33
Femtochemistry: A theoretical overview Mario Barbatti [email protected] I – Transition probabilities This lecture can be downloaded at http://homepage.univie.ac.at/mario.barbat ti/femtochem.html

Femtochemistry: A theoretical overview Mario Barbatti [email protected] VI – Transition probabilities This lecture can be downloaded at

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

Femtochemistry: A theoretical overviewFemtochemistry: A theoretical overview

Mario [email protected]

VI – Transition probabilities

This lecture can be downloaded athttp://homepage.univie.ac.at/mario.barbatti/femtochem.html lecture6.ppt

Page 2: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

2

Fermi’s golden rule

Page 3: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

3

Fermi’s Golden RuleFermi’s Golden Rule

kpk kHiW 22

Transition rate:

i

kk ,

Quantum levels of the non-perturbed

system

Perturbation is applied

Transition is induced

Page 4: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

4

Derivation of Fermi’s Golden RuleDerivation of Fermi’s Golden Rule

• See Fermi‘s Golden Rule paper at the course homepage

Time-dependent formulation

pHHH 0H0 – Non-perturbated Hamiltonian

Hp – Perturbation Hamiltonian

0

Ht

i

n which solves: 00 nEH n

ijji and ijji EE

Page 5: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

5

Derivation of Fermi’s Golden RuleDerivation of Fermi’s Golden Rule

n

tiEn neta n

pHHH 0

0

Ht

i

Prove it!

Multiply by at left and integrate

n

tinp

k knetanHktta

i

k

Note that the non-perturbated Hamiltonian is supposed non-dependent on time.

Page 6: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

6

An approximate way to solve the differential equationAn approximate way to solve the differential equation

n

tinp

k knetanHktta

i

Guess the “0-order” solution: tan)0(

Use this guess to solve the equation and to get the 1st-order approximation: tak)1(

n

tinp

k knetanHkdt

tdai )0(

)1(

Use the 1st-order to get the 2nd-order approximation and so on.

n

tipnp

pk knetanHkdt

tdai )1(

)(

Page 7: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

7

First order approximationFirst order approximation

Guess the “0-order” solution: nin ta )0(

n

tinp

k knetanHkdt

tdai )0(

)1(

Suppose the simplified perturbation:

0

'kn

p

HnHk

Constant between 0 and Otherwise

t

0

'knH

0

nHk p

Page 8: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

8

First order approximationFirst order approximation

0

')1(

n

tininmk

kneH

dt

tdai

Between 0 and Otherwise

ki

kiiik

tiikk

knki eHdteHai

2/sin2 2/'

0

')1(

It was used:

a ikxikx

kkx

edxe0

2/ 2/sin2

Page 9: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

9

Transition probabilityTransition probability

22

22'2 2/sin

4ki

kiikkik HaP

0

0.0

0.2

0.4

0.6

0.8

1.0

sin(

)2 /

2

In this derivation for constant perturbation, only transitions with ~ 0 take place. If the perturbation oscillates harmonically (like a photon), ≠ 0 can occur.

The final result for the Fermi’s Golden Rule is still the same.

Page 10: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

10

Physically meaningful quantityPhysically meaningful quantity

kneark

ikk PW'

'

1

i

kk ,

Near k: density of statesdEdn

k

kikikkkikkneark

ikk dPdEPPW

11

''

Page 11: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

11

Physically meaningful quantityPhysically meaningful quantity

kikikkkikkneark

ikk dPdEPPW

11

''

Using

22

22' 2/sin

4ki

kiikik HP

kikk HW 2'2

kiki

kikk dHWki

2

22' 2/sin1

41

2/

Page 12: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

12

Fermi’s Golden Rule: photons and moleculesFermi’s Golden Rule: photons and molecules

kti

k dtekiW ik

2

0

2 Ed

Transition rate:

i

kk ,

Ed 0HHH0 – Non-perturbated molecular Hamiltonian

– Light-matter perturbation HamiltonianEd

Page 13: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

13

Transition dipole momentTransition dipole moment

kti

k dtekiW ik

2

0

2 Ed

i

kk ,

kikZeiki eikN

N

n

N

mmnn

at el

ddrRd

1 1

0

Electronic transition dipole moment

Page 14: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

14

Einstein coefficientsEinstein coefficients

i

k

ik

iN

Rate of absorption i → k iika

ik NBW

Einstein coefficient B for absorption

2

2061

kig

gB e

i

kik d

ik

ng - degeneracy of state n

(see Einstein coefficients text in the course homepage)

Page 15: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

15

Einstein coefficientsEinstein coefficients

i

k

ki

kN

Rate of stimulated emission k → i kkist

ki NBW

Einstein coefficient B for stimulated emission

kik

iik B

g

gB

ki

Page 16: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

16

Einstein coefficientsEinstein coefficients

i

k

ki

kN

Rate spontaneous decay k → i 2NAW kisp

ki

Einstein coefficient A for spontaneous emission

kiki

ki Bc

A 32

3

ki

Page 17: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

17

Einstein coefficient and oscillator strengthEinstein coefficient and oscillator strength

kiki

ki Ae

mcf 22

302

In atomic units:

kiki

ki AE

cf 2

3

2

Page 18: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

18

Einstein coefficient and lifetimeEinstein coefficient and lifetime

kikiki fE

cA 2

3

21

1

2

R

E

If E21 = 4.65 eV and f21 = -0.015, what is the lifetime of the excited state?

au

eVE

.1708840

211396.27/65.4

65.421

au10

2

3

21

1029.0

)015.0()170884.0(2)137(

ns

s

70

104189.21029.0 171021

Converting to nanoseconds:

Page 19: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

19

non-adiabatic transition probabilities

Page 20: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

20

Non-adiabatic transitionsNon-adiabatic transitions

11,

22 ,

21,

12 ,

0

x

E

0 H11

H22 E2

E1

Problem: if the molecule prepared in state 2 at x = ∞ moves through a region of crossing, what is the probability of ending in state 1 at x = ∞?

H12

Page 21: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

21

Models for non-adiabatic transitionsModels for non-adiabatic transitions

xFHH 122211 constant, 1212 FH

1. Landau-Zener

12

2

122exp

F

H

vP

2. Demkov / Rosen-Zener

constant21 EE

/sech1212 xhh x

xvhEE

P12

212

4sech

3. Nikitin

xA

H

xAHH

expsin2

expcos

012

02211

02

02

02

cottan2

1exp

12/cosexp

v

P

4. Bradauk; 5. Delos-Thorson; 6. …

Page 22: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

22

Derivation of Landau-Zener formulaDerivation of Landau-Zener formula

nn

t

nnn dttHi

ta

exp

Multiply by at left and integrate

kn

nknk netaHdt

tdai

k

nkkn HH

t

nnn dtHi

0

Ht

i

In the deduction it was used:

nn

t

nn HdtHdtd

Page 23: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

23

kn

nknk netaHdt

tdai

Since there are only two states:

21212

1 etaHi

dttda

12121

2 etaHi

dttda

jiij

(i)

(ii)

Solving (i) for a2 and taking the derivative:

dt

tdadt

tadHei

dtda

HeHH 2

21

2

12

1

12

22111212

(iii)

Substituting (iii) in (ii):

01

1

2

1221

221121

2

aHdtda

HHi

dtad

Page 24: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

24

Zener approximation: tHH 2211

21,

x

0

E

0 11,

22 ,

12 ,

222 F

dxdH

111 F

dxdH

vtFxFH 1111

vtFxFH 2222

vtFFHH 212211

vF12

01

1

2

1221

221121

2

aHdtda

HHi

dtad

Page 25: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

25

01

01

2

2

1222

1222

2

1

2

1221

1221

2

aHdt

davtF

idt

ad

aHdtda

vtFi

dtad

Problem: Find a2(+∞) subject to the initial condition a2(∞) = 1.

The solution is:

(The complete derivation is in the paper on Landau-Zener in the course homepage)

0x

E

0

12 a

01 a ?2 a

?1 a

12

2

122 exp

F

H

va

Page 26: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

26

The probability of finding the system in state 1 is:

12

2

122

2

2exp

F

H

vaPnad

The probability of finding the system in state 2 is:

12

2

122exp11

F

H

vPP nadad

0

0

1

Pro

babi

lity

|H12

|2

Pnad

Pad

0

0

1

|F12

| or v

Pad

Pnad

Page 27: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

27

2

12** 2exp

HP

Example: In trajectory in the graph, what are the probability of the molecule to remain in the * state or to change to the closed shell state?

0 2 4 6 8 10 12 14

-224.85

-224.80

-224.75

-224.70

-224.65

*

cs

H11

= t

Ene

rgy

(au)

Time (fs)

H22

= t

H12

= au

cs

*

au0.001au/f0435.0

01126.003224.0

s

fs104.2au1 2

time

tHH 2211

vF12 1

Page 28: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

28

Example: In trajectory in the graph, what are the probability of the molecule to remain in the * state or to change to the closed shell state?

43.0001.0

011577.02exp

2

**

P

57.01 *** PP cs

0 2 4 6 8 10 12 14

-224.85

-224.80

-224.75

-224.70

-224.65

*

cs

Ene

rgy

(au)

Time (fs)

cs

*

0.43

0.57

Page 29: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

29

0

x

E

0

0

x

E

0

vv

For the same H12, Landau-Zener predicts:

Non-adiabatic (diabatic) Adiabatic

12

2

122exp

F

H

vPnad

H12

Page 30: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

30

0

x

E

0

0

x

E

0

For the same , Rosen-Zener predicts:

Non-adiabatic (but not diabatic!) Adiabatic

vv

xnad vhEE

P12

212

4sech

xh12

Page 31: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

31

0

x

E

0

0

x

E

0

For the same 0 (H12), Nikitin predicts:

Non-adiabatic (diabatic) Adiabatic

v v

02

02

02

cottan2

1exp

12/cosexp

v

Pnad

Page 32: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

32

The problem with the previous formulations is that they only predict the total probability at the end of the process.

If we want to perform dynamics, it is necessary to have the instantaneous probability.

Page 33: Femtochemistry: A theoretical overview Mario Barbatti mario.barbatti@univie.ac.at VI – Transition probabilities This lecture can be downloaded at

33

Next lectureNext lecture

Quantum dynamics methods

[email protected]

This lecture can be downloaded athttp://homepage.univie.ac.at/mario.barbatti/femtochem.html lecture6.ppt