28
Exactly solvable Richardson-Gaudin models in nuclear structure Jorge Dukelsky In collaboration with people in audience: S. Pittel, P. Schuck, P. Van Isacker. And many others

Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Exactly solvable Richardson-Gaudin models in nuclear structure

Jorge Dukelsky

In collaboration with people in audience:

S. Pittel, P. Schuck, P. Van Isacker.

And many others

Page 2: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Richardson’s Exact Solution

Page 3: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Exact Solution of the BCS Model

Eigenvalue equation:

Ansatz for the eigenstates (generalized Cooper ansatz)

PH E

† †

1

10 ,

2

M

k kk k

c cE

† †

' ', '

P kk k kk kk k k

H n g c c c c

Page 4: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Richardson equations

0 1 1

1 11 2 0,

2

M M

k k

g g E EE E E

Properties:

This is a set of M nonlinear coupled equations with M unknowns (E).

The pair energies are either real or complex conjugated pairs.

There are as many independent solutions as states in the Hilbert space.

The solutions can be classified in the weak coupling limit (g0).

Exact solvability reduces an exponential complex problem to an

algebraic problem.

Page 5: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Evolution of the real and imaginary part of the pair energies with g. L=16,

M=8. R. W. Richardson, Phys. Rev. 141 (1966) 949. Solved numerical systems up to L=32,

dim=108

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.0

0.2

0.4

0.6

0.8

1.0

E=1.7+0.0i

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.0

0.2

0.4

0.6

0.8

1.0

E=12.0+4.0i

|i|2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.0

0.2

0.4

0.6

0.8

1.0

E=0.0+2.0i

2i

1

1

2

L

k kk k

c cE

Page 6: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

The SU(2) Algebra

, , , , , 2z z zS S S S S S S S S

Rank 1 and 1 quantum degree of freedom

The pair realizations is:

1 1 , S

2 4 2

jz

j jm jm j jm jm

m m

S a a a a

Other realizations like, two level atoms, spin, finite center of mass

pairs, Holstein-Primakoff or Schwinger, give rise to different physical

Hamiltonians

Page 7: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

•The most general combination of linear and quadratic generators, with the

restriction of being hermitian and number conserving, is

22

ijz z z

i i i j i j ij i j

j i

XR S g S S S S Y S S

•The integrability condition leads to , 0i jR R

0ij jk jk ki ki ijY X X Y X X

•These are the same conditions encountered by Gaudin (J. de Phys. 37

(1976) 1087) in a spin model known as the Gaudin magnet.

Richardson-Gaudin Models:

Construction of the Integrals of Motion

J. D., C. Esebbag and P. Schuck, Phys. Rev. Lett. 87, 066403 (2001).

Page 8: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Gaudin (1976) found three solutions

1ij ij

i j

X Y

XXX (Rational)

XXZ (Hyperbolic Trigonometric)

12 ,

i j i j

ij ij i j

i j i ji j

X Z Coth x xSinh x x

i iR r Exact solution

Eigenstates of the Rational and Hyperbolic Models

10 , 0i

XXX i XXZ i

i ii i

S SE E

Richardson ansatz

Page 9: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Any function of the R operators defines a valid integrable Hamiltonian. The

Hamiltonian is diagonal in the basis of common eigenstates of the R operators.

•Within the pair representation two body Hamiltonians can be obtain by a

linear combination of R operators:

•The parameters g, ´s and ´s are arbitrary. There are 2 L+1 free parameters

to define an integrable Hamiltonian in each of the families. (L number of single

particle levels)

• The constant PM or reduced BCS Hamiltonian solved by Richardson can be

obtained by from the XXX family by choosing = .

•For the same linear combination in the Hyperbolic family:

,l l

l

H R g

2 z

BCS ï i i j

i ij

H S g S S

2 z

Hyper ï i ï j i j

i ij

H S g S S

Page 10: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Application to Samarium isotopes

G.G. Dussel, S. Pittel, J. Dukelsky and P. Sarriguren, PRC 76, 011302 (2007)

Z = 62 , 80 N 96

Selfconsistent Skyrme (SLy4) Hartree-Fock plus BCS in 11 harmonic

oscillator shells. 40 to 48 pairs in 286 double degenerate levels. Dim. of

the pairing Hamiltonian matrix ~ 1049 to 1053.

The strength of the pairing force is chosen to reproduce the

experimental pairing gaps in 154Sm (n=0.98 MeV, p= 0.94 MeV)

gn=0.106 MeV and gp=0.117 MeV. A dependence g=gn/A is assumed

for the isotope chain.

Page 11: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

-120

-110

-100

-90

-80

-70

-60

-50

-80 -60 -40 -20 0 20 40 60 80

-120

-100

-80

-60

-40

-20

0

-1,0 -0,5 0,0 0,5 1,0

-120

-100

-80

-60

-40

-20

-40 -20 0 20 40

-120

-100

-80

-60

-40

-20

-20 -15 -10 -5 0 5 10 15 20

Imaginary Part

G=0.4

C3

C3

C2C

2C1

C1

R

eal P

art

G=0.106

C4

C5

Imaginary Part

Re

al P

art

G=0.3

G=0.2

154Sm

Page 12: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Mass Ec(Exact) Ec(PBCS Ec(BCS+H) Ec(BCS)

142 -4.146 -3.096 -1.214 -1.107

144 -2.960 -2.677 0.0 0.0

146 -4.340 -3.140 -1.444 -1.384

148 -4.221 -3.014 -1.165 -1.075

150 -3.761 -2.932 -0.471 -0.386

152 -3.922 -2.957 -0.750 -0.637

154 -3.678 -2.859 -0.479 -0.390

156 -3.716 -2.832 -0.605 -0.515

158 -3.832 -3.014 -1.181 -1.075

Correlations Energies

Page 13: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

The Hyperbolic Model in Nuclear Structure

,

z

i i i j i j

i i j

H S G S S

Redefining the 0 of energy , absorbing the constant in

the chemical potential μ i i

,

i i i i j i ji ji i j

H c c G c c c c

The separable integrable Hyperbolic Hamiltonian

α is a new parameter that serves as an energy cutoff.

In BCS approximation:

The BCS Hamiltonian has ' ' '

'

i i i i i i

i

G u v

Exactly solvable H with non-

constant matrix elements

J. Dukelsky, S. Lerma H., L. M. Robledo, R. Rodriguez-Guzman, S. Rombouts, Phys. Rev. C 84, 061301(R) (2011)

i

unphysical

Page 14: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Mapping of the Gogny force in the Canonical Basis

We fit the pairing strength G and the interaction cutoff to the paring

tensor uivi and the pairing gaps i of the Gogny HFB eigenstate in the

Hartree-Fock basis.

Protons

o Gogny

_ Hyperbolico

' ' '

'

2 22

i i i i i i

i

i

i i

i i

G u v

u v

Page 15: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

M L D G EBCScorr EExa

corr

154Sm 31 95 9.9x1024 2.2x10-3 32.7 0.158 1.0164 2.9247

238U 46 148 4.8x1038 2.0x10-3 25.3 0.159 0.503 2.651

Page 16: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Models derived from r = 1 RG [SU(2) and SU(1,1)]

BCS or constant pairing Hamiltonian

Generalized Pairing Hamiltonians (Fermion and Bosons)

Central Spin Model (Quantum dot)

Gaudin magnets (Quantum magnetism)

Lipkin Model

Two-level boson models (IBM, molecular, etc..)

Atom-molecule Hamiltonians (Feshbach resonances in cold atoms)

Generalized Jaynes-Cummings models.

Breached superconductivity. LOFF and breached LOFF states.

p-wave pairing in 2D lattices.

Richardson-Gaudin-Kitaev model of topological supeconductivity.

Reviews: J.Dukelsky, S. Pittel and G. Sierra, Rev. Mod. Phys. 76, 643 (2004);

G. Ortiz, R. Somma, J. Dukelsky y S. Rombouts. Nucl. Phys. B 7070 (2005) 401

Page 17: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Exactly Solvable RG models for simple Lie algebras

Cartan classification of Lie algebras

rank An su(n+1) Bn so(2n+1) Cn sp(2n) Dn so(2n)

1 su(2), su(1,1)

pairing so(3)~su(2) sp(2) ~su(2) so(2) ~u(1)

2 su(3) Three

level Lipkins

so(5), so(3,2)

pn-pairing sp(4) ~so(5) so(4) ~su(2)xsu(2)

3 su(4) Wigner so(7)

FDSM sp(6) FDSM

so(6)~su(4)

color

superconductivity

4 su(5) so(9) sp(8)

so(8) pairing

T=0,1.

Ginnocchio. S=3/2

fermions

Page 18: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Exactly Solvable Pairing Hamiltonians

1) SU(2), Rank 1 algebra

i i i j

i ij

H n g P P 2) SO(5), Rank 2 algebra

i i i j

i ij

H n g P P

4) SO(8), Rank 4 algebra

J. Dukelsky, V. G. Gueorguiev, P. Van Isacker, S. Dimitrova, B. Errea y S. Lerma H. PRL 96 (2006) 072503.

S. Lerma H., B. Errea, J. Dukelsky and W. Satula. PRL 99, 032501 (2007).

3) SO(6), Rank 3 algebra

i i i j

i ij

H n g P P

01 10

0 0

1 1,

2 2

ST i i i j i j

i ij ij

i i i i i i

H n g S S g D D

S a a D a a

B. Errea, J. Dukelsky and G. Ortiz, PRA 79, 051603(R) (2009).

Page 19: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

1

1 1

M L

i i

i

E e u

1 2

' ' '

2 12 1 10

2

M M Li

i i

l

e e e e g

Exact solution of the SO(8) model

32 1 4 1

' ' ' ' '' ' ' '

2 1 1 1 10

2

MM M M M

ie

3 2

' '' '

2 1 10

2

M M L

i i

4 2

' '' '

2 1 10

2

M M L

i i

Page 20: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

80 Nucleons in L=50 equidistant levels

Quartet: 1e, 1, 1, 1

n-n Cooper pair: 1e

p-p Cooper pair: 1e, 2, 1, 1

Page 21: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

0 2 4 6 8 100

10

20

30

40

50

1 3 5 7 90

10

20

30

40

T=0

T=1

T=0,1

ET

T

Even T

T=0

T=1

T=0,1

T

Odd TG=0.22

1 1

,2 2

e o

T T

T T

E T T E T T EJ J

JT: iso-MoI, : Linear enhancement factor (Wigner energy),

E: 2qp excitation (=2)

Analysis of the nuclear symmetry energy vs T in terms of the Isocranking model (W.

Satula and R. Wyss, PRL 86, 4488 (2001) and 87, 052504 (2001).

Page 22: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Linear enhancement factor λ Inverse of the Iso-MoI

G=0.16

G=.22

T=0 circles, T=1diamonds, T=0,1 triangles. Solid (open) -> even (odd) T

Wigner limit

Page 23: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Picket-Fence model and the thermodynamic limit of p-n BCS

Equidistant single particle levels , 1, ,2

i

ii

ST i i i j i j

i ij ij

H n g S S D D

SU(4) symmetric pairing Hamiltonian

Quarter filling , with 0.15 0.54N g f

Thermodynamic limit 1

, ,4 4

NN

BCS equations:

1/2 1/2

2 20 02 2

14 1 1,d d

g

G. F. Bertsch, J. Dukelsky, B. Errea, C. Esebbag, Ann. Phys. 325 (2019) 1340

Page 24: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Unlike the SU(2) RG model, we cannot derive analytically the continuous limit. Proceed

numerically by expanding the GS and quasiparticle energies as

4

2 3

1,

1/

4 4 1 4

14 1 2 4 1 4 4 2

2

18

GS

q GS GS

o e GS GS GS

c i i

i

E b c da N

N N N N

E n E n E n

n E n E n E n

gn n

160 1000, 40 250N n

Page 25: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The
Page 26: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

0 20 40 60 80 100

70

80

90

100

110

120

130

140E

corr

ela

cio

n

T=(N-Z)/2

exact

BCS

200 levels, 200 particles

=0.5, g=-0.2

Page 27: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Odd-Even Pair effect as a signal of quartet correlations

90 95 100 105 110 115

-3

-2

-1

0

1

2

2E

A+

2-E

A-E

A+

4

Z=N

Exact

p-n BCS

200 levels, g=-0.2

T=0,1 Pairing

Page 28: Exactly solvable Richardson-Gaudin models in nuclear structuredigital.csic.es/bitstream/10261/154610/1/Exactly solvable Richardso… · R S g S S S S Y S S z ªº «» ¬¼ ¦ •The

Summary

• For finite systems, PBCS improves significantly over BCS but it is still far from

the exact solution. Typically, PBCS misses ~ 1 MeV in binding energy.

•The Isovector SO(5) and the SO(8) pairing models are excellent benchmark

models to study different approximations dealing with quartet correlations,

clusterization and condensation. The SO(8) model can also describe spin 3/2

cold atoms where nuclear physics could be explored in the lab.

•SO(5) has been used to test the QCM approximation in: N. Sandulescu, D. Negrea,

J. Dukelsky, and C. W. Johnson Phys. Rev. C 85, 061303(R) (2012)

•The exact GS energy of the T=0,1 pairing Hamiltonian goes to p-n BCS energy

in the thermodynamic limit. However, quartet correlations are important for finite

systems.

•Alpha phases in nuclear matter require more realistic interactions: contact,

schematic or realistic nuclear forces. Could they be explore with cold atoms in

optical lattices?