42
1 Ultrafast processes in molecules Mario Barbatti [email protected] Introduction

1 Ultrafast processes in molecules Mario Barbatti [email protected] Introduction

Embed Size (px)

Citation preview

Page 1: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

1

Ultrafast processes in moleculesUltrafast processes in molecules

Mario [email protected]

Introduction

Page 2: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

2

settling the bases: photochemistry, excited states, and conical intersections

Page 3: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Photochemistry & Photophysics

3

Stating the problem:

• What does happen to a molecule when it is electronically excited?

• How does it relax and get rid of the energy excess?

• How long does this process take?• What products are formed?• How does the relaxation affect or is affected by the environment?

• Is it possible to interfere and to control the outputs?

Page 4: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Why to study it?

4

Basic sciences Interaction photon/matterCoeherence/decoherenceNature of transition statesNonadiabatic phenomena

Biology Light and UV detectionPhotosynthesisGenetic code degradationCellular proton pump

Atmospheric sciences

UV induced chemistryGreenhouse effect

Astrophysics Interstellar molecular synthesis

Technology Control of chemical reactionsMolecular photo-switches

Page 5: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

5

Pump-probe experiments based on ultra-fast laser pulses have increased the resolution of the chemical measurements to the femtosecond (10-15 s) time scale.

Page 6: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

The need for Theory

6

Theory is necessary to map the ground and excited state surfaces and to model the mechanisms taking place upon the photoexcitation.

Theory is indispensable to deconvolute the raw time-resolved experimental information and to reveal the nature of the transition species.

In particular, excited-state dynamics simulations can shed light on time dependent properties such as lifetimes and reaction yields.

Page 7: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

7

Photochemistry and photophysics

Page 8: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Basic process I: Radiati ve decay (fl uorescence)

8

P ~ |j|m |i|2

t ~ ns

Page 9: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Basic process II: Non-radiati ve decay

9

P ~ v j| |iN

t ~ fs

Page 10: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

The Static Problem

10

1.How are the excited state surfaces?

2. For which geometries does the molecule have conical intersections?

3. Can the molecule reach them?

Page 11: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Conical intersections

11

Antol et al. JCP 127, 234303 (2007)Barbatti et al., Chem. Phys. 349, 278 (2008)

pyridoneformamide

Page 12: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

12

Conical intersection Structure Examples

Twisted Polar substituted ethylenes (CH2NH2+)

PSB3, PSB4HBT

Twisted-pyramidalized Ethylene6-membered rings (aminopyrimidine)4MCFStilbene

Stretched-bipyramidalized

Polar substituted ethylenesFormamide5-membered rings (pyrrole, imidazole)

H-migration/carbene EthylideneCyclohexene

Out-of-plane O FormamideRings with carbonyl groups (pyridone,cytosine, thymine)

Bond breaking Heteroaromatic rings (pyrrole, adenine, thiophene, furan, imidazole)

Proton transfer Watson-Crick base pairs

X C

R1

R2

R3

R4

X C

R1

R2R3

R4

X C

R1

R2 R3

R4

C

R1R2

R3

H

C O

R1

R2

X Y

R1

R2

X

R1 R2

H

Page 13: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Conical intersecti ons: Twisted-pyramidalized

13

(b)

3 2

1

65

4(a)

(b)

3 2

1

65

4(a)

(b)(b)

3 2

1

65

4(a)

3 2

1

65

4(a)

Barbatti et al. PCCP 10, 482 (2008)

Page 14: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

14

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

0 1 2 3 4 5 60

1

2

3

4

5

6

7

dMW

(amu1/2Å)

6S1

n*

dMW

(amu1/2Å)

E8

*

4H3

*

dMW

(amu1/2Å)

Ene

rgy

(eV

)

2E

*

B3,6

n*

Ene

rgy

(eV

)

2H3

*E

nerg

y (e

V)

E3

*

4S3

n*

Page 15: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

The Dynamics Problem

15

At a certain excitation energy:

1. Which reaction path is the most important for the excited-state

relaxation?

2. How long does this relaxation take?

Page 16: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

16

about methods & programs

Page 17: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

17

Subject Approach Methods

Vertical excitation spectra

Conventional adiabatic quantum chemistry

MRCI, CC2, TDDFT

Stationary points in excited states

Conventional adiabatic quantum chemistry

MRCI, CC2, TDDFT

Conical intersections Nonadiabatic quantum chemistry

MRCI, MCSCF

Reaction paths Convent. adiabatic quantum chemistry (multireference)

MRCI, CASPT2, MCSCF

Lifetime and yields Mixed quantum-classical dynamics methods

MRCI, MCSCF(+ MM)

Page 18: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

18

Ene

rgy

Reaction coordinate

From quantum to (semi)classical

Wave packet propagation

Surface hopping propagation

Page 19: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Cremer-Pople parameters

19

Q

q

f

Boat

Chair

Envelope

Twisted-chair

Screw-boat

Ex.: 1S6 = Screw-boat with atoms 1 above the

plane and 6 below

Cremer and Pople, JACS 97, 1358 (1975)

Page 20: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

20

dynamics: adenine

Page 21: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Photochemical process

21

Page 22: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Photophysical process

22

Page 23: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

23

UV absorption of nucleobases

• PCCP 12, 4959 (2010)

4 5 6

0.2

0.4

0.6

0.8

1S

olar

irra

dian

ce (

W.m

-2nm

-1)

Photon energy (eV)

Surface

Extraterrestrial

0.0

0.2

0.4

0.6

Cro

ss s

ectio

n (Å

2 )

AdeGua

Thy

Cyt

Ura

Page 24: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

24

Excited-state lifetimes (vapor)

Base t1 (ps) t2 (ps)

Ade 1.00

Gua 0.36

Thy 0.49 6.4

Ura 0.53 2.4

Cyt 0.82 3.2

• Ullrich, Schultz, Zgierski, Stolow, PCCP 6, 2796 (2004)

Short lifetimes together with the low fluorescence quantum yields indicate internal

conversion through conical intersections

Purines: single stepPyrimidines: multiple steps

Page 25: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

25

Lifetime & photostability

A short lifetime can enhance the photostability because the molecule does not stay too long in reactive excited states

This effect might have constituted an evolutionary advantage for the five nucleobases forming DNA and RNA

Indeed, there are experimental evidences that purine precursors in the prebiotic world were photostable

Page 26: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

26

1 ps 30 ps

9H-Adenine 2-aminopurine

Page 27: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

27

Adenine: conical intersections

N9 H

N1

C2

H

pp*/cs

pp*/cs

psNH*/cs

9

6

2

Many conical intersections available. Which of them

are used for internal conversion? Why? On

which time scale?

Page 28: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

28

Adenine: photodynamics

E (eV)

DR (Å.amu1/2)

-4 0 43

5

-6 0 63

5

-3 0 33

5

-6 0 63

5

Ade Gua

Cyt Thy / Ura

cs

pp*

np*

cs

pp*

np*

cs

pp*

np*

cs

np*

A1A2

G1

C2

C1c

P1b

pp* P1

P1a

P1cP2

C1

A2aA1a G1a

P2aP1d

C1d

C1b

C1a

G2

G2a

N9 H

N1

C2

H

Page 29: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

29

Adenine: deactivation mechanismsE (eV)

DR (Å.amu1/2)

cs

pp*

np*

cs

pp*

np*

cs

pp*

np*

cs

np*

pp*

-4 0 43

5

-6 0 63

5

-3 0 33

5

-6 0 63

5

Ade Gua

Cyt Thy / Ura

A2

A2a

A1

A1a

• JACS 130, 6831 (2008)

Page 30: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

30

GuanineE (eV)

DR (Å.amu1/2)

-4 0 43

5

-6 0 63

5

-3 0 33

5

-6 0 63

5

Ade Gua

Cyt Thy / Ura

cs

pp*

np*

cs

pp*

np*

cs

pp*

np*

cs

np*

A1A2

pp*

A2aA1a

G1

G1a

G2

G2a

• J Chem Phys 134, 014304 (2011)

Page 31: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

31

G2

G2a

Thymine and uracilE (eV)

DR (Å.amu1/2)

-4 0 43

5

-6 0 63

5

-3 0 33

5

-6 0 63

5

Ade Gua

Cyt Thy / Ura

cs

pp*

np*

cs

pp*

np*

cs

pp*

np*

cs

np*

A1A2

G1

P1b

pp* P1

P1a

P1c

A2aA1a G1a

P2

P2a

• J Phys Chem A 113, 12686 (2009)• J Phys Chem A 115, 5247 (2011)

Page 32: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

32

G2

G2a

CytosineE (eV)

DR (Å.amu1/2)

-4 0 43

5

-6 0 63

5

-3 0 33

5

-6 0 63

5

Ade Gua

Cyt Thy / Ura

cs

pp*

np*

cs

pp*

np*

cs

pp*

np*

cs

np*

A1A2

G1

P1b

pp* P1

P1a

P1cP2

A2aA1a G1a

P2aP1d

C1c

C1d

C2 C1b

C1C1a

• PCCP 13, 6145 (2011)

Page 33: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

33• PNAS 107, 21453 (2010)

E (eV)

DR (Å.amu1/2)

-4 0 43

5

-6 0 63

5

-3 0 33

5

-6 0 63

5

Ade Gua

Cyt Thy / Ura

cs

pp*

np*

cs

pp*

np*

cs

pp*

np*

cs

np*

A1A2

G1

C2

C1c

P1b

pp* P1

P1a

P1cP2

C1

A2aA1a G1a

P2aP1d

C1d

C1b

C1a

Single step

Multiple steps

G2

G2a

Page 34: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

34

PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS

1. Photoinduced processes in nucleic acidsMario Barbatti, Antonio Borin, Susanne Ullrich

2. UV-excitation I: frequency resolvedMattanjah S. de Vries

3. UV-excitation II: time resolvedThomas Schultz

4. Excitation of nucleobases I: reaction pathsManuela Merchán

5. Excitation of nucleobases II: dynamicsLetícia Gonzalez

6. Excitation of paired and stacked nucleobasesDana Nachtigallova, Hans Lischka

7. Modified nucleobasesSpiridoula Matsika

8. UV-excitation of solvated nucleobases ICarlos E. Crespo-Hernandez

Mario Barbatti, Antonio C. Borin, Susanne Ullrich (Eds.)Coming soon

9. UV-excitation of solvated nucleobases IIRoberto Improta

10. Excitation of single and double strands IBern Kohler

11. Excitation of single and double strands IIZhenggang Lan, Walter Thiel

12. Synchrotron irradiation of DNA fragmentsMartin Schwell

13. Physiological aspects of excitation of DNADonat-P. Häder

14. Photoynthesis in prebiotic environmentsScott Sandford

15. Photoinduced charge-transfer in DNA and applications in nano-electronics

Kiyohiko Kawai, Tetsuro Majima16. Electronic energy transfer in nucleic acids

Dimitra Markovitsi

Page 35: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Excited state dynamics: what have we learned?

35

0 90 180 270 3600

90

180

(°)

)

0 90 180 270 3600

90

180

(°)

)

0 fs

120 fs

170 fs

200 fs

9H-adenine

0 90 180 270 3600

90

180

(°)

(°)

2-pyridone

• Chem. Phys. 349, 278 (2008)

Page 36: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

36

Adenine is trapped close to 2E conformation and because of

this it has time enough to tune the coordinates of the conical intersection. Adenine is a non-

fluorescent species.

Pyridone does not stay close to any specific conformation long enough in order to have time to tune the coordinates of the conical intersections.

Pyridone is a fluorescent species.

Page 37: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

37

conclusions

Page 38: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Simple picture

38

Page 39: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

Beyond the simple picture

39

Page 40: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

40

• MQCD simulations are not a substitute for the conventional quantum-chemistry calculations, but a complementary tool to be used carefully given their high computational costs

• They can be specially useful to test specific hypothesis raised either by experimental analysis or conventional calculations

Page 41: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

41Zewail, J. Phys. Chem. A 104, 5660 (2000)

Page 42: 1 Ultrafast processes in molecules Mario Barbatti barbatti@kofo.mpg.de Introduction

42

[email protected]

Next lecture

• Transient spectrum• Excited state surfaces