F AC 21 08 Potentiometry

Embed Size (px)

Citation preview

  • 8/13/2019 F AC 21 08 Potentiometry

    1/64

    Dong-Sun Lee / cat - lab / SWU 2012 -Fall version

    Chapter 21

    Potentiometry

    Copyright

  • 8/13/2019 F AC 21 08 Potentiometry

    2/64

    Electroanalytical techniques

    1) Ionics---- Conductance

    2) lectro!ics

    a) Static (I = 0) --- Potentiometry

    b) Dynamic (I 0)

    Controlled current --- Coulometric titration

    Controlled potential

    Stirred solution Controlled potential

    Hydrodynamic oltammetry

    !mperometry --- !mperometic titration

    "uiescent solution Potential scan --- Cyclic oltammetry# Polarography

    Small amplitude pulse techni$ue

    Di%%erential pulse oltammetry

    S$uare &ae oltammetry

    Potential step --- Chronoamperometry# Chronocoulometry

    Pulse oltammetry# Chronoabsorptometry

  • 8/13/2019 F AC 21 08 Potentiometry

    3/64

    Classification of electrochemical methods

    1" P#$%$I#&$'(

    'easure electrical potential deeloped by an electrode in an electrolyte solution at ero current

    %lo& *se +,+S. ,"*!.I/+ relating potential to concentration o% some ion in solution

    2" #L$*&&$'(

    Determine concentration o% ion in dilute solutions %rom current %lo& as a %unction o% oltage &hen

    P/!I1!.I/+ o% ion occurs around the electrode

    P/!I1!.I/+ = depletion o% concentration caused by electrolysis

    I% using a dropping mercury electrode# method is termed P/!/2!PH3

    +" ,#UL#&$'(

    ,lectrolysis o% a solution and use o% 4araday5s la&6relating $uantity o% electrical charge to amount

    o% chemical change

    76essentially states that it ta8es 9:; < 0>Coulombs o% electrical charge to cause electrolysis o%

    mole o% a unialent electrolyte species?

    " ,#%DU,$I&$'(

    'easure conductance o% a solution# usingINERT ELECTRODES, ALTERNATING CURRENT, AND

    AN ELECTRICAL NULL CIRCUIT- thereby ensure no net current %lo& and no electrolysis .he

    concentration o% ions in the solution is estimated %rom the conductance

    +/.,@

    &et.o!s 1 an! #

    %# L,$'#L(SISo% solution Sample recoerable# unaltered by analysis

    &et.o!s 2 an!+ must cause L,$'#L(SIS #F $ S*&PL" http@AA&&&scienceutseduauAsubBectsA9:ASectionAsectionhtml

  • 8/13/2019 F AC 21 08 Potentiometry

    4/64

    Potentiometry

    !n electroanalytical techni$ue based on

    the measurement o% the electromotie

    %orce o% an electrochemical cell

    comprised o% a measuring and a re%erence

    electrode

    .he simplest e

  • 8/13/2019 F AC 21 08 Potentiometry

    5/64

    eneral Princiles

    e%erence electrode E salt bridge E analyte solution E indicator electrode

    ,re% ,B ,ind

    ,cell = ,indF ,re% G ,B

    e%erence cell @

    a half cell having a known electrode otential

    Indicator electrode@

    ha! aotential that varie!in a known wa"

    with variation! in the concentration of an anal"te

    ! cell %or potentiometric determinations

  • 8/13/2019 F AC 21 08 Potentiometry

    6/64

    ) Saturate! calomel electro!e(S","")

    Hg(l) E HgCl(satd)# Cl (satd) E E

    electrode reaction in calomel hal-cell

    HgCl(s) G e = Hg(l) G ClF

    Eo= G 0:JK

    E=EoF (00;9:A) log7ClF?= 0>> K

    .emperature dependent

    ! calomel electrode saturated &ith Cl is called a saturated

    calomel electrode# abbreiated S",""

    !dantage @ using saturated Cl is that 7Cl-? does not changei% some li$uid eaporates

    'eerence electro!e

    # $aintain! afi%ed otential#

    a half cell having a known electrode otential

  • 8/13/2019 F AC 21 08 Potentiometry

    7/64

    HgCl= HgG

    G ClF

    sp = J L0FJ

    Saturated Cl = >: ' Cl

    .he crystal structure o% calomel(HgCl)#

    &hich has limited solubility in &ater

    (sp = J L0FJ)

  • 8/13/2019 F AC 21 08 Potentiometry

    8/64

    4ig - Diagram o% a typical commercial

    saturated calomel electrode

    4ig - ! saturated calomel electrode

    made %rom materials readily aailable in

    any laboratory

  • 8/13/2019 F AC 21 08 Potentiometry

    9/64

    ) Silver-silver c.lori!e electro!e

    !g(s) E !gCl (satd)# Cl (%') E E

    !gCl(s) G e = !g(s) G ClF

    Eo= G0>>K

    E=EoF (00;9:A) log 7ClF?

    E(saturated Cl) = G 099K (;oC)

  • 8/13/2019 F AC 21 08 Potentiometry

    10/64

    ) stan!ar! .y!rogen electro!e 3S)

    .he most %undamental re%erence electrode in electrochemistry MNy

    de%initionM its e$uilibrium potential is considered ero at any temperature#

    because this electrode &as chosen as an arbitrary ero point %or electrodepotentials ! ero point is needed since the potential o% a single electrode

    cannot be measured# only the di%%erence o% t&o electrode potentials is

    measurable !ll electrode potentials are e

  • 8/13/2019 F AC 21 08 Potentiometry

    11/64

    oltage ,onversions 4et5een Dierent 'eerence Scales

    I% an electrode has a potential o% 0>:K &ith respect to a calomel electrode# &hat is the

    potential &ith respect to a siler-siler chloride electrode Qhat &ould be the potential &ith

    respect to the standard hydrogen electrode

  • 8/13/2019 F AC 21 08 Potentiometry

    12/64

    Li6ui!-7unction otential

    ! potential di%%erence bet&een t&o solutions o% di%%erent compositions separated

    by a membrane type separator .he simplest e

  • 8/13/2019 F AC 21 08 Potentiometry

    13/64

    8unction otential@

    a small potential that e

  • 8/13/2019 F AC 21 08 Potentiometry

    14/64

    Fig" 21-9" Sc.ematicreresentation o a li6ui!

    7unction s.o5ing t.e source

    o t.e 7unction otential: 7"

    $.e lengt. o t.e arro5s

    correson!s to t.e relative

    mobilities o t.e ions"

    Fig 21-Diagram o% a silerAsiler chloride electrodesho&ing the parts o% the electrode that produce the

    re%erence electrode potential ,re%and the Buction

    potential ,B

  • 8/13/2019 F AC 21 08 Potentiometry

    15/64

  • 8/13/2019 F AC 21 08 Potentiometry

    16/64

    Li6ui! 7unction otential

    Cells &ithout li$uid Bunction

    PtAH&g'# HClA!gClA!g

    are to hae this type o% cell

    Cells &ith li$uid Bunction

    2lass %rit

    Salt bridge

    Deelop a potential by di%%erential migration rates o% the cation and anion

    Tunction potential

    HCl(0)AHCl(00) ,B= >0 mK (HG%aster than ClF)

    Cl(0)ACl(00) ,B= F0 mK (G slo&er than ClF)

    *sually e

  • 8/13/2019 F AC 21 08 Potentiometry

    17/64

    In!icator electro!es

    (etallic indicator electrode re!ond! to anal"te activit")

    lectro!e o t.e irst tye

    Direct e$uilibrium &ith analyte

    !g %or !gG# !u %or !uG# etc

    Potential described by +ernst e$uation

    !s 7'? # ,

    +ote potential linearly related to logo% the concentration U

    emember - indicator N3 D,4I+I.I/+ cathode

    measurement theoretically under ero-current (steady state)

    lectro!e o t.e secon! tye

    Indirect e$uilibrium &ith analyte

    'A'VAVF

    SilerASiler chloride %or chloride

    also +ernstian response

    as 7VF? # ,

    Inert &etallic electro!e or 'e!o; systems

    Proides a sur%ace %or the electrochemistry to occur

    Pt# !u# Pd# C

    VnG(a*) G ne = V(!)

    ,ind = ,oF (0;9:An) log (A7VnG?)

    !gCl(s) G e = !g(s) G ClF(a*)

    ,ind = ,oF 0;9: log 7ClF?

    ! plot o% ,$uation - %or an

    electrode o% the %irst 8ind

    ! plot o% ,$uation ->

    %or an electrode o% thesecond 8ind %or ClF

  • 8/13/2019 F AC 21 08 Potentiometry

    18/64

    In!icator electro!es

    Indicator electrodes %or potentiometric measurements are o% t&o basic types#

    namely#$etallicand $e$+rane

    1) &etallic in!icator electro!es ?

  • 8/13/2019 F AC 21 08 Potentiometry

    20/64

    Secon!-or!er electro!es or anions

    ! metal electrode can sometimes be indirectly responsie to the concentration o%

    an anion that %orms areciitateor co$le% ion&ith cations o% the metal

    ,F Eo= 0K

    E= 0 F (00;9:A) log (73>F? A7Hg3F?)

  • 8/13/2019 F AC 21 08 Potentiometry

    21/64

    !g(s) E !gCl7satd?# Cl7%'? E E 4eG#4eG) E Pt

    4eGGe = 4eG Eo= G00K

    Ecell=EindicatorFEre%erence

    = X00F (00;9:A) log 74eG?A74eG?Y F X0F (00;9:A) log 7ClF?Y

    Inert electro!es

    Chemically inert conductors such asgold, latin$# or car+onthat do

    not participate# directly# in the redo< process are called inert electrodes .he

    potential deeloped at an inert electrode depends on the nature and

    concent-ration o% the arious redo< reagents in the solution

  • 8/13/2019 F AC 21 08 Potentiometry

    22/64

    2) &embrane in!icator electro!es

    .he potential deeloped at this type o% electrode results %rom an une$ual chargebuildup at opposing sur%ace o% a special membrane .he charge at each sur%ace is

    goerned by the position o% an e$uilibrium inoling analyte ions# &hich# in

    turn# depends on the concentration o% those ions in the solution

    .he electrodes are categoried according to the type o% membrane they employ @

    glass#

    polymer#crystalline#

    gas sensor .he %irst practical glasselectrode (Haber and

    lemensie&c#.) /h"!)

    Che$# 909# :;# J;

  • 8/13/2019 F AC 21 08 Potentiometry

    23/64

    &embrane in!icator electro!es

    lass membrane electro!es

    .he internal element consists o% siler-siler chloride electrode immersed in a

    pH bu%%er saturated &ith siler chloride .he thin# ion-selectie glass

    membrane is %used to the bottom o% a sturdy# nonresponsie glass tube so that

    the entire membrane can be submerged during measurements Qhen placed in a

    solution containing hydrogen ions# this electrode can be represented by the hal%-

    cell @

    !g(s) E !gCl7satd?# ClF(inside)# HG(inside) E glass membrane E HG(outside)

    E=EoF (00;9:A) log7ClF? G (00;9:A) log(7HG(outside)?A7HG

    (inside)?)

    E= Q G (00;9:A) log7HG(outside)?

  • 8/13/2019 F AC 21 08 Potentiometry

    24/64

    &eter

    pH meter is a olt meter that measures the electrical potential di%%erence

    bet&een a pH electrode and a re%erence electrode and displays the result in

    terms o% pH alue o% the sample solution in &hich they are immersed

    Intro!uction

    .he pH meter measures the pH o% a solution using an ion-selectie electrode

    (IS,) that responds to the HGconcentration o% the solution .he pH electrode

    produces a oltage that is proportional to the concentration o% the HG

    concentration# and ma8ing measurements &ith a pH meter is there%ore a %orm

    o% potentiometry .he pH electrode is attached to control electronics &hich

    conert the oltage to a pH reading and displays it on a meter

    Instrumentation

    ! pH meter consists o% a HG-selectie membrane# an internal re%erence

    electrode# an e

  • 8/13/2019 F AC 21 08 Potentiometry

    25/64

    .ypical electrode system %or measuring pH (a) 2lass electrode (indicator) and saturated calomel electrode

    (re%erence) immersed in a solution o% un8no&n pH (b) Combination probe consisting o% both an indicator glass

    electrode and a silerAsiler chloride re%erence ! second silerAsiler chloride electrode seres as the internal

    re%erence %or the glass electrode .he t&o electrodes are arranged concentrically &ith the internal re%erence in the

    center and the e

  • 8/13/2019 F AC 21 08 Potentiometry

    26/64

    pH Meters

  • 8/13/2019 F AC 21 08 Potentiometry

    27/64

    meter #A gla!! co$+ination electrode

    E 0 12 + (3)34567)log (Ain8 Aot)

    1@A!"$$etr" otential

    + @electro$otive efficienc" ( close to 00)

    A @Activit" of h"drogen ion

  • 8/13/2019 F AC 21 08 Potentiometry

    28/64

    Composition o% glass membranes

    0Z Si/

    0Z Ca/# Na/# i

    /# +a

    /#

    andAor !l/

    Ion e

  • 8/13/2019 F AC 21 08 Potentiometry

    29/64

    Potential o t.e glass electro!e

    .he potential di%%erence across the glass pH electrode

    depends on the actiity o% HGon each side o% the

    glass membrane

    ,m= KF K = (.A4)lnaF (.A4)lna

    = ,asymG 00;9: log(aA a)

    i%A= constant#

    ,m= G 00;9: loga

    = F 00;9: pH

    Standardiationat pH=00 # , = 0 K

    pH >00# ,= ;9: mKApH unit

    Potential pro%ile across a glass membrane %rom the analyte solution to

    the internal re%erence solution .he re%erence electrode potentials are

    not sho&n

  • 8/13/2019 F AC 21 08 Potentiometry

    30/64

    Isopotential

    point,(mK)

    pH

    00oC > mKApH unit

    0oC ;> mKApH unit

    >

    ;00

    0

  • 8/13/2019 F AC 21 08 Potentiometry

    31/64

    ,alibrating a glass electro!e

    !l&ays 8eep the electrodes in distilled &ater# saturated Cl solution(') or bu%%er &hen not in

    use

    Po&er /+ S&itch to [S.!+DN3\ @ allo& to &arm %or 0 min

    inse the electrode thoroughly &ith distilled &ater and then &ith pH 00 bu%%er solution

    Nlot &ith clean tissue

    > Determine the temperature o% the bu%%er solution &ith a thermometer

    !dBust [.,'P,!.*,\ 8nob on the unit to the temperature

    ; Place the electrode inpH 00(isopotential point) bu%%er solution

    otate the selector s&itch to [pH\ Qait %or a stable display

    Ny using [C!IN!.I/+\ 8nob# set the meter to the pH alue o% the bu%%er at its measured

    temperature S&itch to [S.!+DN3\

    : inse the electrode thoroughly &ith distilled &ater and then &ith pH >00 bu%%er solution

    Nlot &ith clean tissue

    Place the electrode inpH >00 bu%%er solution otate the selector s&itch to [pH\

    Qait %or a stable display *sing [S/P,\ 8nob# set the meter to the pH alue o% the bu%%er at its

    measured temperatureS&itch to [S.!+DN3\

  • 8/13/2019 F AC 21 08 Potentiometry

    32/64

    ,alibration o t.e &eters 5it. an! 2 4uers

    Select the pH 'ode and set the temperature control 8nob to ;]C !dBust the cal 8nob

    to read 00Z

    inse the electrode &ith deionied &ater and blot dry using a piece o% tissue (Shur&ipesor im&ipes are aailable in the labs)

    Place the electrode in the solution o%pH bu%%er# allo& the display to stabilie and# then#

    set the display to read by adBusting cal emoe the electrode %rom the bu%%er

    > inse the electrode &ith deionied &ater and blot dry using a piece o% tissue (Shur&ipes

    or im&ipes are aailable in the labs)

    ; Place the electrode in the solution o%pH bu%%er# allo& the display to stabilie and# then#

    set the display to read by adBusting cal emoe the electrode %rom the bu%%er

    : inse the electrode &ith deionied &ater and blot dry using a piece o% tissue (Shur&ipes

    or im&ipes# as be%ore)

    %#$- Nu%%er solution are made aailable to you in indiidually labeled o bottles .he

    bu%%ers are to be used in these containers# onlyU Do not pour them into other containers at

    any time !%ter use# cap the bottles so that the bu%%ers can be re-used

  • 8/13/2019 F AC 21 08 Potentiometry

    33/64

    &easuring

    'a8e sure that the meter is set to the pH 'ode and adBust the temperature to ;]C

    Place the electrode in the sample to be tested

    .he pH o% the solution appears in the display

    +/.,@ !llo& the display to stabilie be%ore ta8ing your readingU

    > inse the pH electrode and place it bac8 in the storage solution

  • 8/13/2019 F AC 21 08 Potentiometry

    34/64

    rrors t.at aect measurements 5it. glass electro!e

    .he al8aline(sodium) error @ lo& readings at pH alues greater than 9

    .he acid error @ some&hat high &hen the pH is less than about 0;

    Dehydration may cause erratic electrode per%ormance

    > Kariation in Bunction potential @ ^ 00 pH unit; ,rror in the pH o% the standard bu%%er @ 00 pH unit

    ,leaning glass electro!e@ Qashing &ith :' HCl

    0 &A&Z a$ueous ammonium bi%luoride (+H>H4)

  • 8/13/2019 F AC 21 08 Potentiometry

    35/64

    !cid and al8aline errors %or selected glass electrodes at ;

    (4rom 2 Nates#Deter$ination of 9,nd ed# p :; +e& 3or8@ Qiley# 9)

  • 8/13/2019 F AC 21 08 Potentiometry

    36/64

    Ion-Selective lectro!es 3IS)

    Intro!uction

    !n Ion-Selectie ,lectrode (IS,) produces a potential that is proportional to the

    concentration o% an analyte 'a8ing measurements &ith an IS, is there%ore a %ormo% potentiometry .he most common IS, is the pH electrode# &hich contains a thin

    glass membrane that responds to the HGconcentration in a solution

    $.eory

    .he potential di%%erence across an ion-sensitie membrane is@

    , = F (0.An4)log(a)

    &here is a constant to account %or all other potentials# is the gas constant# . is

    temperature# n is the number o% electrons trans%erred# 4 is 4araday5s constant# and a

    is the actiity o% the analyte ion ! plot o% measured potential ersus log(a) &illthere%ore gie a straight line

    IS,s are susceptible to seeral inter%erences Samples and standards are there%ore

    diluted @ &ith total ionic strength adBuster and bu%%er (.IS!N) .he .IS!N

    consists o% ' +aCl to adBust the ionic strength# acetic acidAacetate bu%%er to

    control pH# and a metal comple

  • 8/13/2019 F AC 21 08 Potentiometry

    37/64

    IS 3ion selective electro!e)

    !ny electrode that pre%erentially responds to one ion species

    2lass membrane electrode @ HG

    i$uid membrane electrodes

    Solid state and precipitate electrodes

    > 2as sensing electrodes

    ; ,nyme electrodes

    Selectiity coe%%icient

    kV#3

    = (response to 3) A (response to V)

    2eneral behaior o% IS,

    , = constant (00;9:AnV) log 7AV G(kV#3A3nV n3)?

    I t t ti

  • 8/13/2019 F AC 21 08 Potentiometry

    38/64

    Instrumentation

    IS,s consist o% the ion-selectie membrane# an internal re%erence electrode# an

    e

  • 8/13/2019 F AC 21 08 Potentiometry

    39/64

    Li6ui! IS

    Ca IS,

    Calcium didecylphosphate dissoled in dioctylphenylphosphonate

    7(CH(CH)JCH/)P/?Ca 7(CH(CH)JCH/)P/?FG CaG

    Diagram o% a li$uid-membrane electrode %or CaG

  • 8/13/2019 F AC 21 08 Potentiometry

    40/64

  • 8/13/2019 F AC 21 08 Potentiometry

    41/64

    Comparison o% a li$uid-membrane calcium ion electrode &ith a glass pH electrode

  • 8/13/2019 F AC 21 08 Potentiometry

    42/64

  • 8/13/2019 F AC 21 08 Potentiometry

    43/64

    Photograph o% a potassium li$uid-ione

  • 8/13/2019 F AC 21 08 Potentiometry

    44/64

    ! homemade li$uid-membrane electrode

  • 8/13/2019 F AC 21 08 Potentiometry

    45/64

    Soli! state crystalline membrane electro!e

    'igration o% 4Fthrough a4doped &ith ,u4

  • 8/13/2019 F AC 21 08 Potentiometry

    46/64

  • 8/13/2019 F AC 21 08 Potentiometry

    47/64

    ;amle< Fluori!e 3F-) electro!e

    Internal re% electrode

    !gA!gCl

    4illing soln

    !$ueous +aCl G +a4

    'embrane

    a4crystal disc

    !pplications

    ,lectroplating industry# &ater treatment (%luoridation)# toothpaste

    *lications o ion selective electro!es

  • 8/13/2019 F AC 21 08 Potentiometry

    48/64

    Ion-selectie electrodes are used in a &ide ariety o% applications %or determining the concentrations

    o% arious ions in a$ueous solutions .he %ollo&ing is a list o% some o% the main areas in &hich IS,s

    hae been used

    Pollution 'onitoring@ C+# 4# S# Cl# +/etc# in e%%luents# and natural &aters

    !griculture@ +/# Cl# +H

    ># # Ca# I# C+ in soils# plant material# %ertilisers and %eedstu%%s

    4ood Processing@ +/# +/

    in meat preseraties

    Salt content o% meat# %ish# dairy products# %ruit Buices# bre&ing solutions

    4 in drin8ing &ater and other drin8s

    Ca in dairy products and beer

    in %ruit Buices and &ine ma8ing

    Corrosie e%%ect o% +/in canned %oods

    Detergent 'anu%acture@ Ca# Na# 4 %or studying e%%ects on &ater $uality

    Paper 'anu%acture@ S and Cl in pulping and recoery-cycle li$uors

    ,

  • 8/13/2019 F AC 21 08 Potentiometry

    49/64

    Semi-con!uctor

    Imper%ections or impurities in &hat are normally insulators may gie rise to a

    temperature-dependent conductiity( metallic conductiity decreases &ith rise in

    temperature) arising because the highest occupied energy leel is ery close to an

    unoccupied leel

    Classi%ication speci%ic resistance

    semiconductor 0F>^ 0_m

    conductor ^0FJ

    insulator 0^00

  • 8/13/2019 F AC 21 08 Potentiometry

    50/64

    ,lemental or intrinsic semiconductor @ ten nine (9999999999Z purity)

    II III IK K KIN C

    !l Si P S

    1n 2a 2e !s

    Cd In Sn Sb Se

    .e

    Compounds or e

  • 8/13/2019 F AC 21 08 Potentiometry

    51/64

    p-tye an! n-tye semicon!uctor

    Si

    Si

    Si

    Si

    Si

    Si

    SiSi

    Si

    Complete coalent

    bond

    SiSi

    SiSi

    Si

    Si

    Si

    SiSiSi

    !l

    Displaced by

    trialent(acceptor)

    impurity atom

    Si

    Si

    Si

    SiSi

    Si P

    hole

    Conduction

    electron

    Displaced by

    pentaalent(donor)

    impurity atom

    carrier

    Pure silicon crystal

    structure-type n-type

    Dio!e < electron tube eacuated glass or metal enelope containing t&o electrodes a cathode

  • 8/13/2019 F AC 21 08 Potentiometry

    52/64

    Dio!e < electron tube# eacuated glass or metal enelope containing t&o electrodes# a cathodeand an anode It is used as a recti%ier and as a detector in electronic circuits such as radio and

    teleision receiers Qhen a positie oltage is applied to the anode (or plate)# electrons emitted %rom

    the heated cathode %lo& to the plate and return to the cathode through an e

  • 8/13/2019 F AC 21 08 Potentiometry

    53/64

    Dr Tohn Nardeen# Dr Qalter Nrattain# and Dr Qilliam Shoc8ley discoered

    the transistor e%%ect and deeloped the %irst deice in December# 9># &hile

    the three &ere members o% the technical sta%% at Nell aboratories in 'urrayHill# +T .hey &ere a&arded the +obel Prie in physics in 9;:

    http@AA&&&lucentcomAmindsAtransistorA Copyright 2002 Lucent Technologies. All rights reserved. *

    http://c/
  • 8/13/2019 F AC 21 08 Potentiometry

    54/64

    $ransistor

    !n actie component o% an electronic circuit &hich may be used as an ampli%ier#

    detector# or s&itch

    ! transistor consists o% a small bloc8 o% semiconducting material to &hich at leastthree electrical contacts are made

    .ransistors are o% t&o general types# bipolar and %ield e%%ect

    :n:type n::ntype

    emitter emitter base collector collectorbase

    C C

    , ,

    Carrier@ hole Carrier@ conduction electron

    N N

  • 8/13/2019 F AC 21 08 Potentiometry

    55/64

    .ransistor

    ,miter Collector Nase Nase Carrier

    ( ) !" #$ %&'( )* +, -. /01 +, -.2

    *nipolar .ransistor Nipolar .ransistor2 34'5 # 67 # 89 # :" ; ?@A B

    '/S('etal /

  • 8/13/2019 F AC 21 08 Potentiometry

    56/64

    ate

    ) p2 .ransistor Ge )* F 2 G5 # 9 g K

    } F$ p 2

    ) +, > '/S .ransistor KA G = .2 Nipolar .ransistor

    Nase }lG .

    mitter

    +P+# P+P O F .ransistor 2 K +,

    ,ollector

    .ransistor 3

    4ase &aterial3 )Z 2 F$ P $

    -3 (carbon nanotube) p 2 (silicon microchip) A Y

    ,f MN2 1[ 00 J : { o1 3] (+ano etter) }

    V IN' V- . T V] (. T Qatson esearch Center) -

    > p< (Ph !ouris) (K Deryc8e)# ( 'artel)# &U (T

    !ppeneller) 2 $ V {E -3 (Single &all carbon nanotube R SQC+.s)

    @} RS X\'

  • 8/13/2019 F AC 21 08 Potentiometry

    57/64

    Fiel! eect transistor

    2ate

    Drain

    Source

    channel

    '/S4,.

    nchannel

    ! metal o

  • 8/13/2019 F AC 21 08 Potentiometry

    58/64

    /peration o% a iel! eect transister

    (a) +early random distribution o% holes and electrons in the base in

    the absence o% gate potential

    (b) Positie gate potential attracts electrons that %orm a conductie

    channel beneath the gate Current can %lo& through this channel

    bet&een source and drain

  • 8/13/2019 F AC 21 08 Potentiometry

    59/64

    /peration o% chemical-sensing %ield e%%ect transistor .he transistor is coated &ith an

    insulating Si/ layer and a second layer o% Si+> (silicon nitride)# &hich is imperious

    to ions and improes electrical stability .he circuit at the lo&er le%t adBusts the potential

    di%%erence bet&een the re%erence electrode and the source in response to changes in the

    analyte solution# such that a constant drain-source current is maintained

  • 8/13/2019 F AC 21 08 Potentiometry

    60/64

    C/gas sensing electrode

  • 8/13/2019 F AC 21 08 Potentiometry

    61/64

    esponse o% a li$uid-membrane electrode to ariations

    in the concentration and actiity o% calcium ion

  • 8/13/2019 F AC 21 08 Potentiometry

    62/64

    .itration o% >mmol o% chloride ion &ith 0000' siler nitrate

    (a) .itration cure (b) 4irst-deriatie cure (c) Second-deriatie cure

    !pparatus %or a potentiometric titration

  • 8/13/2019 F AC 21 08 Potentiometry

    63/64

    Kolume o% 0= + +a/H (m)

    0 5 10 15 20 25

    pH

    2

    4

    6

    8

    10

    12

    14

    Experimental titration curve of 0.1 N HOAc with 0.1 N NaOH ( f = 0.9720.

    C!.-abASQ*# Dong-Sun ee

    Kolume o% 0= + +a/H (m)

    0 5 10 15 20 25

    mK

    -400

    -300

    -200

    -100

    0

    100

    200

    300

  • 8/13/2019 F AC 21 08 Potentiometry

    64/64

    Q

    E!

    Thanks

    Dong-Sun ee A C!. A SQ*