Faculty of Postgraduate Studies and Scienti c Research ... Faculty of Postgraduate Studies and Scienti

  • View
    214

  • Download
    0

Embed Size (px)

Text of Faculty of Postgraduate Studies and Scienti c Research ... Faculty of Postgraduate Studies and...

  • Faculty of Postgraduate Studies and Scientific Research

    German University in Cairo

    Wireless Control of Magnetic Drug Carriers using a

    Magnetic-Based Robotic System

    A thesis submitted in partial fulfillment of the requirements

    for the degree of Master of Science in Mechatronics Engineering

    By

    Bishoy Emil Edward Wissa

    Supervised by

    Dr. Islam S. M. Khalil

    Prof. Dr. E. I. Imam Morgan

    June, 2015

  • Declaration of Authorship

    I, Bishoy Emil, declare that this thesis titled, Thesis Title and the work

    presented in it are my own. I confirm that:

    This work was done wholly or mainly while in candidature for a research

    degree at this University.

    Where any part of this thesis has previously been submitted for a degree

    or any other qualification at this University or any other institution, this

    has been clearly stated.

    Where I have consulted the published work of others, this is always

    clearly attributed.

    Where I have quoted from the work of others, the source is always given.

    With the exception of such quotations, this thesis is entirely my own

    work.

    I have acknowledged all main sources of help.

    Where the thesis is based on work done by myself jointly with others,

    I have made clear exactly what was done by others and what I have

    contributed myself.

    Signed:

    Date:

    i

  • Contents

    Declaration of Authorship i

    Contents ii

    List of Figures iv

    List of Tables vii

    Acknowledgements viii

    Abstract ix

    1 Introduction and Background 1

    1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1.1 Importance of Microscale robots . . . . . . . . . . . . . 1

    1.1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . 3

    1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2.1 Propulsion Mechanisms of Microrobotic Systems . . . . 5

    1.2.1.1 Helical Propulsion . . . . . . . . . . . . . . . 6

    1.2.1.2 Traveling-Wave Propulsion . . . . . . . . . . 7

    1.2.1.3 Pulling with Magnetic Field Gradients . . . . 8

    1.2.2 Localization Methods . . . . . . . . . . . . . . . . . . . 10

    1.2.2.1 Ultrasound System . . . . . . . . . . . . . . . 10

    1.2.2.2 Magnetic Resonance Imaging System . . . . . 11

    1.2.3 Electromagnetic Configurations . . . . . . . . . . . . . 12

    1.2.3.1 Closed-Configuration of Elecromagnetic Coils 12

    1.2.3.2 Open-Configuration of Elecromagnetic Coils . 14

    2 Magnetic-Based Robotic System 18

    2.1 Permanent Magnet . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.2 Electromagnetic Coil . . . . . . . . . . . . . . . . . . . . . . . 24

    ii

  • Contents iii

    3 Modeling and Control of the Magnetic-Based Robotic System 27

    3.1 Modeling of the Magnetic-Based Robotic System . . . . . . . 28

    3.1.1 Modeling of the Robotic Arm . . . . . . . . . . . . . . 28

    3.1.1.1 Forward Kinematics of the Robotic Arm . . . 30

    3.1.1.2 Inverse Kinematics of the Robotic Arm . . . . 35

    3.1.2 Modeling of the Microparticle . . . . . . . . . . . . . . 38

    3.2 Microparticles Tracking and Pixels Calibration . . . . . . . . . 40

    3.3 Control of Microparticles using Magnetic-Based Robotic System 44

    3.3.1 Control using Permanent Magnet . . . . . . . . . . . . 44

    3.3.2 Control using Electromagnetic Coil . . . . . . . . . . . 47

    3.3.2.1 Control using P Controller . . . . . . . . . . . 49

    3.3.2.2 Control using PD Controller . . . . . . . . . . 50

    3.3.2.3 Control using PID Controller . . . . . . . . . 51

    4 Experimental Results 52

    4.1 Control using the Permanent Magnet . . . . . . . . . . . . . . 52

    4.2 Control using the Electromagnetic Coil . . . . . . . . . . . . . 54

    4.2.1 Control using P Controller . . . . . . . . . . . . . . . . 55

    4.2.2 Control using PD Controller . . . . . . . . . . . . . . . 58

    4.2.3 Control using PID Controller . . . . . . . . . . . . . . 58

    5 Conclusions and Future Work 60

    A Microparticles 63

    B Robotic Arm 65

    C Digital Microscope 68

    D Coil Driver 71

    Bibliography 74

  • List of Figures

    1.1 Macroscale robots including robotic arm, da Vinci surgical robotand Humanoid robots . . . . . . . . . . . . . . . . . . . . . . . 2

    1.2 Helical robot with 10 m in diameter . . . . . . . . . . . . . . 6

    1.3 Traveling wave robot moving under the effect of changing themagnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.4 An electromagnetic system with closed-configuration consistsof 4 electromagnetic coils. The microrobot is contained in thecenter of the electromagnetic configuration. The configurationis placed under a very precise microscope used for feedback . . 12

    1.5 A schematic representation of the wireless control of paramag-netic microparticles carrying the drug using a robotic arm andthe magnetic field generated from an electromagnetic coil or apermanent magnet to deliver the drug to the diseased cell inthe vertebral column . . . . . . . . . . . . . . . . . . . . . . . 16

    2.1 Magnetic-based robotic system for the wireless motion controlof paramagnetic microparticles . . . . . . . . . . . . . . . . . . 19

    2.2 4 DOF robotic arm dimensions . . . . . . . . . . . . . . . . . 21

    2.3 The magnetic fields generated using a permanent magnet alongx-, y-, and z-axis . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.4 The magnetic fields generated using an electromagnetic coilalong x-, y-, and z-axis . . . . . . . . . . . . . . . . . . . . . . 25

    3.1 Magnetic-based robotic system for the wireless motion controlof paramagnetic microparticles including all the frame of refer-ences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    3.2 Inverse Kinematics of the robotic arm using feedback stabiliza-tion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    3.3 Motion control of paramagnetic microparticles using a perma-nent magnet and a robotic arm . . . . . . . . . . . . . . . . . 44

    3.4 Closed-loop motion control of the position of a paramagneticmicroparticle using the robotic arm holding the permanent mag-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    iv

  • List of Figures v

    3.5 Closed-loop motion control of the position of a paramagneticmicroparticle using the robotic arm holding the electromagneticcoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    4.1 Closed-loop motion control of the position of a paramagneticmicroparticle using a permanent magnet along x-axis. The av-erage speed of the microparticle is 117 m/s. The steady stateerror of the position of the microparticle in the x-direction is400 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    4.2 Closed-loop motion control of the position of a paramagneticmicroparticle using a permanent magnet along z-axis. The av-erage speed of the microparticle is 117 m/s. The peak-to-peakamplitude of the suspended microparticle along the z-directionis 1.6 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    4.3 Closed-loop motion control of the position of a paramagneticmicroparticle using an electromagnetic coil along x-axis. Theaverage speed of the microparticle is 43 m/s. The steady stateerror of the position of the microparticle in the x-direction is70 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    4.4 Closed-loop motion control of the position of a paramagneticmicroparticle using an electromagnetic coil along z-axis. Theaverage speed of the microparticle is 43 m/s. The peak-to-peakamplitude of the suspended microparticle along the z-directionis 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    4.5 Closed-loop motion control of the position of a paramagneticmicroparticle using an electromagnetic coil along x-axis. Theaverage speed of the microparticle is 40 m/s. The steady stateerror of the position of the microparticle in the x-direction is108 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    4.6 Closed-loop motion control of the position of a paramagneticmicroparticle using an electromagnetic coil along z-axis. Theaverage speed of the microparticle is 40 m/s. The steady stateerror of the position of the microparticle in the z-direction is686 m. The peak-to-peak amplitude of the suspended mi-croparticle along the z-direction is 0.1 mm. . . . . . . . . . . . 57

    4.7 Closed-loop motion control of the position of a paramagneticmicroparticle using an electromagnetic coil along x-axis. Theaverage speed of the microparticle is 16 m/s. The steady stateerror of the position of the microparticle in the x-direction is393 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

  • List of Figures vi

    4.8 Closed-loop motion control of the position of a paramagneticmicroparticle using an electromagnetic coil along z-axis. Theaverage speed of the microparticle is 16 m/s. The peak-to-peakamplitude of the suspended microparticle along the z-directionis 0.7 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

  • List of Tables

    2.1 Characterization of the magnetic fields and magnetic field gra-dients produced from a permanent magnet . . . . . . . . . . . 22

    2.2 Characterization of the magnetic fields and magnetic field gra-dients produced from an electromagnetic coil. . . . . . . . . . 26

    3.1 The DH parameters for every joint in the 4 DOF robotic arm.i is the joint angle, di is the link offset, ai is the link length,i is the link twist, L1 is the length of the first link, L2 is thelength of the seco