1
(see green and red curves) (see green and red curves) Fatigue is characterized by a compensatory interaction between motor unit firing behavior and muscle force Paola Contessa a , Carlo J. De Luca a,b and Joshua C. Kline a a) Delsys Inc., Natick, MA, USA; b) College of Engineering, Boston University, Boston, MA, USA The literature reports a variety of adaptations in motor unit (MU) firing behavior during muscle fatigue, including a decrease [1] and an increase [2] in MU firing rates. The inconsistency among previous studies is due primarily to the limited number of MUs available for analysis, and to the practice of analyzing MU data grouped from different subjects, contractions, and force levels [1,2,3]. Aim: establish a clear understanding of MU behavior during fatigue by investigating the firing adaptations of MUs in individual subjects and contractions during a fatigue protocol in the Vastus Lateralis (VL) muscle. Motivation The regression curves between MU firing rate and MUAP amplitude show a subjectdependent upward shift from early to mid to latefatigue, but the inverse relation between MUAP amplitude and MU firing rate, known as the OnionSkin property of MU firings [4], is maintained (R 2 = 0.74 0.97). SENSORS FOR MOVEMENT SCIENCES 0 20 40 60 0 5 10 15 20 25 Mean Firing Rate (pps) 0 10 20 30 0 20 40 60 0 20 40 60 Muscle Force (%MVC) Time (s) Early-Fatigue Mid-Fatigue Late-Fatigue Results Empirical Study (see green and red curves) (see green and red curves) Results Simulation Study Methods Subjects: Five healthy young (2433 years old) subjects Muscle: Vastus Lateralis (VL) Protocol: Voluntary isometric contractions sustained at 30 % MVC for 60 s and repeated to the endurance limit Analysis: MU firing rates, MU recruitment threshold, MU action potential (MUAP) amplitude were extracted using the dEMG System from Delsys, Inc (Natick, MA) When the protocol was replicated with a model [6] that simulates the force and firing behavior of MUs in the VL, all empirically observed adaptations in MU firing were replicated: MU firing rates increased (see the firing rate curves of three selected MUs shown in different colors) MU recruitment threshold decreased New higherthreshold lowerfiring rate MUs were recruited (see green and red curves). Muscle fatigue was simulated as a timevarying decrease in the amplitude of the MU force twitches. The force twitch increased only during the initial 60s of the fatigue protocol to replicate muscle potentiation [6]. In response to the fatigueinduced decrease in MU force twitches, the operating point of the excitation to the motoneuron pool (red lines) increased from early to mid to latefatigue. The rightward shift in the operating point caused: recruitment of new MUs (active MUs are indicated in blue), increase in MU firing rates (indicated by the intersection of the firing rate curves with the excitation line), and decrease in MU recruitment threshold. 0 0.1 0.2 0.3 0.4 0.5 0.6 5 10 15 20 25 Subject S1 0 0.05 0.1 0.15 0.2 Subject S2 Firing Rate (pps) 0.7 MUAP Amplitude (mV) MUAP Amplitude (mV) Early Fatigue Mid Fatigue Late Fatigue Subject S1 Subject S2 Subject S3 Subject S4 Subject S5 Early Fatigue Mid Fatigue Late Fatigue 0 5 15 25 35 Subject S2 Recruitment Threshold (% MVC) 10 20 30 0-10% 10-20% 20-30% 0 0.1 0.2 MAUP Amplitude (mV) Contraction # 1 2 3 4 5 6 7 Recruitment Threshold Range (% MVC) During fatigue, MU firing rates increase, MU recruitment threshold decrease, and new MUs are recruited MUs with similar MUAP amplitude (same color of the firing rate curve) increase their firing rate and decrease their recruitment threshold (open circle) in subsequent contractions. New higherthreshold lowerfiring rate MUs are recruited (see green and red curves). The increase in MU firing rate is subjectdependent, but the firing rate scheme remains invariant with fatigue Left) Subjectdependent decrease in the average recruitment threshold of MUs with similaramplitude MUAPs from early to latefatigue. Right) The direct relation between MUAP amplitude and recruitment threshold is maintained with fatigue (SizePrinciple of MUs [5]) (see the increasing height of similarly colored bars). Acknowledgments References This work was funded in part by the National Institute of Neurological Disorders and Stroke (R43NS093651, R44NS077526). The decrease in MU recruitment threshold is subjectdependent, but the recruitment order remains invariant with fatigue During fatigue, MU firing rates increase, MU recruitment threshold decrease, and new MUs are recruited in response to decreasing muscle force generation capacity [1] Kelly et al. J Neurophysiol. (2013) [2] deRuiter et al. Eur J Appl Physiol. (2005) [3] Enoka et al. J Neurophysiol. (1989) [4] De Luca & Erim. Trends Neurosci. (1994) [5] Henneman. Science. (1957) [6] Contessa & De Luca. J Neurophysiol. (2013) Force Twitch MU #1 (AU) 1.4 0 Firing Rate (pps) 0 20 40 60 80 100 Excitation (% max) 0 20 40 60 80 100 Excitation (% max) 0 20 40 60 80 100 Excitation (% max) 0 10 20 30 Operating point of the excitation at the beginning of the constant-force segment Operating point of the excitation at the end of the constant-force segment 0 20 40 60 Early Fatigue Time (s) 0 20 40 60 0 20 40 60 Mid Fatigue Late Fatigue 0 5 10 15 20 25 Mean Firing Rate (pps) 0 10 20 30 VL Force (%MVC)

Fatigue is characterized by a compensatory interaction between motor unit firing ... · 2020. 8. 28. · the firing rate curve) increase their firing rate and decrease their recruitment

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fatigue is characterized by a compensatory interaction between motor unit firing ... · 2020. 8. 28. · the firing rate curve) increase their firing rate and decrease their recruitment

(see green and red curves)(see green and red curves)

Fatigue is characterized by a compensatory interaction between motor unit firing behavior and muscle force

Paola Contessaa, Carlo J. De Lucaa,b and Joshua C. Klineaa) Delsys Inc., Natick, MA, USA;  b) College of Engineering, Boston University, Boston, MA, USA

The literature reports a variety of adaptations in motor unit (MU) firing behavior during muscle fatigue, including a decrease [1] and an increase [2] in MU firing rates. The inconsistency among previous studies is due primarily to the limited number of MUs available for analysis, and to the practice of analyzing MU data grouped from different subjects, contractions, and force levels [1,2,3].Aim: establish a clear understanding of MU behavior during fatigue by investigating the firing adaptations of MUs in individual subjects and contractions during a fatigue protocol in the Vastus Lateralis (VL) muscle.

Motivation

The regression curves between MU firing rate and MUAP amplitude show a subject‐dependent upward shift from early to mid to late‐fatigue, but the inverse relation between MUAP amplitude and MU firing rate, known as the Onion‐Skin property of MU firings [4], is maintained (R2 = 0.74 ‐ 0.97).

SENSORS FOR MOVEMENT SCIENCES

0 20 40 600

5

10

15

20

25M

ean

Firin

g R

ate

(pps

)

0

10

20

30

0 20 40 60 0 20 40 60

Mus

cle

Forc

e (%

MV

C)

Time (s)

Early-Fatigue Mid-Fatigue Late-Fatigue… …

Results ‐ Empirical Study

(see green and red curves)(see green and red curves)

Results ‐ Simulation Study

Methods

• Subjects:  Five healthy young (24‐33 years old) subjects• Muscle: Vastus Lateralis (VL)• Protocol: Voluntary isometric contractions sustained at 30 % MVC for 60 s and repeated to the endurance limit • Analysis: MU firing rates, MU recruitment threshold, MU action potential (MUAP) amplitude were extracted using the dEMG System 

from Delsys, Inc (Natick, MA)

When the protocol was replicated with a model [6] that simulates the force and firing behavior of MUs in the VL, all empirically observed adaptations in MU firing were replicated:• MU firing rates increased (see the firing rate 

curves of three selected MUs shown in different colors)

• MU recruitment threshold decreased• New higher‐threshold lower‐firing rate MUs 

were recruited (see green and red curves).

Muscle fatigue was simulated as a time‐varying decrease in the amplitude of the MU force twitches. The force twitch increased only during the initial 60‐s of the fatigue protocol to replicate muscle potentiation [6].

In response to the fatigue‐induced decrease in MU force twitches, the operating point of the excitation to the motoneuron pool (red lines) increased from early to mid to late‐fatigue. The right‐ward shift in the operating point caused: recruitment of new MUs (active MUs are indicated in blue), increase in MU firing rates (indicated by the intersection of the firing rate curves with the excitation line), and decrease in MU recruitment threshold.

0 0.1 0.2 0.3 0.4 0.5 0.65

10

15

20

25

Subject S1

0 0.05 0.1 0.15 0.2

Subject S2

Firin

g R

ate

(pps

)

0.7MUAP Amplitude (mV) MUAP Amplitude (mV)

Early FatigueMid FatigueLate Fatigue

Subject S1Subject S2Subject S3Subject S4Subject S5

EarlyFatigue

MidFatigue

LateFatigue

05

15

25

35Subject S2

Rec

ruitm

entT

hres

hold

(% M

VC

)

10

20

30

0-10% 10-20% 20-30% 0

0.1

0.2

MA

UP

Am

plitu

de (m

V)

Contraction # 1234567

Recruitment Threshold Range (% MVC)

During fatigue, MU firing rates increase, MU recruitment threshold decrease, and new MUs are recruited

MUs with similar MUAP amplitude (same color of the firing rate curve) increase their firing rate and decrease their recruitment threshold (open circle) in subsequent  contractions. New higher‐threshold lower‐firing rate MUs are recruited (see green and red curves). 

The increase in MU firing rate is subject‐dependent, but the firing rate scheme remains invariant with fatigue

Left) Subject‐dependent decrease in the average recruitment threshold of MUs with similar‐amplitude MUAPs from early to late‐fatigue.Right) The direct relation between MUAP amplitude and recruitment threshold is maintained with fatigue (Size‐Principle of MUs [5]) (see the increasing height of similarly colored bars).

AcknowledgmentsReferences

This work was funded in part by the National Institute of Neurological Disorders and Stroke (R43NS093651, 

R44NS077526).

The decrease in MU recruitment threshold is subject‐dependent, but the recruitment order remains invariant with fatigue

During fatigue, MU firing rates increase, MU recruitment threshold decrease, and new MUs are recruited in response to decreasing muscle force generation capacity

[1] Kelly et al. J Neurophysiol. (2013)[2] deRuiter et al. Eur J Appl Physiol. (2005)[3] Enoka et al. J Neurophysiol. (1989)[4] De Luca & Erim. Trends Neurosci. (1994)[5] Henneman. Science. (1957)[6] Contessa & De Luca. J Neurophysiol. (2013)

Forc

e Tw

itch

MU

#1

(AU

)

1.4

0

Firin

g R

ate

(pps

)0 20 40 60 80 100

Excitation (% max)0 20 40 60 80 100

Excitation (% max)0 20 40 60 80 100

Excitation (% max)

0

10

20

30

Operating point of the excitation at the beginning of the constant-force segment

Operating point of the excitation at the end of the constant-force segment

0 20 40 60

Early Fatigue

Time (s)

0 20 40 60 0 20 40 60

Mid Fatigue Late Fatigue

0

5

10

15

20

25

Mea

n Fi

ring

Rat

e (p

ps)

0

10

20

30

VL

Forc

e (%

MV

C)

… …