41
Ethylene Synthesis: Man versus Nature Kelly Miller

Ethylene Synthesis: Man versus Nature - Home - … million tons/year 23.3 million tons/year enzymatic metabolism 15-35 C chemical catalysis 300-1000 C Man versus Nature (a) Sawada,

Embed Size (px)

Citation preview

Ethylene Synthesis: Man versus Nature

Kelly Miller

Polymers and oligomers

Synthetically useful small molecules

Ethylene oxide 21 million tons/year

Vinyl chloride 13 million tons/year Styrene

5 million tons/year

Ethylene Applications

(a) Levdikova, T. PR Web. http://www.prweb.com/releases/2014/02/prweb11543300.htm (accessed 4/3/14). (b) James, S. PR Web. http://www.prweb.com/releases/Acetic-Acid-Market/GrandViewResearch/prweb11623679.htm (accessed 4/3/14).

1

Polymers: n

LDPE: (low density)

HDPE: (high density) Plastic wrap, laminate coatings,

plastic bags, snap-on lids

3,100 tons/year 5,700 tons/year Bottle caps, chemical resistant pipes, milk jugs, garbage cans, toys

Poly(ethylene) - PE

Oligomers:

Waxes α-olefins

C12-C18 olefins mostly for detergents 1.9 million tons/year

40-50% Mol %

C number C12 C18

(a) Chem. Eng. News. 2002, (June 24) p. 42; (b) Keim, W. Angew. Chem. Int. Ed. 2013, 52, 12492-12496; (c) Mol, J.C. J. Molec. Catal. A, 2004, 213, 39-45

Figure 1. Schulz-Flory distribution of olefin products from Shell Higher Olefin Process

2

23.3 million tons/year 143 million tons/year

enzymatic metabolism

15-35 °C

chemical catalysis

300-1000 °C

Man versus Nature

(a) Sawada, S., Totsuka, T. Atmos. Environ. 1986, 20, 821-832 (b) True, W. Oil and Gas J. [Online] 2013, 111, 1-6 . Available from OGJ Archives. http://www.ogj.com/articles/print/volume-111/issue-7.html (accessed March 4, 2014).

3

Thermal Cracking of Hydrocarbons

750-1000 °C

ΔH298K = 33 kcal/mol

Oxidative Dehydrogenation of Ethane

ΔH298K = - 25 kcal/mol

400-600 °C

Dehydration of Ethanol

Methanol to Olefins

Oxidative Coupling of Methane

300-400 °C

ΔH298K = 11 kcal/mol

(a) van Goethem, M.W.M., Barendregt, S., Grievink, J., Moulijn J.A., Verheijen, P.J.T. Ind. Eng. Chem. Res. 2007, 46, 4045-4062 (b) Gartner, C.A., van Veen, A.C., Lercher, J.A. ChemCatChem, 2013, 5, 3196-3217; (c) Zavyalova, U., Holena, M., Schlogl, R., Baerns, M. ChemCatChem, 2011, 3, 1935-1947

300-500 °C

ΔH298K = 15 kcal/mol

650-900 °C

ΔH298K = - 30 kcal/mol

Mankind’s Syntheses 4

Nature’s Synthesis: Plants

L-methionine

S-adenosylmethionine SAM

1-aminocyclopropanecarboxylic acid ACC

5

Nature’s Synthesis: Microbes

2-ketoglutarate pathway: Plant pathogens

2-ketoglutarate oxygenase

EC: 1.13.12.19

Successive fermentation and elimination: Man and nature

6

U.S. Energy Information Administration, www.eia.gov (accessed Mar. 24)

Readily Available Hydrocarbons

Figure 2. Common fossil fuel sources and wells required to extract gas or oil

Component Range (wt %)

Methane 87-97

Ethane 1.5-7

Propane 0.1-1.5

Butane 0.01-0.03

C5-C10 0.02

Table 1. Average composition of North American fossil fuel gases

Component Range (wt %)

Paraffins 15-60

Naphthenes 30-60

Aromatics 3-30

Table 2. Fractions of crude oil

7

C1-C4

CO2

H2S

H2O

70-100 bar

2-3 bar

sweetened gas

(a) Huttenhuis P.J.G.; Agrawal, N.J.; Hogendoorn, J.A.; Versteeg, G.F. J. Pet. Sci. Tech. 2007, 55, 122-134. (b) Banat, F.; Younas, O.; Didarul, I. J. Nat. Gas Sci. Eng. 2014, 16, 1-7.

Sweetening Natural Gas 8

(a) Petzny, W.J. WO2013150467, 2013. (b) Industrial Organic Chemicals, 3rd ed., Wittcoff, Reuben, Plotkin (Wiley, Hoboken, 2013). (c) Petrochemical Processes, 1. Synthesis-Gas Derivatives and Major Hydrocarbons, Chauvel, Lefebvre (Editions Technip, Paris, 1989)

Fraction Boiling Point Range °C Gases < 32

Light naphtha 32-88 Heavy naphtha 88-193

Kerosene 193-271 Atmospheric gas oil 271-343

Atmospheric residuum 343+ Vacuum gas oil 343-538

Vacuum residuum 538+

Crude Oil Distillation

Table 3. Distillation fractions of crude oil and average boiling point ranges

9

Fig. 4

Figure 3. Equilibrium conversion for dehydrogenation of ethane, propane, and butane at 1 bar

(a) The Properties of Gases and Liquids, 4th ed., Ried, Prausnitz, Poling (McGraw-Hill, New York, 1988). (b) Noureddine, H.; Nahla, F.; Zouhour, K.; Marie-Noelle, P. Energy Convers. Manag. 2013, 70, 174-186

ΔH298K = 33 kcal/mol

Δ

Process Conditions

750-1000 °C

0.01-0.5 s

ΔH298K = 18 kcal/mol

10

(a) Pyl, S.P.; Scietekat, C.M.; Reyniers, M-.F.; Abhari, R.; Marin, G.B.; Van Geem, K.M. Chem. Eng. J. 2011, 176-177, 178-187. (b) Sohn, S.W.; Rice, L.H.; Kulprathipanja, S. (UOP LLC, USA). Ethylene production by steam cracking of normal paraffins. US Patent 20110245556, October 6, 2011. (c) Schrod, H.M. (Saudi Basic Industries Co., SA). Process for production of hydrocarbon chemicals from crude oil. WIPO Patent 2013150467, October 10, 2013

Hydrocarbon Cracking Pilot Plant

Figure 4. Schematic overview of pilot plant setup

Product yield (wt%)

δ = 30% δ = 45% δ = 70%

Methane 16.58 16.28 16.38 Ethylene 29.86 30.85 32.54 Ethane 4.68 4.16 3.69

Propene 17.73 17.59 17.57 Propane 4.68 4.16 3.69 Benzene 5.66 5.68 5.64 Toluene 2.32 2.23 2.34 Styrene 0.70 0.59 0.62

Table 4. Influence of steam dilution (δ) on product distribution from pure ethane feed.

11

ΔH298K = 90 kcal/mol

ΔH298K = 36 kcal/mol

ΔH298K = - 3 kcal/mol

ΔH298K = - 24 kcal/mol ΔH298K = - 104 kcal/mol

ΔH298K = - 69 kcal/mol

Initiation:

ΔH298K = 101 kcal/mol Propagation:

Termination:

(a) van Goethem, M.W.M.; Barendregt, S.; Grievink, J.; Verheijen, P.J.T.; Dente, M.; Ranzi, E. Chem. Eng.Res. Des. 2013, 91, 1106-1110. (b) Ranjan, P.; Kannan, P.; Al-Shoaibi, A.; Srinivasakannan, C. Chem. Eng. Tech. 2011, 6, 1093-1097.

Thermal Cracking Ethane 12

(a) Dijkmans, T.; Pyl, S.P.; Reyniers, M-.F.; Abhari, R.; Van Geem, K.M.; Marin, G.B. Green Chem. 2013, 15, 3064-3076. (b) Pyl, S.P.; Dijkmans, T.; Antonykutty, J.M.; Reyniers, M-.F.; Harlin, A.; Van Geem, K.M.; Marin, G.B. Bioresour. Technol. 2012, 126, 48-55.

Thermal Cracking Higher Hydrocarbons

Dehydrogenation

Primary Cracking

Secondary Cracking

13

Oxidative Dehydrogenation of Ethane

(a) Kustov, L.M.; Kucherov, A.V.; Finashina, E.D.; Simanzhenkov, V.; Krzywicki, A. (Nova Chemicals, Intl.) Membrane-supported catalysts and the process of oxidative dehydrogenation of ethane using the same. US Patent 20130072737, March 21, 2013. (b) Achieva, D.; Brzic, D.; Peglow, M.; Heinrich, S.; Morl, L. Chemie. Ingenieur. Technik. 2004, 76, 1295-1296.

750-1000 °C

ΔH298K = 33 kcal/mol

ΔH298K = - 25 kcal/mol

400-600 °C

Figure 5. Dependence of ethylene yield on C2H6:O2 ratio over Al2O3 supported VO4. Temperature of reaction is 590 °C.

C2H6 : O2

Eth

ylen

e Yi

eld

[%]

ΔH298K = - 247 kcal/mol

Δ

14

Mars and Van Krevelen Mechanism: VOx example

(a) Zhu, H.; Ould-Chikh, S.; Anjum, D.H.; Sun, M.; Biausque, G.; Basset, J-.M.; Caps, V. J. Catal. 2012, 285, 292-303. (b) Agouram, S.; Dejoz, A.; Ivars, F.; Vazquez, I.; Lopez Nieto, J.M.; Solsona, B. Fuel Process. Technol. 2014, 119, 105-113. (c) Chen, K.; Bell, A.T.; Iglesia, E. J. Catal. 2002, 209, 35-42.

O2

15

Ethylene from Bioethanol

Braskem’s Triunfo plant – San Paulo, Brazil

Figure 6. Microbial fermentation of glucose to produce ethanol

Braskem Ethanol to Ethylene Plant, Brazil. http://www.chemicals-technology.com/projects/braskem-ethanol/ (accessed 4/12/14).

16

Dehydration of Ethanol Easily Occurs Over Heterogeneous Catalysts

Al2O3

400-450 °C Conversion: 80%

(a) Chen, Y.; Wu, Y.; Tao, L.; Dai, B.; Yang, M.; Chen, Z.; Zhu, X. J. Ind. Eng. Chem. 2010, 16, 717-722. (b) Solvay, Bruxelles, Process for the manufacture of ethylene by dehydration of ethanol. European Patent 2594546, November 17, 2011.

HZSM-5

300 °C Conversion: 98%

Si/AlPO4

320 °C Conversion: 90%

• Water deactivates active sites

• Dry ethanol not needed

• No coking on milder acid sites

• Coking deactivates catalyst

17

Ethylene from Bioethanol is Commercially Utilized

Terephthalic acid

Polyethylene terephthalate

PlantBottleTM Technology. http://www.coca-colacompany.com/plantbottle-technology/ (Accessed 4/15/14)

Ag0

O2

18

H3O+

(a) Christiansen, M.A.; Mpourmpakis, G., Vlachos, D.G. ACS Catal. 2013, 3, 1965-1975. (b) Solvay, Bruxelles, Process for the manufacture of ethylene by dehydration of ethanol. European Patent 2594546, November 17, 2011. (c) Knoezinger, H., Koehne, R. J. Catal. 1966, 5, 264-270.

Pathway B

Pathway A Pathway A

Temperature Dependence of Dehydration Pathway

T > 300 °C favors path B T < 300 °C favors path A Figure 7. Dependence of ethanol decomposition

on catalyst temperature.

Partia

l Pre

ssur

e (To

rr)

Temperature (° C)

Alcohol

Water

Ether

Olefin

19

EaE2 = 37 kcal/mol

Alumina-catalyzed E2 Elimination

(a) DeWilde, J.F.; Chiang, H.; Hickman, D.A.; Ho, C.R.; Bhan, A. ACS Catal. 2013, 3, 798-807. (b) Christiansen, M.A.; Mpourmpakis, G.; Vlachos, G.D. ACS Catal. 2013, 3, 1965-1975. (c) Zhang, M.; Yu, Y. Ind. Eng. Chem. Res. 2013, 52, 9505-9514

Product C2H5OD C2D5OD Ethylene 0.89 + 0.14 2.42 + 0.19

Diethyl Ether 0.97 + 0.12 1.01 + 0.14

Table 5. Kinetic isotope effects for ethylene and diethyl ether formation over γ-Al2O3 at 215 °C

EaE1 = 57 kcal/mol

20

Ea = 35 kcal/mol

(a) Bhan, A. et al. ACS Catal. 2013, 3, 798-807; (b) Christiansen, M.A., Mpourmpakis, G., Vlachos, G.D. ACS Catal. 2013, 3, 1965-1975; (c) Zhang, M., Yu, Y. Ind. Eng. Chem. Res. 2013, 52, 9505-9514

Alumina-catalyzed E2 Elimination

EaE2 = 38 kcal/mol

EaE1 = 52 kcal/mol

21

Component Range (mol %)

Methane 87-97

Ethane 1.5-7

Propane 0.1 – 1.5

Butane 0.01-0.3

Pentanes plus (C5H12 – C10H22) 0.02

Impurities (N2, CO2, H2S, water) < 7

Table 6. Average concentration of components in natural gas wells in western Canada, Ontario, and U.S. plays

Getting the Most Out of Fossil Fuels 650-900 °C

(a) Zavyalova, U.; Holena, M.; Schloegl, R.; Baerns, M. ChemCatChem, 2011, 3, 1935-1947. (b) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras. E-.J. (Siluria Technologies, Inc. USA). Catalysts for petrochemical catalysis. US 20130023709, January 24, 2013

ΔH1073K = - 124 kcal/mol

ΔH1073K = - 191 kcal/mol

800 °C

800 °C

ΔH1073K = - 33 kcal/mol

22

Direct Coupling of Methane

Catalyst Types

1) Reducible metal oxide

V2O5, MoO3

2) Non-reducible rare-earth oxides LaO3, CeO2

3) Mixed metal oxides Au/Co3O4, Co/MnO

ΔH298K = - 30 kcal/mol

(a) Zavylova, U.; Holena, M.; Schloegl, R.; Baerns, M. ChemCatChem, 2011, 3, 1935-1947. (b) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras, E-.J. (Siluria Technologies, Inc., USA) Catalysts for Petrochemical Catalysis. US Patent 20130023709, January 24, 2013. (c) Li, Z-.Y.; Yuan, Z.; Zhao, Y-X.; He, S-.G. Chem. Eur. J. 2014, 20, 1-8.

Figure 8. Various unsupported single oxides tested in OCM reaction. S(C2) = selectivity for C2H6 and C2H4

23

Key Steps in Oxidative Coupling of Methane

(a) Lunsford, J.H. Angew. Chem. Int. Ed. Engl. 1995, 34, 970-980. (b) ) Cizeron, J.M.; Scher, E.; Zurcher, F.R.; Schammel, W.P.; Nyce, G.; Rumplecker, A.; McCormick, J.; Alcid, M.; Gamoras, J.; Rosenberg, D.; Ras, E-.J. (Siluria Technologies, Inc., USA) Catalysts for Petrochemical Catalysis. US Patent 20130023709, January 24, 2013.

24

(a) Union Gas http://www.uniongas.com/about-us/about-natural-gas/Chemical-Composition-of-Natural-Gas (b) El-Halwagi, M. et al. ACS Sust. Chem. Eng. 2014, 2, 30-37

ΔH298K = -8 kcal/mol

ΔH298K = -10 kcal/mol

ΔH298K = -12 kcal/mol

Indirect Use of Methane

300-500 °C

ΔH298K = 15 kcal/mol

Figure 10. SEM image of SAPO-34 with cartoon of active cages

25

Hydrocarbon Pool Mechanism

Figure 11. Original hydrocarbon pool mechanism as proposed by Dahl and Kolboe

(a) Dahl, I.M., Kolboe, S. J. Catal. 1994, 149, 458-464 (b) Lie, Z. et al. Catal. Commun. 2014, 46, 36-40

Figure 13. 13C incorporation into products and entrained species after 12C-methanol feed is switched to a 13C-methanol feed.

Figure 12. Current understanding of HP mechanism

26

Competing Pathways: Side-Chain v. Paring

(a) Lesthaeghe, D. et al. Chem. Eur. J. 2009, 15, 10803-10808 (b) Ilias, S., Bhan, A. J. Catal. 2014, 311, 6-16. (c) Arstad, B.; Kolboe, S.; Swang, O. J. Phys. Chem. A 2005, 109, 8914-8922.

Side-chain Paring

CH3OH

CH3OH

H2O

H2O

2 CH3OH

27

Biosynthetic Pathway 28

S-adenosylmethionine Synthetase: EC 2.5.1.6

(a) Van de Poel, B.; Bulens, I.; Oppermann, Y.; Hertog, M.L.A.T.M.; Nicolai, B.M.; Sauter, M.; Geeraerd, A.H. Physiol. Plant. 2013, 148, 176-188. (b) Komoto, J.; Yamada, T.; Takata, Y.; Markham, G.M.; Takusagawa, F. Biochem. 2004, 43, 1821-1831.

S-adenosylmethionine

Asp16

Lys17

29

Capitani, G. et al. J. Mol. Biol. 1999, 294, 745-756

ACC Synthase: EC 4.4.1.14

1-aminocyclopropylcarboxylic acid ACC

Pyridoxal-5’-phosphate PLP

PLP-bound SAM

S-adenosylmethionine SAM

Methylthioadenosine MTA

30

(a) Yoo, A.; Seo, Y.S.; Jung, J-.W.; Sung, S-.K.; Kim, W.T.; Lee, W.; Yang, D.R. J. Struct. Biol. 2006, 156, 407-420. (b) Rocklin, A. M.; Kato, K.; Liu, H-.W.; Que Jr., L.; Lipscomb, J.D. J. Biol. Inorg. Chem. 2004, 9, 171-182. (c) Meng, D.; Shen, L.; Yang, R.; Zhang, X.; Sheng, J. Biochem. Biophys. Acta 2014, 1840, 120-128.

ACC Oxidase: EC 1.14.17.4 ACC

2 H2O O2

HCO3-

ascorbate dehydroascorbate

- OH

H2O + HCO3-

CO2 + HCN

31

Li, N.; Jiang, X.N.; Cai, G.P.; Yang, S.F. J. Biol. Chem. 1996, 271, 25738-25741

Figure 17. Production of ethylene by bifunctional hybrid enzyme in which (1mM) S-AdoMet was used as the ethylene precursor

Heterologous Expression of Ethylene Forming Enzymes

Figure 16. Expression of bifunctional fusion protein in E. coli. (A) Hybrid enzyme inserted into pET-14b. (B) Purification of protein samples.

Escherichia coli

32

Figure 18. Budding Saccharomyces cerevisiae, commonly refered to as “bakers’ yeast.”

S. cerevisiae: Ethanol Factories

Scheme 1. Glycolysis and fermentation of glucose to ethanol in S. cerevisiae

glycolysis

pyruvate

coenzyme A

NADH

acetyl CoA

NADH

(a) Quevedo-Hidalgo, B.; Monsalve-Marin, F.; Narvaez-Rincon, P.C.; Pedroza-Rodriquez, A.M.; Velasquez-Lozano, M.E. World J. Microbiol. Biotechnol. 2013, 49, 459-466. (b) MetaCyc Pathway: Pyruvate Fermentation to Ethanol I. http://www.biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-5480&detail-level=4&detail-level=3 (accessed 4/4/14).

33

Microbial Ethanol to Ethylene

Phaseollidin hydrate Phaseollidin

Phaseollidin hydratase

EC 4.2.1.97

S. cerevisiae

(a) Marliere, P. EP 2336340, June 22, 2011. (b) Singh, A.; Bajar, S.; Bishnoi, N.R. Fuel, 2014, 116, 699-702

Phaseollidin hydratase

EC 4.2.1.97

34

Ketoglutarate to Ethylene

L-glutamate oxidase

EC 1.4.3.2

Microbial 2-ketoglutarate pathway:

2-ketoglutarate oxygenase

EC 1.13.12.19

(a) Guerro, F.; Carbonell, V.; Cossu, M.; Correddu, D.; Jones, P.R. PLoS ONE, 2012, 7, 1-11. (b) Johansson, N.; Quehl, P.; Norbeck, J.; Larsson, C. Microb. Cell Fact. 2013, 12, 89-95.

Oxidation of Glutamate

35

Microbial Production of Glutamate

Figure 19. Electron micrograph of Methanomonas methylovora

Figure 20. Time course of L-glutamic acid accumulation by M. methylovora. , L-glutamic acid; , bacterial growth.

L-glutamic acid

28 °C Co

mpon

ent G

rowt

h in B

uffer

Med

ium

(a) Oki, T.; Sayama, Y.; Nishimura, Y.; Ozaki, A. Agr. Biol. Chem. 1968, 32, 119-120. (b) Oki. T.; Kitai, A.; Kouno, K.; Ozaki, A. J. Gen. Appl. Microbiol. 1973, 19, 79-83.

2% CH3OH buffer solution

36

Microbial Methanol to Ethylene

CH3OH M. methylovora

37

Thermal Cracking of Hydrocarbons

750-1000 °C

ΔH298K = 33 kcal/mol

Oxidative Dehydrogenation of Ethane

ΔH298K = - 25 kcal/mol

400-600 °C

Dehydration of Ethanol

Methanol to Olefins

Oxidative Coupling of Methane

300-400 °C

ΔH298K = 11 kcal/mol

(a) van Goethem, M.W.M., Barendregt, S., Grievink, J., Moulijn J.A., Verheijen, P.J.T. Ind. Eng. Chem. Res. 2007, 46, 4045-4062 (b) Gartner, C.A., van Veen, A.C., Lercher, J.A. ChemCatChem, 2013, 5, 3196-3217; (c) Zavyalova, U., Holena, M., Schlogl, R., Baerns, M. ChemCatChem, 2011, 3, 1935-1947

300-500 °C

ΔH298K = 15 kcal/mol

650-900 °C

ΔH298K = - 30 kcal/mol

Mankind’s Syntheses 38

300-500 °C

M. methylovoras

30 °C

300-400 °C

S. cerevisea

30 °C

Chemical v. Biological Catalysis 39

Thank You!

Dr. John Frost Dr. Xuefei Huang Frost group: Karen Frost, Yukari Nishizawa-Brennen, Peng Zhang Olivia Chesniak, Tanner McDaniel, Travis Bethel, Corey Jones, Matt Giletto All of you.