Feb24 2014

Embed Size (px)

Citation preview

  • 7/27/2019 Feb24 2014

    1/12

    Dispertion relations in Left-Handed Materials

    Massachusetts Institute of Technology

    6.635 lecture notes

    1 Introduction

    We know already the following properties of LH media:

    1. r andr are frequency dispersive.

    2. r andr are negative over a similar frequency band.

    3. The tryad (E, H, k) is left-handed.

    4. The index of refraction is negative.

    From the past lectures, we know that these materials can be realized by a succession of wires

    and rods:

    Periodic arrangement of rods: realizes a plasma medium with negative r over a certainfrequency band. The model for the permittivity is:

    r = 1 2ep

    2 +ie. (1)

    Periodic arrangement of rings (split-rings) realizes a resonant r modeled as

    r = 1 F 2mp

    2 2mo+im, (2)

    where F is the fractional area of the unit cell occupied by the interior of the split-ring

    (F 0. Therefore:

    k2 =2=1

    c(1 F) (

    2 2ep)(2 2b )2 20

    . (4)

    Upon identifying the regions where r and r change signs, we can immediately get the

    relation fork:

    1

  • 7/27/2019 Feb24 2014

    2/12

    2 Section 2. Argument on n

  • 7/27/2019 Feb24 2014

    3/12

    3

    2.2 1D wave equation

    For the sake of simplification, let us work with a 1D problem. The wave equation

    2E(r) +k2E(r) =iJ(r) , (9)

    is rewritten with

    E(r) = z E(x) , (10a)

    J(r) = z j0(x x0) , (10b)

    to yield2

    x2E(x) +k2E(x) =ij0(x x0) . (11)

    The solution to this equation is

    E(x) = eik|xx0| , (12)

    where needs to be determined. From Eq. (12), we write:

    1. First derivative:E(x)

    x =ik

    x2|x x0| eik|xx0| . (13)

    2. Second derivative:

    2E(x)

    x2 =ik

    2

    x2|x x0| eik|xx0| +(k2)(

    x2|x x0|)2 eik|xx0|

    =k2 eik|xx0| + 2ik(x x0) . (14)

    Therefore:

    2E(x)

    x2 +k2E(x) =2ik(x x0) = 2i k0n (x x0) . (15)

    Comparing Eq. (11) to Eq. (15), we get

    =j02k0n

    =j002

    rn

    , (16)

    so that finally the solution is:

    E(x) =j002

    rn

    eik|xx0| . (17)

    If we now compute the power supplied by the current Jto the volume:

    P=12

    V

    E J dV = 0j20

    4

    rn

    >0 . (18)

    The source must, on average, do positive work on the field. Yet, in LH regime, we have

    r

  • 7/27/2019 Feb24 2014

    4/12

    4 Section 3. Dispersion relations

    Finally, we can also write the Efield as:

    E(x, t) =2

    j0ei(k0n|xx0|t) . (19)

    Thus, plane waves appear to propagate from and + to the source, seemingly runningbackward in time. Yet, the work done on the field is positive so clearly the energy propagates

    outward from the source.

    3 Dispersion relations

    At this point, we know that n

  • 7/27/2019 Feb24 2014

    5/12

    5

    p = 20e9 rad/s

    mp = 20e9 rad/s

    mo = 5e9 rad/s

    e= m = 0

    2

    0

    2

    x 106

    2

    0

    2

    x 106

    0

    2

    4

    x 1010

    kx

    kz

    [rad/s]

    k surface

    0 1 2 3 4

    x 1010

    0

    0.5

    1

    1.5

    2

    2.5

    3x 10

    6

    [rad/s]

    k

    Dispersion relation

    0 1 2 3 4

    x 1010

    50

    0

    50

    [rad/s]

    r

    Relative permittivity

    0 1 2 3 4

    x 1010

    200

    100

    0

    100

    200

    300

    [rad/s]

    r

    Relative permeability

    3 2 1 0 1 2 3

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    10 k surface (Gamma= 0)

    kz

    [rad/s]

  • 7/27/2019 Feb24 2014

    6/12

    6 3.1 Lossless case (e= m = 0), mp = p

    Other cases follow.

    p = 30e9 rad/s

    mp = 20e9 rad/s

    mo = 5e9 rad/s

    e= m = 0 rad/s

    20

    2

    x 106

    2

    0

    2

    x 106

    0

    2

    4

    x 1010

    kx

    kz

    [rad/s]

    k surface

    0 1 2 3 4

    x 1010

    0

    1

    2

    3

    4x 106

    [rad/s]

    k

    Dispersion relation

    0 1 2 3 4

    x 1010

    50

    0

    50

    [rad/s]

    r

    Relative permittivity

    0 1 2 3 4

    x 1010

    200

    100

    0

    100

    200

    300

    [rad/s]

    r

    Relative permeability

    4 3 2 1 0 1 2 3 4

    x 10

    6

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    10 k surface (Gamma= 0)

    kz

    [rad/s]

  • 7/27/2019 Feb24 2014

    7/12

    7

    p = 30e9 rad/s

    mp = 20e9 rad/s

    mo = 5e9 rad/s

    e= m = 10e7 rad/s

    20

    2

    x 106

    2

    0

    2

    x 106

    0

    2

    4

    x 1010

    kx

    kz

    [rad/s]

    k surface

    0 1 2 3 4

    x 1010

    0

    1

    2

    3

    4x 10

    6

    [rad/s]

    k

    Dispersion relation

    0 1 2 3 4

    x 1010

    50

    0

    50

    [rad/s]

    r

    Relative permittivity

    0 1 2 3 4

    x 1010

    200

    100

    0

    100

    200

    300

    [rad/s]

    r

    Relative permeability

    4 3 2 1 0 1 2 3 4

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    10 k surface (Gamma= 100000000)

    kz

    [rad/s]

  • 7/27/2019 Feb24 2014

    8/12

    8 3.1 Lossless case (e= m = 0), mp = p

    p = 30e9 rad/s

    mp = 20e9 rad/s

    mo = 5e9 rad/s

    e= m = 10e8 rad/s

    2

    0

    2

    x 106

    2

    0

    2

    x 106

    0

    2

    4

    x 1010

    kx

    kz

    [rad/s]

    k surface

    0 1 2 3 4

    x 1010

    0

    0.5

    1

    1.5

    2

    2.5x 10

    6

    [rad/s]

    k

    Dispersion relation

    0 1 2 3 4

    x 1010

    50

    0

    50

    [rad/s]

    r

    Relative permittivity

    0 1 2 3 4

    x 1010

    40

    20

    0

    20

    40

    60

    [rad/s]

    r

    Relative permeability

    2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    10 k surface (Gamma= 1000000000)

    kz

    [rad/s]

  • 7/27/2019 Feb24 2014

    9/12

    9

    p = 30e9 rad/s

    mp = 20e9 rad/s

    mo = 5e9 rad/s

    e= m = 10e9 rad/s

    2

    0

    2

    x 107

    2

    0

    2

    x 107

    0

    2

    4

    x 1010

    kx

    kz

    [rad/s]

    k surface

    0 1 2 3 4

    x 1010

    0

    0.5

    1

    1.5

    2

    2.5

    3x 10

    7

    [rad/s]

    k

    Dispersion relation

    0 1 2 3 4

    x 1010

    8

    6

    4

    2

    0

    2

    [rad/s]

    r

    Relative permittivity

    0 1 2 3 4

    x 1010

    5

    0

    5

    10

    15

    20

    [rad/s]

    r

    Relative permeability

    4 3 2 1 0 1 2 3 4

    x 107

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    10 k surface (Gamma= 1.000000e+10)

    kz

    [rad/s]

  • 7/27/2019 Feb24 2014

    10/12

    10 3.1 Lossless case (e= m = 0), mp = p

    p = 30e9 rad/s

    mp = 20e9 rad/s

    mo = 5e9 rad/s

    e= m = 10e10 rad/s

    42

    02

    4

    x 107

    42

    02

    4

    x 107

    0

    2

    4

    x 1010

    kx

    kz

    [rad/s]

    k surface

    0 1 2 3 4

    x 1010

    0

    1

    2

    3

    4

    5x 10

    7

    [rad/s]

    k

    Dispersion relation

    0 1 2 3 4

    x 1010

    0.96

    0.962

    0.964

    0.966

    [rad/s]

    r

    Relative permittivity

    0 1 2 3 4

    x 1010

    0.96

    0.962

    0.964

    0.966

    [rad/s]

    r

    Relative permeability

    5 4 3 2 1 0 1 2 3 4 5

    x 107

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4x 10

    10 k surface (Gamma= 1.000000e+11)

    kz

    [rad/s

    ]

  • 7/27/2019 Feb24 2014

    11/12

    11

    Plotting all the 3D curves on the same scale:

    5

    0

    5

    x 106 5

    05

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x 1010

    kz

    k surface (Gamma= 0)

    kx

    [rad/s]

    5

    0

    5

    x 106 5

    05

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x 1010

    kz

    k surface (Gamma= 10000000)

    kx

    [rad/s]

    5

    0

    5

    x 106 5

    05

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x 1010

    kz

    k surface (Gamma= 100000000)

    kx

    [rad/s]

    5

    0

    5

    x 106 5

    05

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x 1010

    kz

    k surface (Gamma= 1000000000)

    kx

    [rad/s]

    5

    0

    5

    x 106 5

    05

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x 1010

    kz

    k surface (Gamma= 1.000000e+10)

    kx

    [rad/s]

    5

    0

    5

    x 106 5

    05

    x 106

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x 1010

    kz

    k surface (Gamma= 1.000000e+11)

    kx

    [rad/s]

  • 7/27/2019 Feb24 2014

    12/12

    12 3.1 Lossless case (e= m = 0), mp = p

    For simplicity, we can study the lossy case for e = m amd mo = 0 (although we dont

    really simulate the same medium, the fundamental behavior is similar, and simpler to carry out

    mathematically).

    The model therefore reads:

    r =r =2 2p+ i

    2 +i . (23)

    We compute:

    rr =

    2 2p+i2 +i

    =[2 2p+ i] [2 i]

    4 +22

    =2(2 2p) +22 +i2p

    4 +22 .

    (24a)

    The real part is given by:

    {rr}=2[2 (2p 2)]

    4 +22 . (25)

    Losses have the effect to lower the plasma frequency to

    p =

    2p 2 . (26)

    In addition, we also see that if is very large, the plasma effect will completey dissapear

    (cf. dispersion relation for = 10e10 rad/s).