Exercise 2 - Platform(Mg-4, Mg5=Tg1))

Embed Size (px)

Citation preview

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    1/19

    Exercise 2 Platform

    Modul Training 1Divisi Analysis Structure

    Platform

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    2/19

    Exercise 2 Platform

    Modul Training 2Divisi Analysis Structure

    Model Description:

    The platform shown below will be used simple modeling example involving beamelements. Direction of beam element is important to create accurate real model.

    Standart Material Steel

    Modulus of Elasticity E = 210000. N/mm2

    Shear Modulus of Elasticity G = 63000. N/mm2

    Poison Ratio v = 0.3

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    3/19

    Exercise 2 Platform

    Modul Training 3Divisi Analysis Structure

    Exercise Procedure:

    1. Create a new database called platform.db

    File/New...

    New Database Name: platform

    OK

    In the New Model Preference form set the following:

    Tolerance: Default

    Analysis Code: MSC/NASTRAN

    Analysis Type: Structural

    OK

    2. Create the truss geometry

    Create point geometry

    Geometry

    Action: Create

    Object: Point

    Method: XYZ

    Point Coordinates List : [ 0 0 0 ]

    Apply

    Enter the following 10 points.

    [0 0 1000] Apply

    [0 3000 0] Apply

    [0 3000 1000] Apply

    [0 1000 1000] Apply

    [0 2000 1000] Apply[ [0 0 500] Apply

    [0 3000 500] Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    4/19

    Exercise 2 Platform

    Modul Training 4Divisi Analysis Structure

    Then klik show label Icon

    Show Labels Icon

    Create curve geometry

    Geometry

    Action: Create

    Object: Curve

    Method: Point

    V Auto execute

    Starting point list point 1

    End point list point 7

    Apply

    Repeat this procedure to create the remaining lines.

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    5/19

    Exercise 2 Platform

    Modul Training 5Divisi Analysis Structure

    These lines will be copied in the Z direction to create the other side of the truss. Since wewill be working in 3-D for the first time, lets rotate the view so we can see the new lines

    that will be generated behind the ones you just created.

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    6/19

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    7/19

    Exercise 2 Platform

    Modul Training 7Divisi Analysis Structure

    Connect corresponding points from the two sides of truss.

    Geometry

    Action: Create

    Object: Curve

    Method: Point

    V Auto execute

    Starting point list point 1

    End point list point 11

    Apply

    You have completed the geometry section of this example.

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    8/19

    Exercise 2 Platform

    Modul Training 8Divisi Analysis Structure

    3. Create finite elements for the roof truss.

    The first thing to be done is to set the mesh sizes for the curves (actually lines in this

    example) to an appropriate value so it will keep the total number of nodes generated

    small enough to workElement

    Action: Create

    Object: Mesh

    Method: Curve

    V Auto execute

    Curve list curve 1:35

    Global Edge Length

    V Automatic Calculation

    Value 200.

    Apply

    4. Create materialMaterial

    Action: Create

    Object: Isotropic

    Method: Manual Input

    Material Name

    Steel click this box and enter name steel

    Input Properties click this box

    Constituve Model: Linear Elastic

    Elastic modulus = 2.1E5

    Poison Ratio = 0.3

    Shear Modulus = 6.3E4

    OK

    Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    9/19

    Exercise 2 Platform

    Modul Training 9Divisi Analysis Structure

    5. Create Element Properties

    Create Angle profile for stay and bracket

    Properties

    Action: Create

    Object: 1 D

    Type : Beam

    Property Set Name

    L 90x90x9 click this box and enter name L 90x90x9

    Input Properties click this box

    Material Name click this boxMaterial Property set

    m.steel select our material in the list box that

    appears in the form

    Create Section click this box

    New Section Name

    L 90x90x9_Y click this box and enter name L 90x90x9_Y

    click this box

    W 90 click this box and enter 90

    H 90 click this box and enter 90

    t1 9 click this box and enter 9

    t2 9 click this box and enter 9

    OK

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    10/19

    Exercise 2 Platform

    Modul Training 10Divisi Analysis Structure

    Bar Orientation < 0 1 0>

    OK

    Aplication Region

    Select member Elm 1:10 21:24 30:45 56:59 65:80 91:94 100:105

    click beam element

    than select element

    Add click this box

    Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    11/19

    Exercise 2 Platform

    Modul Training 11Divisi Analysis Structure

    Create Angle profile for platform

    Properties

    Action: Create

    Object: 1 D

    Type : Beam

    Property Set Name

    L 90x90x9_z click this box and enter name L 90x90x9_z

    Input Properties click this box

    Material Name click this box

    Material Property set

    Steel select our material in the list box that

    appears in the form

    Create Section click this box

    [ Section name ] click this box

    L 90x90x9 click this database

    Bar Orientation < 0 1 0>

    OK

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    12/19

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    13/19

    Exercise 2 Platform

    Modul Training 13Divisi Analysis Structure

    6. Merge coincident nodes.

    Properties ( select Element in the main menu )

    7. Show beam display direction check.

    Display

    Load/BC/Elem. Prop < pull down menu >

    Beam Display: 3D:FullSpan

    Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    14/19

    Exercise 2 Platform

    Modul Training 14Divisi Analysis Structure

    7. Apply constraints to the truss.

    Load/BCs

    Action: Create

    Object: Displacement

    Type : Nodal

    New Set Name

    fixed click this box and enter name fixed

    Input Data click this box

    Translation < T1 T2 T3> < 0 ,0, 0 >

    Rotations < R1 R2 R3> < 0, 0 ,0 >

    OK

    Select Application Region click this box

    Geometry filter FEM click this box

    Aplication Region

    Select member Node 1 89 114 70 45 26

    Add click this box

    OK

    Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    15/19

    Exercise 2 Platform

    Modul Training 15Divisi Analysis Structure

    8. Apply loads to the model.

    Load/BCsAction: Create

    Object: Distributed Load

    Type : Element Uniform

    New Set Name

    load_20 click this box and enter name load_20

    Input Data click this box

    Distr. load < f1 f2 f3> < ,-20, >

    Distr. Moment < m1 m2 m3> < >

    OK

    Select Application Region click this box

    Geometry filter FEM click this box

    Aplication Region

    Select member

    Add click this box

    OK

    Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    16/19

    Exercise 2 Platform

    Modul Training 16Divisi Analysis Structure

    9. Apply loads & boundary condition to Load case

    10.Perform the Analysis

    We're ready to analyze the problem we've entered in PATRAN.

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    17/19

    Exercise 2 Platform

    Modul Training 17Divisi Analysis Structure

    11. Accessing result form Patran

    AnalysisAction: Access Result

    Object: Attach XDB

    Type : Result Entity

    Select Result File

    platform.xdb click this box and find file . xdb

    Apply

    12. Post Processing

    Create deformation result.

    Result

    Action: Create

    Object: Deformation

    Select Result Case (s)

    Load_1.Static Subcase

    Select Deformation Result

    Displacement,Translation

    Apply

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    18/19

    Exercise 2 Platform

    Modul Training 18Divisi Analysis Structure

    Create stress fringe report.

    Result

    Action: Create

    Object: Fringe

    Select Result Case (s)

    Load_1.Static Subcase

    Select Deformation Result

    Stress Tensor

    Quantity : Von Mises

    Apply

    Pick up figure from Patran for report or presentation,

    Copy to clipboard

  • 8/2/2019 Exercise 2 - Platform(Mg-4, Mg5=Tg1))

    19/19

    Exercise 2 Platform

    Modul Training 19

    NOTE :

    BEAM ELEMENT PROPERTIES

    Bar/Beam elements require a vector to define the orientation of the cross-section (the local

    element coordinate system)

    In MSC.Patran, this vector is defined using either the Patran global (X,Y,Z) or a local

    coordinate system

    To recover bending stress, stress recovery points must be defined relative to the element

    coordinate system

    Called C,D,E,F for MSC.Nastran

    Used to determine c in the classical equation stress= Mc/I

    The moments of Inertia (I1 and I2) and the torsional constant (J) are defined with respect to

    the local element coordinate system (J is not the polar moment of inertia)

    MSC.Nastran and ABAQUS beam cross-section orientations are explained in the figure