33

final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Embed Size (px)

Citation preview

Page 1: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the
Page 2: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

REFERENCES

Abdel-Ghani, N.T., Hefny, M. and El-Chaghaby, G.A.F. (2007). Removal of lead from

aqueous solution using low cost abundantly available adsorbents. J. Environ. Sci.

Tech., 4: 67-73.

Adhiya, J., Cai, X., Sayre, R.T. and Traina, S.J. (2002). Binding of aqueous cadmium by

the lyophilized biomass of Chlamydomonas reinhardtii. Colloids and surfaces A:

Physicochem. Engg. Aspects., 210 : 1-11.

Ahalya, N., Kanamadi, R.D. and Ramachandra, T.V. (2005). Biosorption of chromium

(VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum).

Electronic J. Biotechnol., 8 : 258-264.

Ahalya, N., Ramachandra, T.V. and Kanamadi, R.D. (2003). Biosorption of heavy

metals. Res. J. Chem. and Environ., 7 : 71-78.

Ahluwalia, S.S. and Goyal, D. (2007). Microbial and plant derived biomass for removal

of heavy metals from waste water. Biores. Technol., 98 : 2243-2257.

Ahmet, C., Semra, I., Cansu, F. and Figen, C. (2005). Pb2+ biosorption by pretreated

fungal biomass. Turk. J. Biology., 29 : 23-28.

Ahuja, P., Gupta, R. and Saxena, R.K. (1997). Oscillatoria anguistissima: A Promising

Cu2+ Biosorbent. Curr. Microbiol., 35 : 151-154.

Ahuja, P., Gupta, R. and Saxena, R. K. (1999). Zn2+ biosorption by Oscillatoria

anguistissima. Process Biochem., 34 : 77–85.

Akar, T. and Tunali, S. (2005). Biosorption performance of Botrytis cinerea fungal by-

products for removal of Cd (II) and Cu (II) ions from aqueous solutions. Miner.

Eng., 18 : 1099-1109.

Page 3: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Akhtar, N., Iqbal, J., and Iqbal, M. (2003). Microalgal-luffa sponge immobilized disc: A

new efficient biosorbent for the removal of Ni (II) from aqueous solution. Lett.

Appl. Microbiol., 37 : 149–153.

Aksu Z., Ozer D., Ekiz H., Kutsal T. and Caglar A. (1996). Investigation of Biosorption

of Cr (VI) on Cladophora crispata in two stage batch reactor. Environ. Technol.,

17 : 215-220.

Aksu, Z. (1998). Biosorption of heavy metals by microalgae in batch and continuous

systems. In: Y.S. Wong, N.F.Y. Tam, (ed.), Algae for waste water treatment,

Germany: Springer-verlog and Landes Bioscience., 37-53.

Aksu, Z. (2001). Biosorption of reactive dyes by dried activated sludge. Equillibrium and

kinetic modeling. Biochem. Eng. J., 7 : 79–84.

Aksu, Z. and Acikel, U. (2000). A single-staged bioseparation process for simultaneous

removal of copper (II) and chromium (VI) by using C. vulgaris. Process Biochem.

34 : 589-599.

Aksu, Z., Acikel, U., Kabasakal, E. and Tezer, S. (2002). Equilibrium modelling of

individual and simultaneous biosorption of chromium (VI) and nickel (II) onto

dried activated sludge. Water Res., 36 : 3063-3073.

Alimohamadi, M., Abolhamd, G. and Keshtkar, A. (2005). Pb (II) and Cu (II) biosorption

of Rhizopus arrhizus Modeling Mono- and Multi-Component Systems. Miner.

Eng., 18 : 1325-1330.

Allen, M.B. and Arnon, D.I. (1955). Studies on nitrogen fixing blue green algae. Growth

and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol., 30 : 366-

372.

Page 4: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Alluri, H.K., Ronda, S.R., Settalluri, V.S., Bondili, J.S., Suryanarayana, V and

Venkateshwar, P. (2007). Biosorption: An eco-friendly alternative for heavy metal

removal. Afr. J. Biotechnol., 6 : 2924-2931.

Anand Kumar, J. and Mandal, B. (2009). Removal of Cr (VI) from aqueous solution

using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J. Hazard.

Material., 168 : 633-640.

Andrade, A.D., Rollemberg, M.C.E. and Nobrega, J.A. (2005). Proton and metals binding

capacity of the green freshwater alga Chaetophora elegans. Process Biochem., 40

: 1931-1936.

Apiratikul, R. and Pavasant, P. (2006). Sorption isotherm model for binary component

sorption of copper, cadmium and lead ions using dried green macroalga Caulerpa

lentillifera. Chem Eng. J., 119 : 135-145.

Aravindhan, R., Madhan, B., Rao, J.R., Nair, B.U. and Ramasami, T. (2004).

Bioaccumulation of chromium from tannery waste water: an approach for chrome

recovery and reuse. Environ. Sci. Technol., 38 : 300-306.

Aravindhan, R., Rao, J.R. and Nair, B.U. (2007). Kinetic and equilibrium studies on

biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis. J.

Environ. Sci. Health Part A., 42 : 621-631.

Arica, M.Y., Tuzun, I., Yalcin, E., , Ince, O. and Bayramoglu, G. (2005). Utilisation of

native heat and acid-treated microalgae Chlamydomonas reinhardtii. Preparations

for biosorption of Cr (VI) ions. Process Biochem., 40 : 2351-2358.

Ashkenazy, R., Gottlieb, L. and Yannai, S. (1997). Characterization of acetone-washed

yeast biomass functional groups involved in lead biosorption. Biotechnol.

Bioeng., 55 : 1–10.

Page 5: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Ashwini, C., Poopal, R. and Laxman, S. (2009). Studies on biological reduction of

chromate by Streptomyses griseus. J. Hazard. Material., 169 : 539-545.

Asthana, R. K., Chatterjee, S. and Singh, S.P. (1995). Investigations on nickel biosorption

and its remobilization. Process Biochem., 30 : 729-734.

Babel, S. and Kurniawan, T.A. (2003). Low-cost adsorbents for heavy metals uptake

from contaminated water: A review. J. Hazard. Mater., 97 : 219-243.

Bai, R.S. and Abraham, T.E. (2001). Biosorption of Cr(VI) from aqueous solution by

Rhizopus nigricans. Biores. Technol., 79: 73-81.

Bai, R.S. and Abraham, T.E. (2002). Studies on enhancement of Cr (VI) biosorption by

chemically modified biomass of Rhizopus nigricans. Water Res., 36: 1224-1236.

Baker, A.J.M. (1981). Accumulators and excluders strategies in the response of plants to

heavy metals. J. Plant Nutr., 3 : 643-654.

Barriada, J.L., Herrero, R. Prada-Rodriguez, D. and Sastre de Vicente, M.E. (2007).

Waste spider crab shell and derived chitin as low-cost materials for cadmium and

lead removal. J. Chem. Technol. Biotechnol., 82: 39-46.

Bates, S.S., Tessier, A., Campbell, P.G.C. and Buffle, J. (1982). Zinc adsorption and

transport by Chlamydomonas variabilis and Scenedesmus subspicatus

(Chlorophyceae) grown in semicontinuous culture. J. Phycol., 18 : 521–529.

Battaglia, A., Calace, N., Nardi, E., Petronio, B.M. and Pietroletti, M. (2003). Paper mill

sludge-soil mixture: Kinetic and thermodynamic tests of cadmium and lead

sorption capability. Microchem. J., 75 : 97-102.

Bhatti, H.N., Mumtaz, B., Hanif, M.A. and Nadeem, R. (2007). Removal of Zn (II) ions

from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass.

Process Biochem., 42 : 547-553.

Page 6: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Bilgrami, K.S., Sanjib-Kumar, Sahay, S.S., Sheo-Kumar, Kumar, S. and Kumar, S.

(1996). River biota as indicators and scavangers of heavy metal pollution. Nat.

Acad. Sci. Lett., 19 : 205-207.

Bishnoi, N.R. and Garima, G.A. (2004). Biosorption of copper from aqueous solution

using algal biomass. J. Sci. Indust. Res., 63 : 813-816.

Bishnoi, N.R., Kumar, R., Kumar, S. and Rani, S. (2007). Biosorption of Cr (III) from

aqueous solution using algal biomass Spirogyra sp. J. Hazard. Mater., 145 : 142-

147.

Bishop, P.L. (2002). Pollution prevention: fundamental and practice. Beijing: Tsinghua

University Press.

Chaisuksant, Y. (2003). Biosorption of cadmium (II) and copper (II) by pretreated

biomass of marine alga Gracilaria fisheri. Environ. Technol., 24 : 1501–1508.

Chang, J.S., Law, R. and Chang, C. (1997). Biosorption of Lead, Copper and Cadmium

by biomass of Pseudomonas aeruginosa PU21. Wat. Res., 31 : 1651–1658.

Chen, J.P. and Yang, L. (2005). Chemical modification of Sargassum sp. for prevention

of organic leaching and enhancement of uptake during metal biosorption. Ind.

Eng. Chem. Res., 44 : 9931–9942.

Chergui, A., Bakhti, M.Z., Chahboub, A., Haddoum, S., Selatnia, A. and Junter, G.A.

(2007). Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by

Streptomyces rimosus biomass. Desalination., 206 : 179-184.

Cho, D.Y., Lee, S.T., Park, S.W. and Chung, A.S. (1994). Studies on the biosorption of

heavy metals into Chlorella vulgaris. J. Environ. Sci. Health, Part A., 29 : 389–

409.

Page 7: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Chojnacka, K. (2007). Bioaccumulation of Cr (III) ions by blue green algae Spirulina sp.

Part I. A comparasion with biosorption. Ameri. J. Agri. Biol. Sci., 2 : 218-223.

Chojnacka, K., Chojnacki, A. and Gorecka, H. (2004). Trace metal removal by Spirulina

sp. from copper smelter and refinery effluent. Hydrometallurgy., 73 : 147–153.

Chojnacka, K., Chojnacki, A. and Gorecka, H. (2005). Biosorption of Cr3+, Cd2+ and

Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

mechanism of the process. Chemosphere., 59 : 75–84.

Chong, A.M.Y., Wong, Y.S. and Tam, N.F.Y. (2000). Performance of different microbial

species in removing nickel and zinc from industrial wastewater. Chemosphere.,

41 : 251–257.

Cimina, G., Passerini, A. and Oscano, G.T. (2000). Removal of toxic cation and Cr (VI)

from aqueous solution by hazelnut shell. J. Water Res., 34 : 2955-2932.

Corder, S.L. and Reeves, M. (1994). Biosorption of nickel in complex aqueous waste

streams by cyanobacteria. Appl. Biochem. Biotechnol., 45 : 847–859.

Cordero, B., Lodeiro, P., Herrero, R., Sastre de Vicente, M.E. (2004). Biosorption of

cadmium by Fucus spiralis. Environ. Chem., 1 : 180-187.

Coreno-Alonso, A., Acevedo-Aguilar, F.J., Reyna-Lopez, G.E., Tomasini, A., Fernandez,

F.J., Wrobel, K. and Gutierrez-Corona, J.F. (2009). Cr (VI) reduction by an

Aspergillus tubingensis strain: Role of carboxylic acids and implications for

natural attenuation and biotreatment of Cr (VI) contamination. Chemosphere.,

76(1) : 43-47.

Cossich, E.S., Tavares, C.R.G. and Ravagnani, T.M.K. (2002). Biosorption of chromium

(III) by Sargassum sp. biomass Elect. J. Biotechnol., 5 :133-140.

Page 8: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Crist, R.H., Oberholser, K., Shank, N. and Nguyen, M. (1981). Nature of binding

between metallic ions and algal cell walls. Environ. Sci. Technol., 15 : 1212–

1217.

Cruz, C.C.V., Da Costa, A.C.A., Henriques, C.A. and Luna, A.S. (2004). Kinetic

modeling and equilibrium studies during cadmium biosorption by dead

Sargassum sp. biomass. Biores. Technol., 91 : 249–257.

da Costa, A.C.A. and de Franca F.P. (1998). Cadmium uptake by Spirulina maxima:

Toxicity and mechanism., World J. Microbiol. Biotechnol., 14 : 579-581.

Davis, T. A., Volesky, B. and Mucci, A. (2003). A review of the biochemistry of heavy

metal biosorption by brown algae. J. Water Res., 37 : 4311-4330.

Decho, A.W. and Herndl, G.J. (1995). Microbial activities and the transformation of

organic matter within mucilaginous material. Sci. Total Environ., 165 : 33-42.

de Franca, F.P., Padilha, F.P. and Da Costa, A.C. (2006). Continuous biotreatment of

copper-concentrated solutions by biosorption with Sargassum sp. Appl. Biochem.

Biotechnol., 128 : 23-32.

Deng, L., Su, Y. Su, H., Wang, X. and Zhu, X. (2006). Biosorption of Copper (II) and

Lead (II) from aqueous solutions by nonliving green algae Cladophora

fascicularis: Equilibrium, kinetics and environmental effects. Adsorption., 12 :

267-277.

Deng, L., Yang Z., Jie, Q., Xinting, W. and Xiaobin Z., (2009). Biosorption of Cr (VI)

from aqueous solutions by nonliving green Cladophora albida. Miner. Engg., 24

: 372-377.

Page 9: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Deng, L., Zhu, X., Wang, X., Su, Y. and Su, H. (2007). Biosorption of copper (II) from

aqueous solutions by green alga Cladophora fascicularis. Biodegradation., 18 :

393-402.

De Philippis, R., Sili, C., Paperi, R. and Vincenzini, M. (2001). Exopolysaccharide-

producing cyanobacteria and their possible exploitation: A review. J. Appl.

Phycol., 13 : 293–299.

De Philippis, R., Paperi, R., Sili, C. and Vincenzini, M. (2003). Assessment of the metal

removal capability of two capsulated cyanobacteria, Cyanospira capsulata and

Nostoc PCC7936. J. Appl. Phycol., 15 : 155–161.

De Philippis, R., Paperi, R. and Sili, C. (2007). Heavy Metal sorption by released

polysaccharides and whole cultures of two exopolysaccharide-producing

cyanobacteria. Biodegradation., 18 : 181-187.

de Rome, L. and Gadd, G.M. (1987). Copper adsorption by Rhizopus arrhizus,

Cladosporium resinae and Penicillium italicum. Appl. Microbiol. Biotechnol., 26

: 84–90.

Desikachary (1959). Cyanophyta. I.C.A.R., New Delhi.

Donmez, G. and Aksu, Z. (2002). Removal of chromium (VI) from saline wastewaters by

Dunaliella sp. Process Biochem., 38 : 751-762.

Donmez, G.C., Aksu, Z., Ozturk, A. and Kutsal, T. (1999). A comparative study on

heavy metal biosorption characteristics of some algae. Process Biochem., 34 :

885–892.

Doshi, H., Ray, A. and Kothari, I.L. (2007). Biosorption of cadmium by live and dead

Spirulina: IR spectroscopic, kinetics and SEM studied. Curr. Microbiol., 56 : 246-

255.

Page 10: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Doshi, H., Seth, C., Ray, A. and Kothari, I.L. (2008). Bioaccumulation of heavy metals

by green algae. Curr. Microbiol., 56 : 246-255.

Dursun, A.Y., Cuci, G.Y. and Aksu, Z. (2003). Bioaccumulation of Copper (II), Lead (II)

and Chromium (VI) by Growing Aspergillus niger. Process Biochem., 38 : 1647–

1651.

Eccles, H. (1999). Treatment of metal contaminated wastes: Why select a biological

process? Trends Biotechnol., 17 : 462-465.

Elangovan, R., Abhipsa, S., Rohit, B., Ligyl, P. and Chandraraj, K. (2006). Reduction of

Cr (VI) by a Bacillus sp. Biotechnol. Lett., 28 : 247-252.

Elifantz, H. and Tel-Or, E. (2002). Heavy metal Biosorption by plant biomass of the

macrophyte Ludwigia stolonifera. J. Water, Air, Soil Pollut., 141 : 207-218.

El-Sheekh, M.M., El-Shouny, W.A. and Osman, M.E.H. (2005). Growth and heavy

metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in

sewage and industrial wastewater effluents. J. Enviorn. Toxicol. Pharmacol., 19 :

357-365.

Esteves, A.J.P., Valdman, E. and Leite, S.G.F. (2000). Repeated removal of cadmium and

zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol. Lett.,

22 : 499-502.

Fazeli, M.S., Khosravan, F., Hossini, M., Sathyanarayan, S. and Satish, P.N. (1998).

Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near

Narijangud, Mysore District, Karnatka, India. Environ. Geolog., 34 : 297-302.

Feng, D. and Aldrich, C. (2004). Adsorption of heavy metals by biomaterials derived

from marine alga Ecklonia maxima. Hydrometallurgy., 73 : 1-10.

Page 11: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Figueira, M.M., Volesky, B. and Ciminelli, V.S.T. (1997). Assessment of interference in

biosorption of heavy metals. Biotechnol. Bioeng., 54 : 334–350.

Fourest, E. and Roux, J. (1992). Heavy metal biosorption by fungal mycelial byproduct:

Mechanism and influence of pH. Appl. Microbiol. Biotechnol., 37 : 399-403.

Fourest, E. and Volesky, B. (1996). Contribution of sulfonate groups and alginate to

heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci.

Technol., 30 : 277-282.

Fourest, E., Canal, C. and Roux, J.C. (1994). Improvement of heavy metal biosorption by

mycelial dead biomass: pH control and cationic activation. FEMS Micobiol. Rev.,

14 : 332-352.

Fraile, A., Penche, S., Gonzalez, F., Blazquez, M.L., Munoz, J.A. and Ballester, A.

(2005). Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris.

Chem. Eco., 21: 61-75.

Freundlich H. (1907). Ueber die adsorption in loesungen. Zeitsehrift fr Physikalische

Chemie., 57: 385-470.

Gardea-Torresdey, J.L., Arenas, J.L., Francisco, N.M.C., Tiemann, K.J. and Webb, R.

(1998). Ability of immobilized cyanobacteria to remove metal ions from solution

and demonstration of the presence of metallothionein genes in various strains. J.

Hazard. Sub. Res., 1 : 1-18.

Gardea-Torresdey, J.L., Dokken, K., Tiemann, K.J., Parsons, J.G. and Ramos, J. (2002).

Infrared and X-ray adsorption spectroscopic studies on the mechanism of

chromium (III) binding to alfalfa biomass. Microchem. J., 71 : 157-166.

Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption.

Engg. Life. Sci., 4 : 219-232.

Page 12: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Gekeler, W., Grill, E., Winnacker, E.I. and Zenk, M.H. (1988). Algae sequester heavy

metal ions via synthesis of phytochelation complexes. Arch. Microbiol., 150 :

197-202.

Gin, K.Y.H., Tang, Y.Z. and Aziz, M.A. (2002). Derivation and application of a new

model for heavy metal biosorption by algae. Water Res., 36 : 1313–1323.

Gloaguen, V., Morvan, E. and Hoffmann, L. (1996). Metal accumulation by immobilized

cyanobacterial mats from a thermal spring. J Environ Sci Health, 31: 2437–2451.

Godjevargova, T., Mihova, S. and Gabrovska, K. (2004). Fixed bed biosorption of Cu2+

by polyacrylonitrile-immobilized dead cells of Saccharomyces cerevisiae. World

J. Microbiol. Biotechnol., 20 : 273-279.

Göksungur, Y., Üren, S. and Güvenc, U. (2005). Biosorption of cadmium and lead Ions

by ethanol treated waste baker’s yeast biomass. Bioresource Technol., 96 : 103–

109.

Gong, R., Ding, Y., Liu, H., Chen, Q. and Liu, Z. (2005). Lead biosorption and

desorption by intact and pretreated Spirulina maxima biomass. Chemosphere, 58 :

125–130.

Greene, B. and Bedell, G.W. (1990). Algal gels or immobilized algae for metal recovery.

In: Introduction to applied phycology, (ed.) I. Akatsuka. SPB Academic

Publishing The Hague, The Netherlands, pp. 137-149.

Gupta, V.K., Shrivastava, A.K. and Jain, N. (2001). Biosorption of chromium (VI) from

aqueous solution by green alga Spriogyra sp. J. Water Res., 35 : 4079-4085.

Gupta, V.K. and Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and

acid-treated green alga Oedogonium hatei from aqueous solutions. J. Hazard.

Mater., 163 : 396-402.

Page 13: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Gupta, V.K., Rastogi, A. and Nayak A. (2010). Biosorption of nickel onto treated alga

(Oedogonium hatei): Application of isotherm and kinetic models. J. Colloid Inter.

Sci., 15 : 533-539.

Hamdy, A. (2000). Biosorption of heavy metals by marine algae. Curr. Microbiol., 41 :

232-238.

Hameed, A.M.S. (2006). Continuous removal and recovery of lead by alginate beads,

free and alginate-immobilized Chlorella vulgaris. Afr. J. Biotechnol., 5 : 1819-

1823.

Hashim, M.A. and Chu, K.M. (2004). Biosorption of cadmium by brown, green and red

seaweeds. Chem. Eng. J., 97 : 249–255.

Hawari, A.H. and Mulligan, C.M. (2006). Biosorption of lead (II), cadmium (II), copper

(II) and nickel (II) by anaerobic granular biomass. Biores. Technol., 97(4) : 692-

700.

He, M., Wang, Z. and Tang, H. (1998). The chemical, toxicological and ecological

studies in assessing the heavy metal pollution in LeAn river, China. Water Res.,

32 : 510-518.

Herrero, R., Cordero, B., Lodeiro, P., Rey-Castro., C. and Sastre de Vicente, M.E.

(2006). Interactions of cadmium (II) and protons with dead biomass of marine

algae Fucus sp. Mar. Chem., 99 : 106–116.

Ho, Y.S. and McKay, G. (2000). Correlative biosorption equilibria model for a binary

batch system. Chem. Eng. Sci., 55 : 817-825.

Hu, M.Z.C., and Reeves, M. (1997). Biosorption of uranium by Pseudomonas aeruginosa

strain CSU immobilized in a novel matrix. Biotechnol. Prog., 13 : 60-70.

Page 14: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Huang, J.P., Huang, C.P. and Morehart, A.L. (1990). Removal of Cu (II) from dilute

aqueous solutions by Saccharomyces cerevisiae. Wat. Res., 24 : 433–499.

Iftikhar, A.R., Bhatti, H.N., Hanif, M.A. and Nadeem, R. (2009). Kinetic and

thermodynamic aspects of Cu (II) and Cr (III) removal from aqueous solutions

using rose water biomass. J. Hazard. Mater., 161 : 941-947.

Ilhan, S., Nourbakhsh, M.N., Kilicarslan, S. and Ozdag, H. (2004). Removal of

chromium, lead and copper ions from industrial wastewater by Staphylococcus

saprophyticus. Turkish Electronic. J. Biotechnol., 2 : 50-57.

Iqbal, M. and Edyvean, R.G.J. (2004). Biosorption of lead, copper and zinc ions on loofa

sponge immobilized biomass of Phanerochaete chrysosporium. Miner. Eng., 17 :

217-223.

Iyer, A., Mody, K. and Jha, B. (2005). Biosorption of heavy metals by a marine

bacterium. Mar. Pollut. Bull., 50 : 340–343.

Jeon, C. and Park, K.H. (2007). Desorption and regeneration characteristics of heavy

metals adsorbed on to magnetically modified alginic acid. J. Ind. Eng. Chem., 13 :

669-673.

Kadirvelu, K. and Namasivayam, C. (2000). Agricultural by-product as metal adsorbents:

Sorption of Lead (II) from aqueous solutions on to coir-pith carbon. Environ.

Technol., 21 : 1091-1097.

Kalyani, S., Rao, P.S. and Krishnaiah, A. (2004). Removal of nickel (II) from aqueous

solutions using marine macroalgae as the sorbing biomass. Chemosphere, 57 :

1225–1229.

Page 15: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Kapoor, A. and Viraraghavan, T. (1995). Fungal biosorption – an alternative treatment

option for heavy-metal bearing wastewaters: A review. Biores. Technol., 53 : 195-

206.

Kapoor, A. and Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus

niger. Biores. Technol., 61 : 221–227.

Kapoor, A. and Viraraghavan, T. (1998). Biosorption of heavy metals on Aspergillus

niger: Effect of pretreatment. Biores. Technol., 63 : 109-113.

Karna, R.R., Uma, L., Subramanian, G. and Mohan, P.M. (1999). Biosorption of toxic

metal ions by alkali-extracted biomass of a marine cyanobacterium Phormidium

valderianum BDU 30501. World J. Microbiol. Biotechnol., 15 : 729-732.

Katircioglu, H., Aslim, B., Turker, A.R., Atici, T. and Beyatli, Y. (2008). Removal of

cadmium (II) ion from aqueous system by dry biomass, immobilized live and

heat-dried Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Biores.

Technol., 99 : 4185-4191.

Khambhaty, Y., Mody, K., Basha, S. and Jha, B. (2009). Kinetics equilibrium and

thermodynamics studies on biosorption of hexavalent chromium by dead fungal

biomass of marine Aspergillus niger. Chemical. Engg. J., 3 : 489-495.

Khattar, J.I.S., Sarma, T.A. and Singh, D.P. (1999). Removal of chromium ions by agar

immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow

bioreactor. Enz. Microbiol. Technol., 25 : 564-568.

Khattar, J.I.S., Sarma, T.A., Singh, D.P. and Sharma, A. (2002). Bioaccumulation of

chromium ions by immobilized cells of a filamentous cyanobacterium. Anabaena

variabilis. J Microbiol Biotechnol., 12 : 137-141.

Page 16: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Khattar, J.I.S, Sarma, T.A. & Sharma, A. (2007). Optimization of chromium removal by

the chromium resistant mutant of the cyanobacterium Anacystis nidulans in a

continuous flow bioreactor. J Chem Technol Biotechnol., 82 : 652-657.

Kiran, B. and Kaushik. A. (2008). Chromium binding capacity of Lyngbya putealis

exopolysaccharides. J. Biochem. Engg., 38 : 47-54.

Klimmek, S., Stan, H.J., Wilke, A., Bunke, G. and Buchholz, R. (2001). Comparative

analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ.

Sci. Technol., 35 : 4283–4288.

Kratochvil, D. and Volesky, B. (1998). Advances in the Biosorption of heavy metals.

TibTech., 16 : 291-300.

Kumar, P.Y., King, P. and Prasad, V.S.R.K. (2006). Comparison for adsorption

modelling of copper and zinc from aqueous solution by Ulva fasciata. J. Hazard.

Mater., 137 :1246-1251.

Kumar, R. and Goyal, D. (2008). Comparative biosorption of Pb2+ by live algal

consortium and immobilized dead biomass from aqueous solution. Ind. J. Experi.

Biol., 46 : 690-694.

Kuyucak, N. and Volesky, B. (1989). Accumulation of gold by algal biosorbent.

Biorecovery, 1 : 1489-1504.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and

platinum. J. Amer. Chem. Soc., 40 : 1361-1403.

Ledin, M. (2000). Accumulation of metals by microorganisms-processes and importance

for soil systems. Earth Sci. Rev., 51 : 1-31.

Page 17: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Lee, D.C., Park, C.J., Yang, J.E., Jeong, Y.H. and Rhee, H.I. (2000). Screening of

hexavalent chromium biosorbent from marine algae. Appl. Microbiol. Biotechnol.,

54 : 997-600.

Lee, H.S. and Volesky, B. (1997). Interaction of light metals and protons with seaweed

biosorbent. Water Res., 31 : 3082-3088.

Lee, H.S., Suh, J.H., Kim, B.I. and Yoon, T. (2004). Effect of aluminum in two-metal

biosorption by an algal biosorbent. Miner. Engg., 17 : 487–493.

Lewis, D. and Kriff, R.J. (1988). The Removal of heavy metals from aqueous effluents

by immobilized fungal biomass. Environ. Technol. Lett., 9 : 991-998.

Li, C., Chen, H. and Li, Z. (2004). Adsorptive removal of Cr (VI) by Fe-modified steam

exploded wheat straw. Process Biochem., 39 : 541-545.

Liu, H.L., Chen, B.Y., Lan, Y.W. and Cheng. Y.C. (2004). Biosorption of Zn (II) and Cu

(II) by the Indigenous Thiobacillus thiooxidans. Chem. Engg ., 97 : 195-201.

Liu, T., Li, H., Li, Z., Xiao, X, Chen, L. and Deng, L. (2007). Removal of hexavalent

chromium by fungal biomass of Mucor racemosus: Influencing factors and

removal mechanism. World J. Microbiol. Biotechnol., 23 : 1685-1693.

Lodeiro, P., Barriada, J.L., Herrero, R. and Sastre de Vicente, M.E. (2006).The marine

macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II)

removal: Kinetic and equilibrium studies. Environ. Pollut., 142 : 264-273.

Lodeiro, P., Cordero, B., Barriada, J.L., Herrero, R. and Sastre de Vicente, M.E. (2005).

Biosorption of cadmium by biomass of brown marine macroalgae. Biores.

Technol., 96 : 1796–1803.

Page 18: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Lodi, A., Finocchio, E., Converti, A. and Solisio, C. (2010) Removal of bivalent and

trivalent ions by Spirulina platensis biomass: batch experiments and biosorbent

characterisation Int. J. Environ. Tech. Manag., 12: 202-213.

Longhinotti E., Pozza F., Furlan L., Sanchez M.D.N.D., Klug M., Laranjeira M.C.M. and

Favere V.T. (1998). Adsorption of anionic dyes on the biopolymer chitin. J. Braz.

Chem. Soc., 9 : 335-440.

Low, K.S., Lee, C.K. and Liew, S.C. (2000). Sorption of cadmium and lead from aqueous

solutions by spent grain. Process Biochem., 36 : 59–64.

Luo, F., Liu, Y., Li, X., Xuan, Z. and Ma, J. (2006). Biosorption of lead Ion by

chemically-modified biomass of marine brown algae Laminaria japonica.

Chemosphere, 64 : 1122–1127.

Ma, W. and Tobin, J.M. (2003). Development of multi metal binding model and

application to binary metal biosorption on to peat biomass. Water Res., 37 : 3967-

3977.

Malkoc, E. and Nuhoglu, Y. (2005) Investigations of nickel (II) removal from aqueous

solutions using tea factory waste. J. Hazard. Mater., 127 : 120-128.

Malkoc, E., Nuhoglu, Y. and Dund, M. (2006). Adsorption of chromium (VI) on pomace-

An olive oil industry waste: Batch and column studies. J. Hazard. Mater., 138 :

142-146.

Mallick, N. (2003). Biotechnological potential of Chlorella vulgaris for accumulation of

Cu and Ni from single and binary metal solutions. Worad. J. Microbiol

Biotechnol., 19 : 695-701.

Page 19: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Mallick, N. and Rai, L.C. (1993). Influence of culture density, pH, organic acids and

divalent cations on the removal of nutrients and metals by immobilized Anabaena

doliolum and Chlorella vulgaris. World J. Microbiol. Biotechnol., 9 : 196-201.

Marijana, E. and Raspor, B. (1998). Evaluation of cadmium metallothionein stability

constants based on voltammetric measurements. Analy. Chemi. Acta., 360 : 189-

194.

Marques, P.A.S.S., Rosa, M.F. and Pinheiro, H.M. (2000). pH effects on the removal of

Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess

Engg., 23 : 135-141.

Martinsa, R.J.E., Pardob, R. and Boaventurab, R.A.R. (2004). Cadmium (II) and zinc (II)

adsorption by the aquatic moss Fontinalis antipyretica: Effect of temperature, pH

and water hardness. Water Res., 38 : 693–699.

Matheickal, J.T., Yu, Q. and Woodburn, G.M. (1999). Biosorption of cadmium (II) from

aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum.

Wat. Res., 33 : 335-342.

Mehta, S.K. and Gaur, J.P. (2001a). Characterization and optimization of Ni and Cu

sorption from aqueous solution by Chlorella vulgaris. Ecol. Engg., 18 : 1-13.

Mehta, S.K. and Gaur, J.P. (2001b). Concurrent sorption of Ni2+ and Cu2+ by Chlorella

vulgaris from a binary metal solution. Appl. Microbiol. Biotechnol., 55 : 379–382.

Mehta, S.K. and Gaur, J.P. (2001c). Removal of Ni2+ and Cu2+ from single and binary

metal solutions by free and immobilized Chlorella vulgaris. Eur. J. Protistol., 37 :

261–271.

Page 20: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Mehta, S.K., Singh, A., and Gaur, J.P. (2002). Kinetics of adsorption and uptake of Cu2+

by Chlorella vulgaris: Influence of pH, temperature, culture age and cations. J.

Environ. Sci. Health, Part A., 37 : 399–414.

Mehta, S.K., Tripathi, B.N. and Gaur, J.P. (2000). Influence of pH, temperature, culture

age and cations on adsorption and uptake of Ni by Chlorella vulgaris. Eur. J .

Protistol., 36 : 443–450.

Mehta, S.K., Tripathi, B.N. and Gaur, J.P. (2002). Enhanced sorption of Cu2+ and Ni2+ by

acid-pretreated Chlorella vulgaris from single and binary metal solutions. J. Appl.

Phycol., 14 : 267–273.

Mehta, S.K. and Gaur, J.P. (2005). Use of algae for removing heavy metal ions from

wastewater: Progress and prospects. Crit. Rev. Biotechnol., 25 : 113–152.

Micheletti, E., Colica1, G., Viti, C., Tamagnini, P. and De Philippis, R. (2008).

Selectivity in the heavy metal removal by exopolysaccharide-producing

cyanobacteria. J. Appl. Microbiol., 105 : 88–94.

Modak, J.M. and Natarajan, K.A. (1995). Biosorption of metals using nonliving biomass.

A review. Miner. Metallurg. Process, 189.

Mohammadi, T., Moheb, A., Sadrzadeh, M. and Razmi, A. (2005). Modeling of metal ion

removal from wastewater by electrodalysis. Sep. Purif. Technol., 41 : 73-82.

Mohan, D. and Pittman Jr, C.U. (2006). Activated carbons and low cost adsorbent for

remediation of tri and hexavalent chromium from water. J. Hazard. Mater., 137 :

762-811.

Mohapatra, H. and Gupta, R. (2005). Concurrent sorption of Zn (II), Cu (II) and Co (II)

by Oscillatoria angustissima as a function of pH in binary and tertiary metal

solutions. Biores. Technol., 96 : 1387-1398.

Page 21: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Moreno-Garrido, I., Codd, G.A., Gadd, G.M., Lubian, L.M. (2002). Cu and Zn

accumulation by calcium alginate immobilized marine macroalgal cells of

Nannochloropsis gaditana. Cienc. Mar., 28 : 107-119.

Munir, K., Yusuf, M., Noreen, Z., Hameed, A., Hafeez, F.Y. and Faryal, R. (2010).

Isotherm studies for determination of removal capacity of bimetal (Ni and Cr)

ions by Aspergillus niger. Pak. J. Bot., 42 : 593-604.

Myres, D. (1991). Surfaces, interfaces, colloids: Principles and applications, VCH,

weinheim, Germany. 39-67.

Nagase, H., Inthorn, D., Oda, A., Nishimura, J., Kajiwara, Y., Park, M.O., Hirata, K. and

Miyamoto, K. (2005). Improvement of selective removal of heavy metals in

cyanobacteria by NaOH treatment. J. Biosci. Bioeng., 99 : 372-377.

Nies, D.H. (1999). Microbial heavy-metal resistance. Appl Microbiol Biotechnol., 51 :

730-750.

Nies, D.H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS

Microbiol. Rev., 27 : 313-339.

Nirmal Kumar, J.I., Oommen, C. and Kumar, N.R. (2009). Biosorption of heavy metals

from aqueous solution by green marine macroalgae from Okha Port, Gulf of

Kutch, India. American-Eurasian J. Agric. & Environ. Sci., 6 : 317-323.

Niu, H. and Volesky, B. (2000). Gold-cyanide biosorption with L-cysteine. J. Chem.

Technol. Biotechnol., 75 : 436–442.

Nuhoglu, Y., Malkoc, E., Gu rses, A. and Canpolat, N. (2002). The removal of Cu (II)

from aqueous solutions by Ulothrix zonata. Biores. Technol., 85 : 331-333.

Nurba, M., Nourbakhsh, S. and Kilicarslan, S. (2002). Biosorption of Cr6+, Pb2+ and Cu2+

ions in industrial waste water on bacillus sp. J. Chem. Eng., 5 : 351-355.

Page 22: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Ofer, R., Yerachmiel, A. and Shmuel, Y. (2003). Marine macroalgae as biosorbent for

cadmium and nickel in water. Water Environ. Res., 75 : 246–253.

Ozaki, H., Sharma, K. and Saktaywin, W. (2002). Performance of an ultra-low pressure

reverse osmosis membrane (ULPROM) for separating heavy metal: Effects of

interference parameters. Desalination, 144 : 287-294.

Ozer, A. and Ozer, D. (2003). Comparative study of the biosorption of Pb (II), Ni (II) and

Cr (VI) ions onto Saccharomyces cerevisiae: Determination of biosorption heats.

J. Hazard. Mater., 100 : 219-229.

Ozer, A., Ozer, D. and Ibrahim EkIz, H. (2004). The equilibrium and kinetic modelling of

the biosorption of copper (II) ions on Cladophora crispata. Adsorption, 10 : 317-

326.

Ozer, D., Aksu, Z., Kutsal, T. and Caglar, A. (1994). Adsorption isotherms of lead (II)

and chromium (VI) on Cladophora crispata. Environ. Technol., 15 : 439-448.

Ozturk, S., Aslım, B. and Turker, A.R. (2009). Removal of Cadmium ions from aqueous

samples by Synechocystis sp. Sep. Sci. Technol., 44 : 1467–1483.

Pagnanelli, F., Esposito, A, Toro, L. and Veglio, F. (2003). Metal speciation and pH

effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type

empirical model. Water Res., 37 : 627-633.

Pal, A., Ghosh, S. and Paul, A.K. (2006). “Biosorption of cobalt by fungi from serpentine

Soil of Andaman.” Biores. Technol., 97: 1253–1258.

Pandey, A., Bera, D., Shukla, A. and Ray, L. (2007). Potential of agarose for biosorption

of Cu (II) in aqueous system. J. Biochem. Biotechnol., 3 : 55-59.

Park, D., Yun, Y.S. and Park, J.M. (2004). Reduction of hexavalent chromium with the

brown seaweed Ecklonia biomass. Environ. Sci. Technol., 38 : 4860-4864.

Page 23: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Park, D., Yun, Y.S. and Park, J.M. (2005). Use of dead fungal biomass for the

detoxification of hexavalent chromium: Screening and kinetics. Process

Biochem., 40 : 2559-2565.

Paul, S., Bera, D., Chattopadhyay, P. and Ray, L. (2006). Biosorption of Pb(II) by

Bacillus cereus M 116 immobilized in calcium alginate gel. J. hazard. Subst. Res.,

5 : 2-13.

Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S. and

Marhaba, T.F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried

marine green macroalga Caulerpa lentillifera. Biores. Technol., 97 : 2321–2329.

Plude, J.L., Parker, D.L., Schommer, D.J., Timmerman, R.J. Hagstrom, S.A., Joers, J.M.

and Hnasko, R. (1991). Chemical characterization of polysaccharides from the

slime layer of cyanobacterium M. flos-aquae C3-40. Appl. Environ. Microbiol., 57

: 1696-1700.

Pradhan, S. and Rai, L.C. (2000). Optimization of flow rate, initial metal ion

concentration and biomass density for maximum removal of Cu2+ by immobilized

Microcystis. Worad. J . Microbiol. Biotechnol., 16 : 579–584.

Pradhan, S., Singh, S., Rai, L.C. and Parker, D.L. (1998). Evaluation of metal biosorption

efficiency of laboratory-grown Microcystis under various environmental

conditions. J. Microbol. Biotechnol. 8 : 53–60.

Prasad, B.B and Pandey, U.C. (2000). Separation and preconcentration of copper and

cadmium ions from multielemental solutios using Nostoc muscorum based

biosorbents. Worad. J Microbiol. Biotechnol., 16 :819-827.

Page 24: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Preetha, B. and Viruthagiri, T. (2007). Bioaccumulation of chromium (VI), copper (II)

and nickel (II) ions by growing Rhizopus arrhizus. Biochem. Engg. J., 34 : 131-

135.

Pahlavanzadeh, H., Keshtkar, A.R., Safdari, J. and Abadi, Z. (2010). Biosorption of

nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic

and thermodynamic studies. J. Hazard. Mater., 175 : 304-310.

Qaiser, S., Saleemi, A.R. and Ahmad, M.M. (2007). Heavy metal uptake by agro based

waste materials. Electronic. J. Biotechnol., 10: 409-416.

Radway, J.C., Wilde, E.W., Whitaker, M.J. and Weissman, J.C. (2001). Screen of algal

strains for metal removal capabilities. J. Appl. Phycol., 13 : 451-455.

Rai, L.C., Gaur, J.P. and Kumar, H.D. (1981). Phycology and heavy-metal pollution.

Biol. Rev. Phil. Soc., 56 : 99–151.

Rai, L.C., Singh, S. and Pradhan, S. (1998). Biotechnological potential of naturally

occurring and laboratory grown Microcystis in bisorption of Ni2+ and Cd2+. Curr.

Sci., 74 : 461-466.

Rajkumar, M., Nariharu, A. and Freitas, H. (2009). Endophytic bacteria and their

potential to enhance heavy metal phytoextraction. Chemosphere., 77: 153-160.

Rangsayatorn, N., Pokethitiyook, P., Upatham, E.S. and Lanza, G.R. (2004). Cadmium

biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate

and silica gel. Environ. Int., 30 : 57–63.

Rangsayatorn, N., Upatham, E.S., Kruatrachue, M., Pokethitiyook, P. and Lanza GR

(2002). Phytoremediation potential of Spirulina (Arthrospira) platensis:

Biosorption and toxicity studies of cadmium. Environ Pollut., 119 : 45–53.

Page 25: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Rao, J.R. and Viraraghavan, T. (2002). Biosorption of phenol from an aqueous solution

by Aspergillus niger biomass. Biores. Technol., 85 : 165-171.

Rao, P.S., Kalyani, S., Suresh Reddy, K.V.N. and Krishnaiah, A. (2005). “Comparison of

biosorption of nickel (II) and copper (II) ions from aqueous solution by

Sphaeroplea algae and acid treated Sphaeroplea algae,” Sep. Sci. Technol., 40 :

3149–3165.

Rehman, A., Zahoor, A., Muneer, B. and Hasnain, S. (2008). Chromium tolerance and

reduction potential of a Bacillus sp. ev3 isolated from metal contaminated

wastewater. Bull. Environ. Contam. Toxicol., 81 : 25-29.

Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. (1979).

Generic assignment, strain histories and properties of pure cultures of

cyanobacteria. J. Gen. Microbiol., 111 : 1-61

Romero-Gonzalez, J., Walton, J.C., Peralta-Videa, J.R., Rodriguez, E., Romero, J. and

Gardea-Torresdey, J.L. (2009). Modelling the adsorption of Cr (III) from aqueous

solution onto Agave lechuguilla biomass: Study of the advective and dispersive

transport. J. Hazard. Mater., 161 : 360-365.

Rouch, D., Lee, B.T.O. and Camakaris, J. (1989). Genetic and molecular basis of copper

resistance in E.coli. In: Hamer, D.H. and Winge, D.R. (eds), metal ion

homostasis, molecular biology and chemistry, 439-446. A.R. Liss, New York.

ISBN 0-84512697-0.

Sadettin, S. and Donmez, G. (2007). Simultaneous bioaccumulation of reactive dye and

chromium (VI) by using thermophil Phormidium sp. Enz. Microbial Technol., 41

: 175-180.

Page 26: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Saeed, A. and Iqbal, M. (2006). Immobilization of blue green microalgae on loofa

sponge to biosorb cadmium in repeated shake flask batch and continuous flow

fixed bed column reactor system. World J. Microbiol. Biotechnol., 22 : 775–782.

Safferman, R.S. and Morris, M.E. (1964). Growrh characteristics of the blue green algal

virus LPP-1. J. Bacteriol., 88 : 771-775.

Sandau, E., Sandau, P. and Pulz, O. (1996a). Heavy metal sorption by microalgae. Acta.

Biotechnol., 16 : 227-235.

Sandau, E., Sandau, P., Pulz, O. and Zimmermann, M. (1996b). Heavy metal sorption by

marine algae and algal byproducts. Acta Biotechnol., 16 : 103-119.

Sarin, V. and Pant, K.K. (2006). Removal of chromium from industrial waste by using

eucalyptus bark. Biores. Technol., 97 : 15-20.

Satoh, A., Vudikaria, L.Q., Kurano, N. and Miyachi, S. (2005). Evaluation of the

sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and

Cd. J. Environ., 31(5) : 713-722.

Schecher, W.D. and Driscoll, C.T. (1985). Interaction of copper and Lead with Nostoc

muscorum. Water, Air, soil Pollut., 24 : 85-101.

Scott, J.A. and Palmer, S.J. (1990). Sites of cadmium uptake in bacteria used for

biosorption. Appl. Microbiol. Biotechnol., 33 : 221–225.

Sekhar, K.C., Kamala, C.T. and Chary, N.S. (2004). Removal of lead from aqueous

solutions using an immobilized biomaterial derived from a plant biomass. J.

Hazard. Mater., 108 : 111-117.

Seki, H., Suzuki, A. and Maruyama, H. (2005). Biosorption of chromium (VI) and

arsenic (V) onto methylated yeast biomass. J. Colloid Interf. Sci., 281 : 261–266.

Page 27: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M.Z., Chergui, A. and Kerchich, Y.

(2004). Biosorption of lead (II) from aqueous solution by a bacterial dead

Streptomyces rimosus biomass. Biochem. Eng. J., 19 : 127–135.

Selvaraj, K., Manonmani, S. and Pattabhi, S. (2003). Removal of hexavalent chromium

using distillery sludge. Biores. Technol., 89: 207-211.

Sergios, K.P., Fotios, K.K., Evangelos, P.K., Nolan, J. W., Le Diet, H. and Nick, K.K.

(2006). Heavy metal biosorption by calcium alginate beads from Laminaria

digitatalis. J. hazard. Mater., 137 : 1765-1772.

Shaker, M.A. and Hussein, H.M. (2005). Heavy metal adsorption by non living biomass.

Chem. and Ecol., 21 : 303-311.

Sheng, P.X., Tan, L.H., Chen, J.P. and Ting, Y.P. (2004a). Biosorption performance of

two brown marine algae for removal of chromium and cadmium. J. Dispersion

Sci. Technol., 25 : 679–686.

Sheng, P.X., Ting, Y.P. and Chen, J.P. (2004b). Sorption of lead, copper, cadmium, zinc

and nickel by marine algal biomass: Characterization of biosorptive capacity and

investigation of mechanisms. J. Colloid Interface Sci., 275 : 131-141.

Sheng, P.X., Ting, Y.P. and Chen J.P. (2007). Biosorption of heavy metal ions (Pb, Cu

and Cd) from aqueous solutions by the marine alga Sargassum sp. in single and

multiple metal systems. Ind. Eng. Chem. Res., 46 : 2438-2444.

Singh, A, Mehta, S.K and Gaur, J.P. (2007). Removal of heavy metals from aqueous

solution by common fresh water filamentous algae. World J. Microbiol.

Biotechnol., 23 : 1115-1120.

Singh, A.L., Asthana, R.K., Srivastava, S.C. and Singh, S.P. (1992). Nickel uptake and its

localization in a cyanobacterium. FEMS Microbiol. Lett., 99 : 105-168.

Page 28: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Singh, R. and Singh, P. (2000). Pollution in Abu drainage –a preliminary report. Adv.

Plant Sci., 13 : 43-45.

Singh, S., Pradhan, S. and Rai, L.C. (1998). Comparative assessment of Fe3+and Cu3+

biosorption by field and laboratory-grown Microcystis. Process Biochem., 33 :

495–504.

Singh, S.N. (1994). Effect of effluents from the sindri factory in the river Damodar. J.

Ecobiol., 6 : 27-32.

Skowronski, P. and Ska, B. (2000). Relationship between acid-soluble thiol peptides and

accumulated Pb in the green alga Stichococcus bacillaris. Aquat. Toxicol., 50 :

221–230.

Srinath, T. and Verma, T. (2002). Chromium (VI) Biosorption and bioaccumulation by

chromate resistant bacteria. J. Chemosphere, 48 : 427-435.

Srivastava, S. and Thakur, I.S. (2007). Evaluation of biosorption potency of

Acinetobacter sp. for removal of hexavalent chromium from tannery effluent.

Biodegradation, 18 : 637-646.

Sudha, S.R. and Abraham, T.E. (2001). Biosorption of Cr (VI) from aqueous solution by

Rhizopus nigricans. J. Biores. Technol., 79 : 73-81.

Sufia, K. Kazy, Sar, P., Asthana, R.K. and Singh, S.P. (1999). Copper uptake and its

compartmentalization in Pseudomonas aeruginosa strains: Chemical nature of

cellular metal., World J. Microbiol. Biotechnol., 15 : 599-605.

Suzuki, Y., Kametani, T. and Maruyama, T. (2005). Removal of heavy metals from

aqueous solution by nonliving Ulva seaweed as biosorbent. Water Res., 39(9) :

1803–1808.

Page 29: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Tam, N.F.Y., Wong, Y.S. and Simpson, C.G. (1998). Repeated removal of copper by

alginate beads and the enhancement by microalgae. Biotechnol. Techniq., 12 :

187-190.

Tangkawanit, S., Rangsriwatananon, K. and Dyer, A. (2005). Ion exchange of Cu2+, Ni2+,

Pb2+ and Zn2+ in analcime (ANA) synthesized from Thai perlite. Microp. Mesop.

Mater., 79 : 171–175.

Terry, P.A. and Stone, W. (2002). Biosorption of cadmium and copper contaminated

water by Scenedesmus abundans. Chemosphere, 47 : 249-255.

Tien, C.J., Sigee, D.C. and White, K.N. (2005). Copper adsorption kinetics of cultured

algal cells and freshwater phytoplankton with emphasis on cell surface

characteristics. J. Appl. Phycol., 17 : 379-389.

Ting, Y.P. and Sun, G. (2000). Use of polyvinyl alcohol as a cell immobilization matrix

for copper biosorption by yeast cells. J. Chem. Technol. Biotechnol., 75 : 541-

546.

Ting, Y.P., Teo, W.K. and Soh, C.Y. (1995). Gold uptake by Chlorella vulgaris. J . Appl.

Phycol., 7 : 97–100.

Tobin, J.M., Cooper, D.G. and Neufeld, R.J. (1984). Uptake of metal ions by Rhizopus

arrhizus biomass. Appl. Environ. Microbiol., 47 : 821–824.

Trivedi, B.D. and Patel, K.C. (2007). Biosorption of hexavalent chromium from aqueous

solution by a tropical basidiomycete BDT-14 (DSM 15396). World J. Microbiol.

Biotechnol., 23 : 683-689.

Tunali, S., Akar, T., Ö zcan, A.S., Kiran, I. and Ö zcan, A. (2006). Equilibrium and

kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium

aphidicola. Sep. Purif. Technol., 47 : 105–112.

Page 30: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Tunali, S., Kiran, I. and Akar, T. (2005). Chromium(VI) Biosorption characteristics of

Neurospora crassa fungal biomass. Min. Engg., 18 : 681-689.

Tuzun, I., Bayramoglu, G., Yalcin, E., Basaran, G., Celik, G. and Arica, M.Y. (2005).

Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions

onto microalgae Chlamydomonas reinhardtii. J. Environ., 77 : 85-92.

Uudsemaa, M. and Tamm, T. (2004). Calculation of hydration enthalpies of aqueous

transition metal cations using two coordination shells and central ion substitution.

Chem. Phys. Lett., 400 : 54–58.

Verma, S.K. and Singh, H.N. (1991). Evidence for energy dependent copper efflux, as a

mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS

Microbio. Lett., 84 : 291-294.

Vijayaraghavan, K., Jegan, J., Palanivelu, K. and Velan, M. (2005). “Biosorption of

copper, cobalt and nickel by marine green alga Ulva reticulata in a packed

column,”Chemosphere. 60 : 419–426.

Vijayaraghavan, K., Padmesh, T.V.N., Palanivelu, K. and Velan, M. (2006). “Biosorption

of nickel (II) ions onto Sargassum wightii: application of two–parameter and

three–parameter isotherm models.” J. Hazard. Mater., 13 : 304–308.

Vilar, V.J.P., Botelho, C.M.S. and Boaventura, R.A.R. (2005). Influence of pH, ionic

strength and temperature on lead biosorption by Gelidium and agar extraction

algal waste. Water Res., 40 : 291-302.

Volesky, B. (1990). Biosorption and biosorbents. In: Volesky B. (ed.) Biosorption of

heavy metals. Florida: CRC press; pp. 3-5.

Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for the next

century. Hydrometallurgy, 59 : 203–216.

Page 31: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Volesky, B. (2007). Biosorption and me. Wat. Res., 41 : 4017-4029.

Volesky, B. and Holan, Z.R. (1995). Biosorption of heavy metals. Biotechnol. Prog., 11:

235–250.

Volesky, B., May, H. and Holan, Z. (1993). Cadmium biosorption by Saccharomyces

cereviceae. Biotechnol. Bioeng., 41 : 826–829.

Wang, J. and Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae:

A review. Biotechnol. Advan., 24 : 427-451.

Wilde, E.W. and Benemann, J.R. (1993). Bioremoval of heavy metals by use of

microalgae. Biotechnol. Adv., 11: 781-812.

Wong, M.H. and Pak, D.C.H. (1992). Removal of copper and nickel by free and

immobilized microalgae. Biomed. Environ. Sci., 5 : 99–108.

Yan, G. and Viraraghavan, T. (2003). Heavy metal removal from aqueous solution by

fungus Mucor rouxii. Water Res., 37 : 4486-4496.

Yan, G. and Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by

immobilization, M. rouxi biomass. Biores. Technol., 78 : 243-249.

Yee, N., Benning, L.G., Phoenix, V.R. and Ferris, F.G. (2004). Characterization of

metal- cyanobacteria sorption reaction: A combined macroscopic and infrared

spectroscopic investigation. Environ. Sci. Technol., 38 : 775–782.

Yin, P., Yu, Q., Lin, Z. and Kaewsarn, P. (2001). Biosorption and desorption of cadmium

(II) by biomass of Laminaria japonica. Environ. Technol., 22 : 509–514.

Yu, Q. and Kaewsarn, P. (2000). Adsorption of nickel from aqueous solutions by

pretreated biomass of marine macroalga Durvillaea potatorum. Separation Sci.

Technol., 35 : 689-701.

Page 32: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

Yu, Q., Pairat, K., Ma, W., Jose, T.M. and Yin, P. (2001). Removal of heavy metal ions

from wastewater by using biosorbents from marine algae - A cost effective new

technology. Chinese J. Chem. Eng., 9 : 133-136.

Yun, Y.S. (2004). Characterization of functional groups of protonated Sargassum

polycystum biomass capable of binding protons and metal ions. J. Microbiol.

Biotechnol., 14 : 29-34.

Yun, Y.S., Park, D.H., Park, J.M. and Volesky, B. (2001). Biosorption of trivalent

chromium on the brown seaweed biomass. Environ. Sci. Technol., 35 : 4353-

4358.

Zhai, Y., Wei, X., Zeng, G., Zhang, D. and Chu, K. (2004). Study of adsorbent derived

from sewage sludge for removal of Cd2+, Ni2+ in aqueous solutions. Sep. Purif.

Technol., 38 : 191-196.

Zhao, Y., Hao, Y. and Ramelow, G.J. (1994). Evaluation of treatment techniques for

increasing the uptake of metal ions from solution by non-living seaweed algal

biomass. Environ. Monit. Assess., 33 : 61–70.

Zhou, J.L., Huang, P.L. and Lin, R.G. (1998). Sorption and desorption of Cu and Cd by

macroalgae and microalgae. Environ. Pollut., 101 : 67–75.

Zhou, J.L. and Kiff, R.J. (1991). The uptake of copper from aqueous solution by

immobilized fungal biomass. J. Chern. Technol. Biotechnol., 52 : 317-330.

Zubair, A., Bhatti, H.N., Hanif, M.A. and Shafqat, F. (2008). Kinetic and equilibrium

modelling for Cr (III) and Cr (VI) removal from aqueous solutions by Citrus

reticulata waste biomass. Water Air Soil Pollut., 191 : 305-318.

Page 33: final thesis pdf - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2353/11/11_references.pdf · Cu 2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the

List of Publications

1. Khattar, J.I.S. and Shailza (2009). Optimization of Cd2+ removal by Synechocystis pevalekii using response surface methodology. Process Biochem. 44: 118-121.

2. Khattar, J.I.S. and Shailza (2010) Optimization of copper removal by the

cyanobacterium Oscillatoria chlorina. . J. Punjab Acd. Sci. (in press)