23

Euler-characteristic boundary conditions for lattice ...fdubois/...LODI { Local One-Dimensional Inviscid equations Objective oT nd the or u i to set the Dirichlet boundary condition

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Euler-characteristic boundary conditions

    for lattice Boltzmann methods

    Salvador Izquierdo, Norberto [email protected]

    Fluid Mechanics Group (University of Zaragoza - Spain)

    CEMAGREF - Antony (France)December 2008

    Fluid Mechanics Group (UZ) December 2008 1 / 23

  • Outline

    1 Introduction

    2 Euler-characteristic boundary conditions for LB

    3 Results

    4 Conclusions

    Fluid Mechanics Group (UZ) December 2008 2 / 23

  • Introduction

    Table of contents

    1 Introduction

    2 Euler-characteristic boundary conditions for LB

    3 Results

    4 Conclusions

    Fluid Mechanics Group (UZ) December 2008 3 / 23

  • Introduction

    Motivation: open boundaries

    Universidad_de_Zaragoza::Área_de_Mecánica_de_Fluidos::lb_preconditioning_urv

    Appendix B :: ‘problems’ in turbulent simulations

    LANDSAT 7 on 9/15/1999

    Alejandro Selkirk IslandRe 21400

    LB LES

    Open boundary conditions (constant pressure, far-�eld environment)

    Non-reecting open boundaries

    Fluid Mechanics Group (UZ) December 2008 4 / 23

  • Introduction

    Motivation: examples

    Microcantilever

    Force

    Pout

    10 μm

    gfn::uz

    Classical CFD Navier-Stokes equations

    by Antonio Gómez

    Grupo de fluidodinámica numérica

    Microcantilever: uid-structure interaction where small pressureperturbations modify the behavior.

    Industrial boiler: ames generate pressure waves which have inuence onthe combustion.

    Fluid Mechanics Group (UZ) December 2008 5 / 23

  • Introduction

    Review of solutions

    Zero-gradient boundary conditions at outlet (Incompressible!?)

    [Yu et al. (2005)][Yang's Thesis (2007)]

    Non-reecting boundary conditions (thermodynamical consistency?)

    Absorbing layers [Ricot et al. (2008), Tekitek et al. (2008), da Silva (2007)]Characteristic BC [Kam et al. (2007), Dehee (2008)] (without details of theimplementation )

    Fluid Mechanics Group (UZ) December 2008 6 / 23

  • Euler-characteristic boundary conditions for LB

    Table of contents

    1 Introduction

    2 Euler-characteristic boundary conditions for LB

    3 Results

    4 Conclusions

    Fluid Mechanics Group (UZ) December 2008 7 / 23

  • Euler-characteristic boundary conditions for LB

    Lattice Boltzmann method

    LBM with MRT collision operator

    f(xi + ei�t; t+ �t)� f(xi; t) = �M�1S[m(xi; t)�m

    eq(xi; t)]

    Transformation matrix D2Q9

    0BBB@

    e

    jxqxjyqypxxpxy

    1CCCA =

    0BBB@

    1 1 1 1 1 1 1 1 1

    �4 �1 �1 �1 �1 2 2 2 2

    4 �2 �2 �2 �2 1 1 1 1

    0 1 0 �1 0 1 �1 �1 1

    0 �2 0 2 0 1 �1 �1 1

    0 0 1 0 �1 1 1 �1 �1

    0 0 �2 0 2 1 1 �1 �1

    0 1 �1 1 �1 0 0 0 0

    0 0 0 0 0 1 �1 1 �1

    1CCCA

    0BBB@

    f0f1f2f3f4f5f6f7f8

    1CCCA

    Relaxation matrix

    MRT: S = diag(0; se; s�; 0; sq; 0; sq; s� ; s�)! related to transport properties

    SRT: � = 1=s� ! viscosity (and stability)

    TRT: s� = se = s�, sq

    Fluid Mechanics Group (UZ) December 2008 8 / 23

  • Euler-characteristic boundary conditions for LB

    LB boundary conditions: velocity

    INLET

    xb xf

    dq dx

    OUTLET

    xbxf

    dqdxUBB { velocity bounce-back

    APPROACH: reection rule + Dirichlet BC (+ correction)

    f��(xf ; t+ 1) = ~f�(xf ; t)� 2feq�� (xb; t̂)

    where:feq�� = !��0c

    �2s (e� � u)

    is the anti-symmetric part of the feq�

    Fluid Mechanics Group (UZ) December 2008 9 / 23

  • Euler-characteristic boundary conditions for LB

    LB boundary conditions: pressure

    INLET

    xb xf

    dq dx

    OUTLET

    xbxf

    dqdx

    PAB { pressure anti-bounce-back

    APPROACH: reection rule + Dirichlet BC + correction

    f��(xf ; t+ 1) = � ~f�(xf ; t)

    + 2feq+� (xb; t̂)

    + (2� s�)�f+� (xf ; t)� f

    eq+� (xf ; t)

    where:

    feq+� = !��+

    1

    2!��0c

    �4s

    �(e� � u)

    2� c

    2s(u � u)

    f+� =

    1

    2(f� + f��)

    are the symmetric part of feq� and f�Fluid Mechanics Group (UZ) December 2008 10 / 23

  • Euler-characteristic boundary conditions for LB

    LODI { Local One-Dimensional Inviscid equations

    Objective

    To �nd the � or ui to set the Dirichlet boundary condition in the open boundary,extracting the pressure-wave reection component. Based on [Poinsot and Lelle(1992)]

    Solving in the boundary the 2D Euler equations in x-direction:

    @�

    @t+ u

    @�

    @x+ �

    @u

    @x= 0

    @u

    @t+ u

    @u

    @x+

    1

    @p

    @x= 0

    @v

    @t+ u

    @v

    @x= 0

    @�E

    @t+

    @ [u(�E + p)]

    @x= 0

    Eigenvalues!

    Fluid Mechanics Group (UZ) December 2008 11 / 23

  • Euler-characteristic boundary conditions for LB

    LODI with wave amplitudes

    Wave amplitudes: (isothermal! ! p = c2s�)

    L =

    8>><>>:

    L1L2L3L4

    9>>=>>;

    =

    8>>>>><>>>>>:

    (u� cs)�@p@x� �cs @u@x

    u @v@x

    u�c2s

    @�@x� @p

    @x

    (u+ cs)�@p@x

    + �cs@u@x

    9>>>>>=>>>>>;

    LODI equation using L (without the energy equation):

    @�

    @t+

    1

    2c2s(L4 + L1) +

    1

    c2sL3 = 0

    @u

    @t+

    1

    2�cs(L4 � L1) = 0

    @v

    @t+ L2 = 0

    x

    y

    L1 (ux-cs)L1 (ux-cs)

    L4 (ux+cs)L4 (ux+cs)

    L2 (ux)L2 (ux)L3 (ux)L3 (ux)

    Fluid Mechanics Group (UZ) December 2008 12 / 23

  • Euler-characteristic boundary conditions for LB

    Equilibrium distribution functions

    Modi�ed meq� at the boundary: (�! heat capacity ratio)

    eeq = �2(2� �)�+ �0(u2 + v2)�eq = �+ �0(u

    2 + v2)

    qeqx = ��0uqeqy = ��0v

    peqxx = �0(u2 � v2)

    peqxy = �0uv

    In the continuum limit:

    Speed of sound ! cs =p�RT =

    q�p�

    Viscosity ! � = 13

    �1

    s�� 1

    2

    Bulk viscosity ! � = 2��6

    �1

    se� 1

    2

    Fluid Mechanics Group (UZ) December 2008 13 / 23

  • Euler-characteristic boundary conditions for LB

    Implementation

    x

    y

    L1 (ux-cs)L1 (ux-cs)

    L4 (ux+cs)L4 (ux+cs)

    L2 (ux)L2 (ux)L3 (ux)L3 (ux)

    Approach: UBB or PAB with computed � and ui from LODI

    LODI discretization (OUTLET{PAB)

    �(t̂) � �(t̂� 1)� �t2c2s

    �L4(t̂� 1) + L1(t̂� 1)

    �� 1

    c2sL3(t̂� 1)

    u(t̂) � u(t̂� 1)� �t2�cs

    �L4(t̂� 1)� L1(t̂� 1)

    v(t̂) � v(t̂� 1)� �tL2(t̂� 1)

    Models for Lin

    L1(xb; t̂� 1) = k1(p(xb; t̂� 1)� pb)where:

    k1 = �1(1�Ma2)cs

    L

    Fluid Mechanics Group (UZ) December 2008 14 / 23

  • Results

    Table of contents

    1 Introduction

    2 Euler-characteristic boundary conditions for LB

    3 Results

    4 Conclusions

    Fluid Mechanics Group (UZ) December 2008 15 / 23

  • Results

    Results I: 1D wave

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1

    T

    X

    (a)

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1

    X

    (b)

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1

    X

    (c)

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1

    X

    (d)

    (a) equilibrium distribution functions

    (b) inlet: UBB; outlet:PAB

    (c) characteristic boundary conditions (CBC)

    (d) CBC with corrections

    Fluid Mechanics Group (UZ) December 2008 16 / 23

  • Results

    Results II: reection ratio

    se

    |r|

    0.8 1.2 1.60

    0.1

    0.2InletOutlet

    u00.06 0.12

    ρmax0.08 0.16

    s e(|r

    inle

    t| min)

    1.2 1.60.5

    0.6

    0.7

    0.8

    0.9

    |r|

    1 2 3 4 50

    0.1

    0.2InletOutlet

    sνκ

    (|rou

    tlet| m

    in)

    1.2 1.61

    1.1

    1.2

    1.3

    u00.04 0.08

    ρmax0.08 0.16

    Evaluate performance of two parameters:

    bulk viscosity in the uid domain (se)heat capacity ratio in the boundary (�)

    Fluid Mechanics Group (UZ) December 2008 17 / 23

  • Results

    Results III: mass balance

    Laminar channel

    CBC: (i) avoids pressure reection + (ii) allows mass conservation(well-posedness of BC)

    Fluid Mechanics Group (UZ) December 2008 18 / 23

  • Results

    Results IV: unsteady simulation

    Flow around a square cylinder

    UBB-PAB: resonance has e�ects on the solution

    CBC is the solution

    Fluid Mechanics Group (UZ) December 2008 19 / 23

  • Results

    Results IV: unsteady simulation

    Time steps

    Cd

    0 25000 50000 75000 100000

    -6

    -4

    -2

    0

    2 UBB-PAB

    Time steps

    Cd

    0 25000 50000 75000 100000

    -6

    -4

    -2

    0

    2 CBC

    93000 96000 990001.39

    1.395

    1.4

    1.405

    1.41

    1.415

    93000 96000 990001.39

    1.395

    1.4

    1.405

    1.41

    1.415

    Frequency

    FF

    T(C

    d)

    0.001 0.002 0.003 0.004 0.0050

    0.001

    0.002

    0.003

    0.004

    0.005

    0.006

    0.007 CBCUBB-PAB

    Fluid Mechanics Group (UZ) December 2008 20 / 23

  • Conclusions

    Table of contents

    1 Introduction

    2 Euler-characteristic boundary conditions for LB

    3 Results

    4 Conclusions

    Fluid Mechanics Group (UZ) December 2008 21 / 23

  • Conclusions

    Conclusions

    No previous implementation description of CBC for LB (isothermal)

    Characteristic boundary conditions:

    Presented for 2D open boundaries with Dirichlet conditionsDirect application for: 3D, walls and Neumann conditionsReduction of the interaction up to 99%

    Key points:1 NSCBC by Poinsot and Lele (1992)2 Multireection boundary conditions by Ginzburg et al.(2008)

    Fluid Mechanics Group (UZ) December 2008 22 / 23

  • Conclusions

    Bibliography

    T. Colonius, Annu. Rev. Fluid Mech. 36, 315 (2004)

    T. Poinsot and S. K. Lele, J. Comput. Phys. 101, 104 (1992)

    I. Ginzburg, F. Verhaeghe, and D. d'Humi�eres, Commun. Comput. Phys.,3(2),427478, (2008).

    S. Izquierdo and N. Fueyo, Phys. Rev. E. 78, 046707 (2008)

    Fluid Mechanics Group (UZ) December 2008 23 / 23

    IntroductionEuler-characteristic boundary conditions for LBResultsConclusions