Phones Stretchable

Materials Google glass

Page 6: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Wave optics (thin lens example)

Conventional optical elements rely on gradual phase accumulation through dielectric media—phase accumulates through propagation

Page 7: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Wave optics (thin lens example)

Conventional optical elements rely on gradual phase accumulation through dielectric media—phase accumulates through propagation

~𝝀 or thicker

Page 8: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Primary wavefront

Interface

z

Wave optics (Huygens principle)

Page 9: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Secondary wavelets

Primary wavefront

Interface

z

Wave optics (Huygens principle)

Page 10: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Secondary wavelets

Primary wavefront

Interface

z

Wave optics (Huygens principle)

Page 11: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

A sin(ωt - kx x)

x

A sin(ωt - kx x + jump)

jump

Secondary wavelets

Primary wavefront

Interface

z

Interface

z

Huygens principle

Light propagation with phase discontinuities

Page 12: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

A sin(ωt - kx x)

x

A sin(ωt - kx x + jump)

jump

What can we use to make these discontinuities?

Light propagation with phase discontinuities

Page 13: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Optical Antennas

++ --

L1

• The case of a single rod antenna—behaves as a driven, damped

harmonic oscillator

• Light scattered from an antenna does not always have the same phase

as the incident light!

More complicated antenna structures can be used to achieve full 2𝜋 coverage

Page 14: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Overview

Introduction to flat optics

Examples of optical elements using phase discontinuities

Controlled steering of surface plasmon wakes

Active metalens for tunable focusing of surface waves

Page 15: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Demonstrated optical capabilities of metasurfaces

• Refraction/beam deflection

• Complex beams—Bessel beams, vortex beams, Cosine-Gauss beams

• Full and half wave plates

• Flat lenses

• Dispersionless flat lenses

• Creation and control of surface plasmon wakes

• Metagratings for focusing of surface waves

Page 16: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Light propagation with phase discontinuities

Generalized reflection and refraction of light N. Yu, P. Genevet , M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, Science 334,333 (2011)

Page 17: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Refraction and beam deflection The antennas operate as secondary scatterers with a tailorable phase

response, re-directing a normally-incident beam away from the normal

Uniform scattering amplitude Controlled phase responses between 0 to 2π

Page 18: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Vortex beams

• Phase profile is an optical ‘vortex’ or helix that carries angular momentum ±𝑚ℏ

• Not just fancy: can be used for information transfer—2.5TB/sec already achieved: Nature Photonics 6, 488–496 (2012)

Page 19: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Applied Physics Letters 100, 13101 (2012)

Non-diffracting beams

• Diffraction is a consequence of the wave nature of light

• Can be turned off for small length scales

Page 20: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Flat Lenses

Nano Lett., 2012, 12 (9), pp 4932–4936

Page 21: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Multiwavelength dispersionless flat lens

Science 347, (2015)

Page 22: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Overview

Introduction to flat optics

Examples of optical elements using phase discontinuities

Controlled steering of surface plasmon wakes

Active metalens for tunable focusing of surface waves

Page 23: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Introduction to Surface Plasmon Polaritons

x

Surface Plasmon Polaritons (SPPs)—Light confined to a metal/dielectric interface Surface: confined to the interface Plasmon: free electrons (plasma) oscillate Polariton: light-like

Page 24: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Surface Plasmon Wakes?

Sonic booms Boat wakes

Cherenkov effect

What will be the disturbance for surface plasmons?

Wakes are a general wave phenomena where a disturbance propagating in the medium travels faster than the phase velocity of the waves it creates

Page 25: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

The Disturbance: ‘Running Wave of Polarization’

sin 𝛾 =sin 𝜃

𝑛𝑒𝑓𝑓

𝑅𝑒 𝐸𝑧

Page 26: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Near-field scanning optical microscopy (NSOM)

• AFM tuning fork + Tapered optical fiber

• Probes near-field • Tip diameters ~50 − 100 𝑛𝑚

• Collection mode or scattering mode

• NOT diffraction limited

NSOM Details

Schematic of collection mode operation with metal coated tapered optical fiber.

𝑘𝑆𝑃𝑃

Page 27: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Experimental setup and sample data

Data for 𝜃 = 20°

Page 28: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Interferogram Peculiarity

𝛾 Δ𝑦

𝜆𝑅𝑊𝑃

Data for 𝜃 = 20°

Page 29: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Experimental Data on Slits for different 𝜃

Others have done nanoslit excitation of SPPs already: Lee, S.Y., et al. PRL (2012)

Page 30: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Phased array gives routing configurability

𝑠𝑖𝑛𝛾 =𝑠𝑖𝑛𝜃

𝑛𝑒𝑓𝑓+

1

𝑘𝑠𝑝𝑝

𝜕𝜙

𝜕𝑥

𝟏. 𝟓 𝝁𝒎

𝚫𝒙 𝛾 𝛾 𝚫𝒅

𝝓𝟏 𝝓𝟏 + 𝚫𝝓 𝚪

(a)

𝚫𝒅

𝑘𝑆𝑃𝑃 𝑘𝑆𝑃𝑃

Page 31: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Spin-Angular-Momentum dependent phasing

(a)

x

y

𝑬

Linear Polarization

Page 32: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

(b)

x

y

𝑬

Spin-Angular-Momentum dependent phasing

𝜕𝜙

𝜕𝑥= 𝜎±

𝜋

Γ

(a)

x

y

𝑬

Linear Polarization Circular Polarization

𝑠𝑖𝑛𝛾 =𝑠𝑖𝑛𝜃

𝑛𝑒𝑓𝑓±

1

𝑘𝑠𝑝𝑝

𝜕𝜙

𝜕𝑥

Page 33: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Calculated results for the interferogram

3 𝜇𝑚

SPP Intensity

Page 34: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Calculated results for the interferogram

+ =

3 𝜇𝑚

SPP Intensity

Gaussian beam Intensity

Page 35: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Calculated results for the interferogram

+ =

3 𝜇𝑚

3 𝜇𝑚

SPP Intensity

Gaussian beam Intensity

Interferogram Intensity

Page 36: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Experimental Setup and Calculation vs. Experiment

Experimental Calculated

Page 37: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Comparison for different incident angles

• Varying angle of incidence changes angle of the wakes

• Changing from right circularly polarized to left circularly polarized light and completely reverse the direction of the wakes

𝑠𝑖𝑛𝛾 =𝑠𝑖𝑛𝜃

𝑛𝑒𝑓𝑓±

1

𝑘𝑠𝑝𝑝

𝜕𝜙

𝜕𝑥

Page 38: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Applications

• Polarization detection

• Angle of incidence detection

• Testbed for Cherenkov radiation without the need for particle accelerators

• Testbed for Reversed Cherenkov studies

Page 39: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Overview

Introduction to flat optics

Examples of optical elements using phase discontinuities

Controlled steering of surface plasmon wakes

Active metalens for tunable focusing of surface waves

Page 40: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Under review

Page 41: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Goals

• Can we overcome some of the coupling constraints for exciting surface plasmons?

• Can we focus the surface plasmons after coupling? • Can we achieve tunable unidirectionality after coupling?

• Optoelectronics applications

• On-chip spectroscopy

Motivations

Page 42: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Traditional Coupling Methods

Kretschmann-Raether Method

Page 43: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Traditional Coupling Methods

Kretschmann-Raether Method

Grating Coupling Method

• Polarization restraints

• Fixed directionality after coupling

Page 44: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

New Age Coupling Methods

L. Yin, C.W. Kimball et al. Nano Letters (2005)

Z. Liu, X. Zhang, et al. Nano Letters (2005)

F. Lopez-Tejeira, A. Dereux, et al. Nature Physics (2007)

Page 45: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

New Age Coupling Methods

L. Yin, C.W. Kimball et al. Nano Letters (2005) J. Lin, F. Capasso et al.

Science (2013)

T. Tanemura, D.A.B. Miller, et al. Nano Letters (2011)

Z. Liu, X. Zhang, et al. Nano Letters (2005)

F. Lopez-Tejeira, A. Dereux, et al. Nature Physics (2007)

Page 46: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Nanoslit excitation of SPPs

x

y

Page 47: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Nanoslit excitation of SPPs

±𝒌𝒔𝒑𝒑

Laser light

y

z

Δ𝑦

B x

y

Δ𝑦Δ𝑘~1

Page 48: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Metalens Design Principle a)

Page 49: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Metalens Design Principle a) b)

Page 50: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Metalens Design Principle a) b)

c)

Page 51: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Metalens Design Principle

Page 52: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Experiment and sample results

𝑬

𝑬

𝜆0 = 670 𝑛𝑚

Experimental

Calculated

to APD

Page 53: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Single Wavelength Excitation

d) 750 𝑛𝑚

a) 632 𝑛𝑚

b) 670 𝑛𝑚

c) 710 𝑛𝑚 Vertical Slits Horizontal Slits

Page 54: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Same experiment as before…

Experimental

Calculated

to spectrometer

Page 55: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Spectrally resolved wavelength demultiplexing

Full 580 − 700 nm band

𝜆0 [nm]

No

rmal

ized

Inte

nsi

ty

a) b)

632 𝑛𝑚 band 670 𝑛𝑚 band c) d)

Page 56: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Spectrally resolved wavelength demultiplexing

Full 580 − 700 nm band

𝜆0 [nm]

No

rmal

ized

Inte

nsi

ty

a) b)

632 𝑛𝑚 band 670 𝑛𝑚 band c) d)

Page 57: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Spectrally resolved wavelength demultiplexing

Full 580 − 700 nm band

𝜆0 [nm]

No

rmal

ized

Inte

nsi

ty

a) b)

632 𝑛𝑚 band 670 𝑛𝑚 band c) d)

640 𝑛𝑚

650 𝑛𝑚

660 𝑛𝑚

e)

Page 58: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Focusing Nature

Experiment Calculation

Page 59: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Polarization Selectivity

on off

For 710 nm

Page 60: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

• Goal: control amplitude, phase, and polarization of light

with a low footprint, nanoscale device

• 3 ideals and challenges: high efficiency, high bandwidth,

tunability

• Metasurfaces: Optically thin, subwavelength arrays of

optical elements for engineering wavefronts

The Vision of Flat Optics

Smart Phones Stretchable

Materials Google glass

Page 61: Flat Optics and Metasurfaces - Harvard Universityscholar.harvard.edu/files/danielwintz/files/2015_andoracademy_flatoptics.pdf · Flat Optics and Metasurfaces Daniel Wintz Patrice

Funding: Support/Instrumentation:

Patrice Genevet, Mikhail Kats, Antonio Ambrosio, Nanfang Yu, Francesco Aieta, Romain Blanchard, Alex

Woolf, Alan She, Zeno Gaburro, Federico Capasso