38
Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics Vladimir Pulov Department of Physics, Technical University-Varna, Bulgaria Ivan Uzunov Department of Applied Physics, Technical University-Sofia, Bulgaria Eddy Chacarov Department of Informatics and Mathematics, Varna Free University, Bulgaria Geometry, Geometry, Integrability Integrability and and Quatization Quatization June 8 June 8 - - 13, 2007 13, 2007

Finding Lie Symmetries of PDEs with MATHEMATICA€¦ · Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics Vladimir Pulov Department of Physics,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Finding Lie Symmetries of PDEs with MATHEMATICA:Applications to Nonlinear Fiber Optics

Vladimir PulovDepartment of Physics, Technical University-Varna, Bulgaria

Ivan UzunovDepartment of Applied Physics, Technical University-Sofia, Bulgaria

Eddy ChacarovDepartment of Informatics and Mathematics, Varna Free University, Bulgaria

Geometry, Geometry, IntegrabilityIntegrability and and QuatizationQuatization −− June 8June 8--13, 200713, 2007

Plan of Presentation

1. MATHEMATICA package for finding Lie symmetries of PDE1.1. Block-scheme and algorithm1.2. Input and output 1.3. Tracing the evaluation1.4. Trial run

2. Applications to nonlinear fiber optics2.1. Physical model2.2. Results obtained

3. Conclusion

Symmetry Group of Δ

{ } 0 , Ω∈⊂Ω∈= ra

r RaTG

System of PDE( ) ( )( ) lkuuuxF n

k ,,2,1,0,...,,, 1 K== ( )Δ

Creating Defining System( ) ( )( )[ ] 0zF pr n =Xn for

Solving Defining System

( ) ( )uxuxii , , , αα ηηξξ ==

( )F

nz Δ∈

MA

THE

MA

TIC

A ( )

( ) ufdad

xffdadf

a

a

==

==

=

=

0

0

,,

,,

ϕϕηϕ

ϕξ

Solving the Lie Equation

( ) ( )∑∑== ∂

∂+

∂∂

=qp

ii

i

uux

xuxX

11,,

αα

αννν ηξ

Basic Infinitesimal Generators

Each solution of after transformation of the group remains a solution of .G ΔΔ

Lie Group of Symmetry Transformations

( ) ( )( ) lkuuuxF nk ,,2,1,0,...,,, 1 K==

{ } 0 , δδ ∈⊂∈= RaTG a

( )Δ

u

x

( )xfu =u′

x′

( )xfu ′′=′aT

If is a solution of then is also a solution of .fTf a ⋅=′ Δf Δ

The system of PDE and the Prolonged Space

( ) ( )( ) lkuuuxF nk ,,2,1,0,...,,, 1 K==

( ) pp Rxxx ∈= ,...,1 ( ) qq Ruuu ∈= ,...,1

( )

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

===∂∂

∂≡= skpjq

xxuuu k

jjjj

s

s

s,...,1;,...,1;,...,1

,...,1

1 ,..., αα

α

( )Δ

( ) ( ) ( ) ( )( ) nnn Zuuuuxz ∈= ,...,,,, 21qp RRZz ×=∈

is the prolongation of the space Z( )nZ thn

( ) ( ) ( )( ){ } ( )nnnnF ZzFZz ⊂=∈=Δ 0

The system is considered as a sub-manifold in the prolonged space . FΔΔ ( )nZ

prolongation of the Infinitesimal Generatorthn X

( ) ∑∑∑∑∑= === = ∂

∂++

∂∂

+=p

j

q

jjjj

p

ji

p

i

q

in

n n

n uuXX

1 111 1 1

1

1

prα

αα

αα

α ςςK

KKL

( ) ( )∑=

−=p

s

sisii DuD

1ξης ααα

( ) ( )sj

p

ssjjjjjjj kkkkkDuD ξςς ααα ∑

=−−

−=1

11111 KKK

∑ ∑ ∑∑∑∑= == == − −

− ∂∂

++∂∂

+∂∂

+∂∂

=p

j

p

j

q

jjijj

p

j

q

jji

q

iiin n

n uu

uu

uu

xD

1 1 11

111 11 11 α

αα

αα

α

αα

α

K

KKL

( ) ( ) αα

αηξu

uxx

uxXq

i

p

i

i

∂∂

+∂∂

= ∑∑==

,,11

The Infinitesimal Criterion and the Defining System

( ) ∑∑∑∑∑= === = ∂

∂++

∂∂

+=p

j

q

jjjj

p

ji

p

i

q

in

n n

n uuXX

1 111 1 1

1

1

prα

αα

αα

α ςςK

KKL

( ) ( ) αα

αηξu

uxx

uxXq

i

p

i

i

∂∂

+∂∂

= ∑∑==

,,11

is a Lie group of symmetry transformations of the system of PDE with the infinitesimalgenerator .

1G

ΔX

The infinitesimal criterion holds.

for ( )F

nz Δ∈( ) ( )( )[ ] 0zF pr n =Xn

Defining System

Symmetry Group of Δ

{ } 0 , Ω∈⊂Ω∈= ra

r RaTG

System of PDE( ) ( )( ) lkuuuxF n

k ,,2,1,0,...,,, 1 K== ( )Δ

Creating Defining System( ) ( )( )[ ] 0zF pr n =Xn for

Solving Defining System

( ) ( )uxuxii , , , αα ηηξξ ==

( )F

nz Δ∈

MA

THE

MA

TIC

A ( )

( ) ufdad

xffdadf

a

a

==

==

=

=

0

0

,,

,,

ϕϕηϕ

ϕξ

Solving the Lie Equation

( ) ( )∑∑== ∂

∂+

∂∂

=qp

ii

i

uux

xuxX

11,,

αα

αννν ηξ

Basic Infinitesimal Generators

Data Input

Basic Setup

EquivalentTransformations

Block

Solvers Block

Data Output

At least one equation has been solved.

Creating Defining System

Solving Procedure

False

True

MA

TH

EM

AT

IC

A

Data Input

PDE

indvar

depvar

deriv

_________________________________________

• Data Input is data about the considered PDE.

{ }αsjju ,,1

K≡

{ }0 , ,01 ==≡ lFF K

{ }pxx , ,1 K≡

{ }quu , ,1 K≡

Basic Set-Up

LHS

Man

InfGen

ProlGen (InfGen)

_________________________________________________________

• are unknown functions that are to be determined and given at the package output as solutions of the defining system.

{ }lFF , ,1 K≡

FΔ≡

( ) ( ) ( ) ( ){ }uxuxuxux p , , ,, , ,, , ,, q11 ηηξξ KKK≡

( ) ( ) ( ) ( ){ }uxuxuxux p , , ,, , ,, , ,, q11 ηηξξ KKK

npr≡

Creating Defining System

________________________________________________________________

• Defining System is the major object in the program.• Defining System is created by applying the infinitesimal

criterion InfGen (LHS) |Man=0.• Defining System consists of linear partial differential equations.

Defining SystemInfinitesimal Criterion

At least one equation has been solved.

Data Output

False

True

Solving Procedure

TransformingDefining System

Solving Defining System

EquivalentTransformations

Block

Solvers Block

Hints

Equivalent Transformations Block

_______________________________________________________

• The block is open for adding new modules of equivalent transformations.

for breaking the equations into partsModule-4

for differentiating of the equationsModule-3

for adding and subtracting of two equationsModule-1

Solvers Block

_______________________________________________________

• The block is open for adding new modules for solving equations.

solver of Module-4

solver of Module-3

solver of Module-2

solver of Module-1 021 =+CxC

Module-5 solver of

021 =+ yCxC

021 =+′ CyC

021 =+′′ CyC

021 =+′′′ CyC

Interactive Mode

user level commands

Heat Equation 0=− xxt uu

LieInfGenerator {u[t]}, {u[x, x]}, {x, t}, {u}, { infgenx , infgent }, { infgenu } ]

Input

Output

{infgenx c[1] t + c[4] x t + c[5] x + c[2],

infgent c[4] t + c[5] t - c[6] },

{infgenu - c[4] xu - c[4] t u - c[4] x u - c[3] u + [x, t] }

{ [x, t] - [x, t] == 0}

( )1,01f

( )0,21f

1f

Heat equation0=− xxt uu

Tracing the Evaluation

021 =+CxC

021 =+′ CyC

021 =+′′ CyC

021 =+′′′ CyC

021 =+ yCxC

Tracing the Evaluation

Coupled Nonlinear Schrödinger Equations

( ) 021 22

2

2

=++∂∂

+∂∂ ABhA

tA

xAi

( ) 021 22

2

2

=++∂∂

+∂∂ BAhB

tB

xBi

Length of Solved System = 131

021 =+′ CyC

021 =+CxC

021 =+ yCxC

Trial Run

Heat equation0=− xxt uu

is an arbitrary solution of the Heat Equation ( )tx,α

xX ∂=1

tX ∂=2

uuX ∂=3

tx txX ∂+∂= 24

ux xutX ∂−∂= 25

( ) utx utxttxX ∂+−∂+∂= 244 226

( ) utxX ∂= ,αα

Trial RunKdV equation

0=++ xxxxt uuuu

time translation

xX ∂=1

tX ∂=2

uxtX ∂+∂=3

utx utxX ∂−∂+∂= 234

space translation

( ) ( )ε−= txfu ,2

( ) ( ) εε +−= ttxfu ,3

( ) ( )texefeu εεε 324 , −−−=dilation

Galilean boost

is an arbitrary solution of the KdV Equation is the group parameter

( )txfu ,=R∈ε

( ) ( )txfu ,1 ε−=

References

[1] Schwarz, F., Computing 34 (1985) 91.[2] Baumann, G., Math. Comp. Simulation 48 (1998) 205.[3] Baumann, G., Lie Symmetries of Differential equations: a MATHEMATICA

Program to Determine Lie Symmetries, at www.library.wolfram.com/infocenter/MathSource/431.

Application to Fiber Optics(physical model)

Coupled Nonlinear Schrödinger Equations (CNSEs)

021

2222

2

2

=+⎟⎟

⎜⎜

∂−

∂−++

∂∂

+∂∂ BA

tB

tA

BAtA

xAi σθθγ

02

2222

2

2

=+⎟⎟

⎜⎜

∂−

∂−++

∂∂

+∂∂ AB

tB

tA

ABtB

xBi σθθγν

weak birefringent fibers

two-mode fibers

strong birefringent fibers

Raman gain coefficient

0≠σ

2 ,0 == γσ

32 ,0 == γσθ

Lie Group AnalysisLie Group Analysis

tX

∂∂

=1 xX

∂∂

=2 α∂∂

=3X βν

α ∂∂

+∂∂

+∂∂

= ttt

xX 5 ςς∂∂

+∂∂

+∂∂

−∂∂

−=z

zx

xt

tX 26β∂∂

=4X

1att +=′2axx +=′ 3a+=′ αα 4a+=′ ββ

xatt 5+=′

xa

ta2

25

5 ++=′ αα

xa

ta2

25

νββ ++=′

( )6exp att −=′

( )62exp axx −=′

( )6exp azz =′

( )6exp aξξ =′

grou

psgr

oups

alge

bras

alge

bras

2T 3T 4T

5T6T

1T

( ) ( )βςα iBizA expexp ==

Admitted Lie point symmetries

Coupled nonlinear Schrödinger equations

( )( ) 0BBB

2B

021

22

2

2

22

2

2

=++∂∂

+∂∂

=++∂∂

+∂∂

Atx

i

ABAt

AxAi

γν

γ

group velocity dispersion

positive

1−=νnegative

1+=ν

optical fiber

two mode

2=γ

strong birefringent

32

tX

∂∂

=1 xX

∂∂

=2 α∂∂

=3X ⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

+∂∂

=βα

tt

xX 5β∂∂

=4X

1att +=′2axx +=′ 3a+=′ αα 4a+=′ ββ

xatt 5+=′

xa

ta2

25

5 ++=′ αα

xa

ta2

25

5 ++=′ ββ

grou

psgr

oups

alge

bras

alge

bras

2T 3T 4T

5T

1T

( ) ( )βςα iBizA expexp ==

( ) ( )

( ) ( )0BBB

21B

021

2222

2

2

2222

2

2

=⎟⎟

⎜⎜

∂−

∂−++

∂∂

+∂∂

=⎟⎟

⎜⎜

∂−

∂−++

∂∂

+∂∂

tB

tA

Atx

i

At

Bt

ABA

tA

xAi

θθγ

θθγ

strong birefringent fiber

32

strong birefringent fiberwith parallel Raman scattering

0≠θ

Lie Group AnalysisLie Group Analysis

Coupled nonlinear Schrödinger equations

Admitted Lie point symmetries

tX

∂∂

=1 αα ∂∂

+∂∂

=3X ⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

+∂∂

=βα

tt

xX 4

1att +=′2axx +=′ 3a+=′ αα

3a+=′ ββ

xatt 4+=′

xata2

24

4 ++=′ αα

xata2

24

4 ++=′ ββ

grou

psgr

oups

alge

bras

alge

bras

2T 3T

4T

1T

( ) ( )βςα iBizA expexp ==

( )( ) 0BBB

21B

021

222

2

222

2

=+++∂∂

+∂∂

=+++∂∂

+∂∂

kAAtx

i

kBABAt

AxAi

γ

γ

fiber

weak birefringent

00

≠≠

nonlinear directionalcoupler

00

≠=

xX

∂∂

=2

Admitted Lie point symmetries

Coupled nonlinear Schrödinger equations

Lie Group AnalysisLie Group Analysis

SYMMETRYSYMMETRY GROUPGROUP REDUCTIONREDUCTION

optimal set of subalgebras

optimal set of reduced ODEs

optimal set of group invariant solutions

clas

sific

atio

n

adjointrepresentations

symmetrygroup

INTERIOR AUTOMORPHISMS INTERIOR AUTOMORPHISMS

( )ε1A( )ε2A

( )ε4A( )ε5A

( )ε6A

( )ε3A

( )εiA 1X

1X

1X

1X

1X

( )431 XXX νε ++

1e Xε−

2X

2X

2X

2X

2X

( )4312 XXXX νεε +++

22e Xε−

3X

3X

3X

3X

3X

3X

3X

4X

4X

4X

4X

4X

4X

4X

5X

5X

5X

15 XX ε−

5X

( )435 XXX νε ++

5e Xε

6X

6X

56 XX ε−

6X

16 XX ε+

6X

26 2 XX ε+

( ) [ ] [ ][ ] L−+−= jiijijji XXXXXXXA ,,2

,2εεε

two mode fiberstwo mode fibersstrong birefringent fibersstrong birefringent fibers

( )( ) 0BBB

2B

021

222

2

222

2

=++∂∂

+∂∂

=++∂∂

+∂∂

Atx

i

ABAt

AxAi

γν

γ

OPTIMAL SET OF SUBALGEBRASOPTIMAL SET OF SUBALGEBRAS

αεε∂∂

+∂∂

=+t

XX 31Case A

Case C

Case B ( )β

νεα

ε∂∂

++∂∂

+∂∂

=+ ttt

xXX 54

βε

αδεδ

∂∂

+∂∂

+∂∂

=++x

XXX 432

Case D ( )β

νδα

εδε∂∂

++∂∂

+∂∂

+∂∂

=++ ttxt

xXXX 542

Case E βδ

αε

ςςδε

∂∂

+∂∂

+∂∂

+∂∂

+∂∂

−∂∂

−=++z

zx

xt

tXXX 2643

Case F βδ

αεδε

∂∂

+∂∂

=+ 43 XX

1,0 ±=ε

1,0 ±=ε

R∈±=±= δεε ,1or 1,0

R∈±= δε ,1

R∈δε ,

1,or 0,1 =∈== δεδε R

two mode fiberstwo mode fibersstrong birefringent fibersstrong birefringent fibers

( )( ) 0BBB

2B

021

222

2

222

2

=++∂∂

+∂∂

=++∂∂

+∂∂

Atx

i

ABAt

AxAi

γν

γ

0B21B

021

22

2

22

2

=++∂∂

+∂∂

=++∂∂

+∂∂

ABBtx

i

BAAt

AxAi

σ

σ

Nonlinear directional couplerNonlinear directional coupler

Reduced systemReduced system

( )( )

( )

( )gfqpqgf

fgpqpf

gfpqfgqp

−+=

−+−=′

=−+′=−+′

cos

cos2

0sin0sin

2

22

σ

σδ

σσ

( ) ( )( )⎭⎬⎫

⎩⎨⎧

−+

=2

|2dn arcsin 4

3 exp2

|2cn 22 hxExihxEEA σσ

( ) ( )( )⎭⎬⎫

⎩⎨⎧

−−

=2

|2dn arcsin 4

3 exp2

|2cn 22 hxExihxEEB σσ

σ4const, 22 EhEBA ===+

Exact solutionExact solution

Exact solution for Case A

REDUCTION PROCESREDUCTION PROCES(Case C)(Case C)

Generator βε

αδεδ

∂∂

+∂∂

+∂∂

=++x

XXX 432 R∈±=±= δεε ,1or 1,0

two mode fiberstwo mode fibersstrong birefringent fibersstrong birefringent fibers

( )( ) 0BBB

2B

021

222

2

222

2

=++∂∂

+∂∂

=++∂∂

+∂∂

Atx

i

ABAt

AxAi

γν

γ

Invariants tJ =1 zJ =2 ς=3J xJ δα −=3 xJ εβ −=4

New variables ( )xpz =

( ) ( )βςα iBizA expexp ==

( )xq=ς ( ) xtf δα += ( ) xtg εβ +=

Reduced system ( )( ) 0222

0222

0202

232

232

=−++′−′′

=−++′−′′

=′′+′′=′′+′′

qqpqgqq

ppqpfpp

gqgqfpfp

ενγνν

δγ

Exact solution for Case C(two-mode fibers and strongly birefringent fibers)

( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+Π+

= xmjnbh

CiUA ε

λ| ;

12 exp

1

1

( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+Π+

±= xmjn

bhC

iUB ελ

| ; 12

exp 1

1

( ) ( ) 2122

21 21 , 12 ,| cn U bbthjbmjbb −=+=+−= λλ

( ) ( )[ ] dwmwnmjnj

∫−

−=Π0

12 | sn 1| ;

1 0, , ,1

21

31

21 ±=−

=−−

= εb

bbn

bbbb

m

are the roots of the polynomial321 bbb >> ( ) ( ) 11412 2

1223

++

+−

+−=

hC

hC

hQ θθεθθ

and are the Jacobean sine and cosine elliptic functions ( )mj |sn ( )mj |cn

Approximate vector solitary wavesApproximate vector solitary wavesStrong birefringent fibers with Raman scattering Strong birefringent fibers with Raman scattering A generalized version of previously obtained scalar solitary-wave solutionA generalized version of previously obtained scalar solitary-wave solution

( ) ( ) zzazazazF tanh sech ln5

8158

1516 2 ⎟

⎠⎞

⎜⎝⎛ −+−=

( ) zzzG 21 sech sinh =

( ) zzG 22 sech=

( ) ( ) βα ∂−+∂−+∂+∂= bctactcxX tx

( ) ( ) sech zF sech2 zzaA θ+−=

( )zGB θ=Galilean-like symmetry reduced system

( ) ( )

( ) ( ) 0 2 21 )(

0 2 21)(

2223

22

2223

21

=+−++−+−

=+−++−+−

yyyy

yyyy

qppqqqhpqqCqqcyb

pqqppphqppCppcya

θ

θ

1. L. Gagnon and P. A. Bélanger, Soliton self-frequency shift versus Galilean-like symmetry, Opt. Lett., Vol. 15, No. 9 (1990), pp. 466-468.

1<<θ − Raman parameter

-3 -2 -1 1 2 3z

0.2

0.4

0.6

0.8

1

τ02»A»2

-3 -2 -1 1 2 3z

5×10-7

1×10-6

1.5×10-6

2×10-6

τ02»B»2

-3 -2 -1 1 2 3z

2×10-6

4×10-6

6×10-6

8×10-6

τ02»B»2

( ) ( ) zzazazazF tanh sech ln5

8158

1516 2 ⎟

⎠⎞

⎜⎝⎛ −+−=

( ) zzzG 21 sech sinh =

( ) zzG 22 sech=

( ) ( ) sech zF sech2 zzaA θ+−=

( )zGB θ=

( )zF ( )zG1 ( )zG2

1. L. Gagnon and P. A. Bélanger, Soliton self-frequency shift versus Galilean-like symmetry, Opt. Lett., Vol. 15, No. 9 (1990), pp. 466-468.

2. N. Akhmediev and A. Ankiewicz, Novel soliton states and bifurcation phenomena in nonlinear fiber couplers, Phys. Rev. Lett., Vol. 70, No. 16 (1993), pp. 2395-2398.

LAWSLAWS OFOF CONSERVATIONCONSERVATION

TwoTwo--modemode fibers and strongfibers and strong birefringentbirefringent fibersfibers

( )

( ) ( )

( ) 122

5

24

23

2244222

**1

J

J

21

21-HJ

J

ixJdtBAtJ

dtB

dtA

dtBAhBABA

dtBBAA

x

x

x

x

x

x

x

xtt

x

xtt

++=

=

=

⎥⎦⎤

⎢⎣⎡ ++++=≡

+=

ν

ν

TIME TRANSLATION

SYMMETRY LAWS OF CONSERVATION

SPACE TRANSLATION

TRANSLATION OF THE PHASE α

TRANSLATION OF THE PHASE β

GALILEAN-LIKESYMMETRY

References

[1] Christodoulides, D.N. and R.I. Joseph, Optics Lett., 13(1), 53-55 (1988).[2] Tratnik, M. V. and J. E. Sipe, Phys. Rev. A, 38(4), 2011-2017 (1988).[3] Christodoulides, D.N., Phys. Lett. A, 132(8, 9), 451-452 (1988).[4] Florjanczyk, M. and R. Tremblay, Phys. Lett. A, 141(1,2), 34-36 (1989).[5] Kostov, N. A. and I. M. Uzunov, Opt. Commun., 89, 389-392 (1992).[6] Florjanczyk, M. and R. Tremblay, Opt. Commun., 109, 405-409 (1994).[7] Pulov V., I. Uzunov, and E. Chacarov, Phys. Rev E, 57 (3), 3468-3477 (1998).

Conclusion

• The symbolic computational tools of MATHEMATICA have been applied to determining the Lie symmetries of PDE.

• An algorithm for creating and solving the defining system of the symmetry transformations has been developed and implemented in MATHEMATICA package.

• The package has been successfully applied to basic physical equations from nonlinear fiber optics.

• Future work: The package capabilities can be extended byadding new programming modules for transforming andsolving other wider classes of differential equations.