49
UNIVERSITY OF JYVÄSKYLÄ Alexandra Zadvornaya 24 September 2019 Experimental and Numerical Characterization of Supersonic and Subsonic Gas Flows for Nuclear Spectroscopy Studies

Experimental and Numerical Characterization of Supersonic

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Alexandra Zadvornaya

24 September 2019

Experimental and Numerical Characterization of

Supersonic and Subsonic Gas Flows for

Nuclear Spectroscopy Studies

Page 2: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

2

Plan:

A. Stopping and transport of nuclear reaction products in subsonic helium flow

1. Multinucleon-transfer (MNT) reactions within Elemental Nucleosynthesisstudies at University of Jyväskylä

2. Experimental and numerical characterization of efficiency of ion survival in subsonic helium flow

3. Outlook

2

Page 3: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

3

Plan:

A. Stopping and transport of nuclear reaction products in subsonic helium flow

1. Multinucleon-transfer (MNT) reactions within Elemental Nucleosynthesisstudies at University of Jyväskylä

2. Experimental and numerical characterization of efficiency of ion survival in subsonic helium flow

3. Outlook

B. In-gas-jet laser ionization spectroscopy in supersonic argon jets1. In-gas laser ionization spectroscopy in heavy element region2. PLIF-spectroscopy experiments at KU Leuven3. Results- Validation of PLIF-spectroscopy- Characterization of gas jets formed by de Laval nozzle4. Conclusions

2

Page 4: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ MAIDENMasses, Isomers and Decay studies for Elemental Nucleosynthesis

N (neutron)

Z (

pro

ton)

P. Campbell, I. D. Moore, and M. R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016) 3

Page 5: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

The main research

question/motivation:

How and where

were the elements

heavier than Fe (Z =

26) created?

MAIDENMasses, Isomers and Decay studies for Elemental Nucleosynthesis

N (neutron)

Z (

pro

ton)

P. Campbell, I. D. Moore, and M. R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)

1957: idea that heavy elements are

synthesized via different stellar

nucleosynthesis paths such as the via r-, s-

and p-processes

2017, a merge of two neutron starts

first confirmation

3

Page 6: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ MAIDENMasses, Isomers and Decay studies for Elemental Nucleosynthesis

N (neutron)

Z (

pro

ton)

P. Campbell, I. D. Moore, and M. R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016) 3

1957: idea that heavy elements are

synthesized via different stellar

nucleosynthesis paths such as the via r-, s-

and p-processes

2017, a merge of two neutron starts

first confirmation

The main research

question/motivation:

How and where

were the elements

heavier than Fe (Z =

26) created?

Page 7: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ MAIDENMasses, Isomers and Decay studies for Elemental Nucleosynthesis

Multinucleon-transfer (MNT) reactions studies for exploring nuclear structureclose to N = 126 @ University of Jyväskylä

N (neutron)

Z (

pro

ton)

P. Campbell, I. D. Moore, and M. R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016) 3

1957: idea that heavy elements are

synthesized via different stellar

nucleosynthesis paths such as the via r-, s-

and p-processes

2017, a merge of two neutron starts

first confirmation

The main research

question/motivation:

How and where

were the elements

heavier than Fe (Z =

26) created?

Page 8: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄMNT reactions Efficiency tests Outlook

Magnet Si detector 2

Si detector 1

Target chamber

54136 Xe

54136 Xe

83209 Bi

4

Multinucleon-transfer (MNT) reactions studies

Page 9: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄMNT reactions Efficiency tests Outlook

Magnet Si detector 2

Si detector 1

Target chamber

54136 Xe

54136 Xe

83209 Bi

Gas cell

Beam dump

Target wheel

Ion guide

54136 Xe

83209 Bi

4

Multinucleon-transfer (MNT) reactions studies

Page 10: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Multinucleon-transfer (MNT) reactions studies

Magnet Si detector 2

Si detector 1

5

54136 Xe

June 2019Si detector 2

MNT reactions Efficiency tests Outlook

Page 11: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Initial gas cell design

6

Gas inflow

CFD Module

Laminar Flow:

compressible flow;

boundary conditions – no slip.

Transport of Diluted Species:

convection and diffusion.

MNT reactions Efficiency tests Outlook

Gas outflow

(exit diameter of 1.2 mm)

Helium

Temperature T0 = 300 KExit diameter of 1.2 mm

Page 12: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Initial gas cell design

6

Gas inflow

Gas outflow

(exit diameter of 1.2 mm)

Helium

Temperature T0 = 300 KExit diameter of 1.2 mm

’jet’-like structure and

recirculation region

are visible

MNT reactions Efficiency tests Outlook

CFD Module

Laminar Flow:

compressible flow;

boundary conditions – no slip.

Transport of Diluted Species:

convection and diffusion.

Page 13: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Initial gas cell design

6

Gas inflow

Gas outflow

(exit diameter of 1.2 mm)

Gas cell design had to be optimized to enable more efficient and fast

transportation

’jet’-like structure and

recirculation region

are visible

MNT reactions Efficiency tests Outlook

CFD Module

Laminar Flow:

compressible flow;

boundary conditions – no slip.

Transport of Diluted Species:

convection and diffusion.

Helium

Temperature T0 = 300 KExit diameter of 1.2 mm

Page 14: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Optimization of gas cell design using CFD Module

7

MNT reactions Efficiency tests Outlook

Gas inflow

Gas outflow

(exit diameter of 1.2 mm)

Page 15: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Gas inflow

Gas outflow

(exit diameter of 1.2 mm)

Optimization of gas cell design using CFD Module

7

Obstacle

Honeycomb

structure

Velocity magnitude (m/s)

MNT reactions Efficiency tests Outlook

Page 16: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Gas inflow

Gas outflow

(exit diameter of 1.2 mm)

Optimization of gas cell design using CFD Module

7

Obstacle

Honeycomb

structure

More uniform flow structure

Velocity magnitude (m/s)

Velocity field, x component (m/s)

MNT reactions Efficiency tests Outlook

Page 17: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

8

S1

S2

Experimental and numerical characterization of ion survival efficiencyby using α-recoil 88

223Ra source

Decay chain for 88223Ra

MNT reactions Efficiency tests Outlook

Page 18: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

8

5500 6000 6500 7000 7500

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

cp

s

E, keV

in vacuum_before test_calibratedX

Po

Rn1

Bi 1

Rn2

Rn3

Bi 2

Ra2

Ra3

Ra4

S1

S2

Experimental and numerical characterization of ion survival efficiencyby using α-recoil 88

223Ra source

Decay chain for 88223Ra

MNT reactions Efficiency tests Outlook

Page 19: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

8

5500 6000 6500 7000 7500

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

cp

s

E, keV

in vacuum_before test_calibratedX

Po

Rn1

Bi 1

Rn2

Rn3

Bi 2

Ra2

Ra3

Ra4

50 100 150 200 250 300 3500

2

4

6

8

10

12

14

diffu

s.+

reco

mb

in.+

mole

c.fo

rm.+

?(%

)

P0 (mbar)

Source position 1

Source position 2

Tests with -recoil source

S1

S2

Experimental and numerical characterization of ion survival efficiencyby using α-recoil 88

223Ra source

Decay chain for 88223Ra

MNT reactions Efficiency tests Outlook

Page 20: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

8

5500 6000 6500 7000 7500

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

cp

s

E, keV

in vacuum_before test_calibratedX

Po

Rn1

Bi 1

Rn2

Rn3

Bi 2

Ra2

Ra3

Ra4

50 100 150 200 250 300 3500

2

4

6

8

10

12

14

diffu

s.+

reco

mb

in.+

mole

c.fo

rm.+

?(%

)

P0 (mbar)

Source position 1

Source position 2

Tests with -recoil source

50 100 150 200 250 300 3500

20

40

60

80

100Numerical calculations in COMSOL

diffu

s.(%

)

P0 (mbar)

Source position 1

Source position 2

S1

S2

Experimental and numerical characterization of ion survival efficiencyby using α-recoil 88

223Ra source

Only diffusion losses!

Decay chain for 88223Ra

MNT reactions Efficiency tests Outlook

Page 21: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

8

5500 6000 6500 7000 7500

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

cp

s

E, keV

in vacuum_before test_calibratedX

Po

Rn1

Bi 1

Rn2

Rn3

Bi 2

Ra2

Ra3

Ra4

50 100 150 200 250 300 3500

2

4

6

8

10

12

14

diffu

s.+

reco

mb

in.+

mole

c.fo

rm.+

?(%

)

P0 (mbar)

Source position 1

Source position 2

Tests with -recoil source

50 100 150 200 250 300 3500

20

40

60

80

100Numerical calculations in COMSOL

diffu

s.(%

)

P0 (mbar)

Source position 1

Source position 2

S1

S2

Experimental and numerical characterization of ion survival efficiencyby using α-recoil 88

223Ra source

Other loss factors, aside of diffusion

1) Ion survival againts recombination losses?

2) .. against molecular formation with gas impurities?

Only diffusion losses!

Decay chain for 88223Ra

MNT reactions Efficiency tests Outlook

Page 22: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

Outlook

1. Experimental and numerical characterization of efficiency of ion survival

More tests: - cooling gas cell to cryogenic temperatures- evacuation time measurements

More numerical calculations in CFD Module- include other losses factors, e.g. ion losses due to recombination?- evacuation time calculations

9

MNT reactions Efficiency tests Outlook

Page 23: Experimental and Numerical Characterization of Supersonic

1

2

Plan:

A. Stopping and transport of nuclear reaction products in subsonic helium flow1. Multinucleon-transfer (MNT) reactions within Elemental Nucleosynthesis

studies at University of Jyväskylä2. Experimental and numerical characterization of efficiency of ion survival in

subsonic helium flow3. Outlook

B. Characterization of supersonic argon jets for in-gas-jet laser ionization spectroscopy1. In-gas laser ionization spectroscopy in heavy element region2. PLIF-spectroscopy experiments at KU Leuven3. Results- Validation of PLIF-spectroscopy- Characterization of gas jets formed by de Laval nozzle4. Conclusions

Page 24: Experimental and Numerical Characterization of Supersonic

In-gas laser ionization and spectroscopy (IGLIS) @ LISOL

Louvain-la-NeuveDecember 2014

Previous experiments

3

(argon)

R. Ferrer et al., Nat. Commun. 8, 14520 (2017)

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Challenges: Low production rates (< 0.1 p.p.s.) and

short live-times (< 1 s) sensitive, efficient and fast technique is needed

+ High spectral resolution to unmask

nuclear structure

Page 25: Experimental and Numerical Characterization of Supersonic

In-gas laser ionization and spectroscopy (IGLIS) @ LISOL

Louvain-la-NeuveDecember 2014

Previous experiments

3

(argon)

R. Ferrer et al., Nat. Commun. 8, 14520 (2017)

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Challenges: Low production rates (< 0.1 p.p.s.) and

short live-times (< 1 s) sensitive, efficient and fast technique is needed

+ High spectral resolution to unmask

nuclear structure -40 -20 0 20 400

100

200

300

gas cell

gas jet

c

ou

nts

in 5

0 s

Freq. - 683,618.211 (GHz)

215Ac

Page 26: Experimental and Numerical Characterization of Supersonic

In-gas laser ionization and spectroscopy (IGLIS) @ LISOL

-40 -20 0 20 400

100

200

300

gas cell

gas jet

c

ou

nts

in 5

0 s

Freq. - 683,618.211 (GHz)

215Ac

Louvain-la-NeuveDecember 2014

Previous experiments

3

M < 1

M = 1

M > 1

(argon)

R. Ferrer et al., Nat. Commun. 8, 14520 (2017)

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Challenges: Low production rates (< 0.1 p.p.s.) and

short live-times (< 1 s) sensitive, efficient and fast technique is needed

+ High spectral resolution to unmask

nuclear structure

Page 27: Experimental and Numerical Characterization of Supersonic

In-gas laser ionization and spectroscopy (IGLIS) @ LISOL

-40 -20 0 20 400

100

200

300

gas cell

gas jet

c

ou

nts

in 5

0 s

Freq. - 683,618.211 (GHz)

215Ac

Louvain-la-NeuveDecember 2014

Previous experiments

3

M < 1

M = 1

M > 1

(argon)

𝛒 ↓ 𝐚𝐧𝐝 𝐓 ↓

R. Ferrer et al., Nat. Commun. 8, 14520 (2017)

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Challenges: Low production rates (< 0.1 p.p.s.) and

short live-times (< 1 s) sensitive, efficient and fast technique is needed

+ High spectral resolution to unmask

nuclear structure

Page 28: Experimental and Numerical Characterization of Supersonic

Supersonic jets formed by de Laval nozzles

4

𝟏 𝐦𝐦

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 29: Experimental and Numerical Characterization of Supersonic

Supersonic jets formed by de Laval nozzles

4

𝟏 𝐦𝐦

nozzlebackground

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

CFD Module

High Mach Number Flow:

turbulence model type – none;

boundary conditions – no slip;

flow conditions for the outflow –

supersonic.

Argon

Temperature T0 = 300 KPressure P0 = 300 mbarNozzle throat diameter of 1 mm

Page 30: Experimental and Numerical Characterization of Supersonic

Planar Laser Induced Fluorescence (PLIF)-technique

5

Cu in argon flow

327.4

0 n

m

578.2

1 n

m

98.6%

Cu

1.4%

𝝉 = 𝟕. 𝟐 𝐧𝐬

63, 65

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 31: Experimental and Numerical Characterization of Supersonic

Planar Laser Induced Fluorescence (PLIF)-technique

5

Cu in argon flow

327.4

0 n

m

578.2

1 n

m

98.6%

Cu

1.4%

𝝉 = 𝟕. 𝟐 𝐧𝐬

63, 65

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 32: Experimental and Numerical Characterization of Supersonic

Planar Laser Induced Fluorescence (PLIF)-technique

5

Cu in argon flow

327.4

0 n

m

578.2

1 n

m

98.6%

Cu

1.4%

𝝉 = 𝟕. 𝟐 𝐧𝐬

63, 65

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

relative density from measurements with broadband laser

Page 33: Experimental and Numerical Characterization of Supersonic

Planar Laser Induced Fluorescence (PLIF)-technique

5

Cu in argon flow

327.4

0 n

m

578.2

1 n

m

98.6%

Cu

1.4%

𝝉 = 𝟕. 𝟐 𝐧𝐬

63, 65

Doppler shift

velocity

𝟐→𝟐′

𝟐→𝟏′

𝟏→𝟏′

𝟏→𝟐′

FWHM temperature

PLIF-spectroscopy

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

relative density from measurements with broadband laser

Page 34: Experimental and Numerical Characterization of Supersonic

Laser laboratory

6

T and v

𝝆

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 35: Experimental and Numerical Characterization of Supersonic

Jet laboratory

Gas cell chamber

ICCD camera Laval nozzle

IGLIS Gas Cell

0.5 𝐦

Inside gas cell chamber

7

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 36: Experimental and Numerical Characterization of Supersonic

Validation of PLIF-spectroscopyMach disk position and density drop in the expansion zone

S. Crist , M. Sherman and D.R. Glass, AIAA Journal Vol. 4, No. 1, 68 - 71 (1966)

H. Ashkenas, M. Sherman, Rarefied Gas Dynamics, Academic. Press, 1965, p. 94

P. L. Owen and C. K. Thornhill, in Aeronautical Research Council Reports and Memoranda (1948)8

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 37: Experimental and Numerical Characterization of Supersonic

Validation of PLIF-spectroscopyMach disk position and density drop in the expansion zone

S. Crist , M. Sherman and D.R. Glass, AIAA Journal Vol. 4, No. 1, 68 - 71 (1966)

H. Ashkenas, M. Sherman, Rarefied Gas Dynamics, Academic. Press, 1965, p. 94

P. L. Owen and C. K. Thornhill, in Aeronautical Research Council Reports and Memoranda (1948)8

𝜌 ∝1

x2

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

1.

Page 38: Experimental and Numerical Characterization of Supersonic

Validation of PLIF-spectroscopyMach disk position and density drop in the expansion zone

xMd∗

= 0.67 ∗𝑃0Pbg

S. Crist , M. Sherman and D.R. Glass, AIAA Journal Vol. 4, No. 1, 68 - 71 (1966)

H. Ashkenas, M. Sherman, Rarefied Gas Dynamics, Academic. Press, 1965, p. 94

P. L. Owen and C. K. Thornhill, in Aeronautical Research Council Reports and Memoranda (1948)8

𝜌 ∝1

x2

Pbg1

Pbg2

Pbg1 > Pbg2

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

1. 2.

Page 39: Experimental and Numerical Characterization of Supersonic

Ma

ch

nu

mb

er

Validation of PLIF-spectroscopyNarrowband PLIF-spectroscopy of 63,65Cu

9

M =flow velocity

velocity of sound(← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

A. Zadvornaya et al., PRX, 8, 041008 (2018)

Page 40: Experimental and Numerical Characterization of Supersonic

Ma

ch

nu

mb

er

Validation of PLIF-spectroscopyNarrowband PLIF-spectroscopy of 63,65Cu

9

M =flow velocity

velocity of sound(← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

A. Zadvornaya et al., PRX, 8, 041008 (2018)

good agreement between this work

and previous experiments and

analytical solutions

Page 41: Experimental and Numerical Characterization of Supersonic

Underexpanded jet Overexpanded jet

Pbg = 1.8 mbar

0.16 mbar

0.07 mbar

4 mbar

20 mbar

30 mbar

50 mm

L

Z

Jets formed by de Laval nozzle

10

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 42: Experimental and Numerical Characterization of Supersonic

Underexpanded jet Overexpanded jet

• At extreme cases of pressure mismatch, formation of long jets required for high-

efficient in-jet ionization is not possible

• Diameter of non-uniform jet will vary along its length higher requirements on laser

energy

Pbg = 1.8 mbar

0.16 mbar

0.07 mbar

4 mbar

20 mbar

30 mbar

50 mm

L

Z

Jets formed by de Laval nozzle

10

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 43: Experimental and Numerical Characterization of Supersonic

L

Jets formed by de Laval nozzleNarrowband PLIF-spectroscopy of 63,65Cu

Central line of underexpanded jet (Pbg < Popt)

11

FWHM FWHM

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

A. Zadvornaya et al., PRX, 8, 041008 (2018)

Page 44: Experimental and Numerical Characterization of Supersonic

Underexpanded jet

CFD Module

PLIF

12

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 45: Experimental and Numerical Characterization of Supersonic

L

Jets formed by de Laval nozzleNarrowband PLIF-spectroscopy of 63,65Cu

Central line of quasiuniform jet (Pbg ≈ Popt)

13

FWHM FWHM

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

A. Zadvornaya et al., PRX, 8, 041008 (2018)

Page 46: Experimental and Numerical Characterization of Supersonic

Quasiuniform jet

CFD Module

PLIF

14

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 47: Experimental and Numerical Characterization of Supersonic

Supersonic gas jets were characterized using PLIF-spectroscopy setup constructed at KU Leuven Partial agreement was reached between experimental results and numerical calculations in CFD

Module for jet’s flow parameters

Conclusions

15

Laser Spectrosc. studies PLIF spectroscopy Results Conclusions

Page 48: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

30

Acknowledgments

Thanks to Nuclear Spectroscopy group (IKS, KU Leuven)P. Creemers, R. Ferrer, L. Gaffney, C. Granados, M. Huyse, S. Kraemer, Yu. Kudryavtsev, M. Laatiaoui, V. Manea, E. Mogilevskiy, S. Raeder, J. Romans, S. Sels, P. Van den Bergh, P. Van Duppen, M. Verlinde, E. Verstraelen

Thanks to IGISOL group and MNT collaboration (University of Jyväskylä)O. Beliuskina, M. Brunet, L. Canete, P. Constantin, T. Dickel, T. Eronen, R. de Groote, M. Hukkanen, A. Jokinen, A. Kankainen, A. Karpov, I. Mardor, I. Moore, D. Nesterenko, D. Nichita, H. Penttilä, Zs. Podolyak, I. Pohjalainen, S. Purushothaman, M. Reponen, A. de Roubin, V. Saiko, A. Spataru, M. Vilen, A. Weaver

This project has received funding from the European

Union’s Horizon 2020 research and innovation program under

grant agreement No. 771036 (ERC CoG MAIDEN).

Page 49: Experimental and Numerical Characterization of Supersonic

UNIVERSITY OF JYVÄSKYLÄ

30

Thanks for your attention!