216
i ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham. & Schltdl. E Psychotria suterella Müll. Arg. (RUBIACEAE) E AVALIAÇÃO DE ATIVIDADES BIOLÓGICAS UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO CAMPOS DOS GOYTACAZES-RJ FEVEREIRO-2018 ALMIR RIBEIRO DE CARVALHO JUNIOR

ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

i

ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham. & Schltdl. E Psychotria suterella Müll. Arg. (RUBIACEAE) E AVALIAÇÃO DE

ATIVIDADES BIOLÓGICAS

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO

CAMPOS DOS GOYTACAZES-RJ

FEVEREIRO-2018

ALMIR RIBEIRO DE CARVALHO JUNIOR

Page 2: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

ii

ESTUDO QUÍMICO DAS EPÉCIES Psychotria nuda Cham. & Schltdl. E Psychotria suterella Müll. Arg. (RUBIACEAE) E AVALIAÇÃO DE

ATIVIDADES BIOLÓGICAS

“Tese apresentada ao Centro de Ciência e

Tecnologia da Universidade Estadual do

Norte Fluminense Darcy Ribeiro, como parte

das exigências para obtenção do título de

Doutor em Ciências Naturais”

Orientador: Prof. Ivo Jose Curcino Vieira

Co-Orientador: Prof. Raimundo Braz-Filho

Co-Orientador: Prof. Mário Geraldo de Carvalho

Campos dos Goytacazes-RJ

Fevereiro-2018

ALMIR RIBEIRO DE CARVALHO JUNIOR

Page 3: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

iii

Carvalho Junior, Almir Ribeiro de

Estudo químico das espécies Psychotria nuda Cham. & Schltdl. e Psychotria suerlla Müll.

Arg. (Rubiaceae) e avaliação de atividades biológicas / Almir Ribeiro de Carvalho Júnior. –

Campos dos Goytacazes, 2018.

x, 206 f. : il.

Tese (Doutorado em Ciências Naturais) -- Universidade Estadual do Norte

Fluminense Darcy Ribeiro. Centro de Ciência e Tecnologia. Laboratório de

Ciências Químicas. Campos dos Goytacazes, 2018.

Orientador: Ivo José Curcino Vieira.

Coorientação: Raimundo Braz-Filho.

Área de concentração: Bio-orgânica.

Bibliografia: f. 201-205.

1. Psychotria 2. IRIDÓIDES 3. ALCALÓIDES 4. MTT I. Universidade Estadual do

Norte Fluminense Darcy Ribeiro. Centro de Ciência e Tecnologia. Laboratório de

Ciências Químicas lI. Título

CDD

583.93

Page 4: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

iv

ESTUDO QUÍMICO DAS EPÉCIES Psychotria nuda Cham. & Schltdl. E Psychotria suterella Müll. Arg. (RUBIACEAE) E AVALIAÇÃO DE

ATIVIDADES BIOLÓGICAS

“Tese apresentada ao Centro de Ciência e

Tecnologia da Universidade Estadual do

Norte Fluminense Darcy Ribeiro, como parte

das exigências para obtenção do título de

Doutor em Ciências Naturais”

Aprovada em: ___/___/___

Comissão Examinadora:

__________________________________________________

Prof. Daniela Barros de Oliveira (D.Sc., Química de Produtos Naturais)-UENF

__________________________________________________

Prof. Edmilson José Maria (D.Sc., Química)-UENF

__________________________________________________

Prof. Antônio Sérgio Nascimento Moreira (D.Sc., Ciências Naturais)-IFF

__________________________________________________

Prof. Ivo Jose Curcino Vieira (D.Sc., Química)-UENF

(Orientador)

ALMIR RIBEIRO DE CARVALHO JUNIOR

Page 5: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

v

Aos meus pais, Irani e Almir, irmãos, Cristiano, Adriano e

Fabiano e Noiva, Rafaela, pelo amor e incentivos.

Page 6: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

vi

AGRADECIMENTOS

Aos Professores Drs. Ivo Jose Curcino Vieira, Raimundo Braz-Filho e Mário Geraldo

de Carvalho pela orientação, ensinamentos e contribuição na minha formação

profissional e moral.

Aos professores membros da banca por dedicarem seus tempos à melhoria do

trabalho.

Aos amigos do laboratório, deixo meus agradecimentos pelas contribuições e por

tornarem a rotina laboratorial bem mais agradável.

Pelos experimentos de RMN, infravermelho e espectrometria de massas, agradeço a

Márcio e Marcelo.

Registro minha gratidão aos professores Drs. Francisco José Alves Lemos, Milton

Masahiko Kanashiro e Gil Rodrigues dos Santos pelos ensaios biológicos.

Page 7: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

vii

SUMÁRIO

RESUMO .............................................................................................................................. ix

ABSTRACT ........................................................................................................................... x

1. INTRODUÇÃO ................................................................................................................... 1

2. REVISÃO DA LITERATURA .............................................................................................. 2

2.1 Informações sobre a família Rubiaceae e o gênero Psychotria .................................... 2

2.2 Composição química do gênero Psychotria .................................................................. 3

2.2.1 Alcaloides pirrolidinoindólicos ................................................................................ 3

2.2.2 Alcaloides indólicos monoterpênicos (AIM) ............................................................ 5

2.3 As espécies Psychotria nuda e Psychotria suterella ..................................................... 7

3. TRABALHOS ..................................................................................................................... 9

3.1 trabalho 1: psychotria genus: chemical constituents, Biological Activities And Synthetic Studies ............................................................................................................................... 9

3.1.1 Introduction ............................................................................................................ 9

3.1.2 Chemical Constituents ......................................................................................... 10

3.1.2.1 Dimeric and Polyindoline Alkaloids Isolated from Psychotria Species. .............. 11

3.1.2.2 Monoterpene Indole Alkaloids Isolated from Psychotria Species. ...................... 14

3.1.2.3 Other classes of Alkaloids Isolated from Psychotria Species ............................. 20

3.1.2.4 Triterpenoids from Psychotria Species .............................................................. 21

3.1.2.5 Other classes of Metabolites from Psychotria Species ...................................... 23

3.1.2 Biological Activities .............................................................................................. 27

3.1.3 Synthesis Of Some Compounds From Psychotria Species .................................. 33

3.1.4 Concluding Remarks ............................................................................................ 36

3.1.5 Abbreviations ....................................................................................................... 36

3.1.6 References .......................................................................................................... 37

3.2 Trabalho 2: 13C-NMR Spectral Data of Alkaloids Isolated from Psychotria Species (Rubiaceae)...................................................................................................................... 40

3.2.1 Introduction ................................................................................................................. 40

3.2.2 Discussion .................................................................................................................. 41

3.2.2.1 13C Chemical Shifts of Monoterpene Indole Alkaloids Isolated from Psychotria Species. ........................................................................................................................ 41

3.2.2.2 13C Chemical Shifts of Pyrrolidinoindoline Alkaloids Isolated from Psychotria Species. ........................................................................................................................ 56

3.2.2.3 13C Chemical Shifts of Benzoquinolizidine Alkaloids Isolated from Psychotria Species. ........................................................................................................................ 67

3.2.3 Conclusions ......................................................................................................... 70

3.2.4 Acknowledgments ................................................................................................ 70

3.2.5 Author Contributions ............................................................................................ 70

Page 8: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

viii

3.2.6 Conflicts of Interest .............................................................................................. 71

3.2.7 References .......................................................................................................... 71

3.3 Trabalho 3: Metabolites from Psychotria suterella Müll. Arg. and Psychotria nuda Cham. & Schltdl (Rubiaceae) and Evaluation of Cytotoxic Activity ................................... 77

3.3.1 Introduction .......................................................................................................... 78

3.3.2 Results and discussion ........................................................................................ 79

3.3.2.1 Metabolites from P. suterella ............................................................................. 79

3.3.2.2 Metabolites from P. nuda .................................................................................. 79

3.3.2.3 Assessment of cell viability by MTT assay ........................................................ 81

3.3.3 Experimental ........................................................................................................ 82

3.3.3.1 Apparatus and instruments ............................................................................... 82

3.3.3.2 Plant material .................................................................................................... 82

3.3.3.3 Extraction and isolation ..................................................................................... 82

3.3.3.4 P. suterella ........................................................................................................ 82

3.3.3.5 9-epi-geniposidic acid ....................................................................................... 83

3.3.3.6 P. nuda ............................................................................................................. 83

3.3.3.7 Culture of cells .................................................................................................. 84

3.3.3.8 MTT assay ........................................................................................................ 84

3.3.4 Conclusion ........................................................................................................... 85

3.3.5 Disclosure statement ........................................................................................... 85

3.3.5 Acknowledgements .............................................................................................. 85

3.3.6 Funding ................................................................................................................ 85

3.3.6 References .......................................................................................................... 85

3.3.7 Supplemental online material ............................................................................... 88

4. CONCLUSÕES ....................................................................................................... 201

5. REFERÊNCIAS BIBLIOGRÁFICAS ........................................................................ 201

6. ANEXOS ................................................................................................................. 205

6.1 Metodologia do Ensaio Inseticida .......................................................................... 205

6.2 Metodologia do Ensaio Antifúngico ....................................................................... 206

Page 9: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

ix

RESUMO

CARVALHO JUNIOR, Almir Ribeiro; D.Sc. Universidade Estadual do Norte

Fluminense Darcy Ribeiro. Fevereiro de 2018. Estudo Químico das Epécies

Psychotria nuda Cham. & Schltdl. e Psychotria suterella Müll. Arg. (Rubiaceae) e

Avaliação de Atividades Biológicas.

Espécies do gênero Psychotria (Rubiaceae) são reconhecidas por seus usos na

medicina popular e pela produção de metabólitos com potencial biológico. Em face

disto, objetivou-se com esta pesquisa realizar o estudo químico das espécies P.

nuda e p. suterella e avaliar atividades biológicas de seus extratos, frações e

compostos isolados. Das folhas e galhos de P. nuda foram isolados e identificados

dezessete compostos, que são: sitosterol, estigmasterol, campesterol, fitol, -

sitosterol e -estmasterol glucosilados, cinchonaina Ia, cinchonaina Ib, N,N,N-

trimetiltriptamônio, lialosídeo, lawsofrutose, roseosídeo, estrictosamida,

escopoletina, ácido rotungênico, estrictosidina e 5-carboxiestrictosidina. Um novo

iridoide inédito, ácido 9-epi-geniposídico, foi identificado das folhas de P. suterella,

juntamente com ácido geniposídico, sacarose, ácido 3-O-acetiloleanólico, ácido

pomólico, ácido espinósico, ácido maslínico, ácido tormêntico, metil oleanolato,

ácido lialosídico e ácido estrictosidínico. Neste trabalho foram avaliadas as

atividades inseticida, frente às larvas do mosquito Aedes aegypti, antifúngica, frente

aos fungos Fusarium oxysporum, Curvularia lunata, Colletotrichum musae,

Rhizoctonia solani, and Sclerotium rolfsii, e citotóxica frente às células cancerígenas

das linhagens THP-1 e U937. Os extratos e frações testados nos dois primeiros

ensaios não apresentaram resultados promissores. O alcaloide estrictosamida,

dentre os compostos testados, foi o que apresentou os melhores resultados quanto

a citotoxidade, com valores de EC50 de 120,0 ± 1 e 21,9 ± 1 g/mL frente a células

THP-1 e U937, respectivamente.

Page 10: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

x

ABSTRACT

CARVALHO JUNIOR, Almir Ribeiro; D.Sc. Universidade Estadual do Norte

Fluminense Darcy Ribeiro. Fevereiro de 2018. Estudo Químico das Epécies

Psychotria nuda Cham. & Schltdl. e Psychotria suterella Müll. Arg. (Rubiaceae) e

Avaliação de Atividades Biológicas.

Psychotria species are recognized by their use in folk medicine and by the production

of biologically actives metabolites. Owing to it, the aim of this research was to

perform the chemical study of P. nuda and P. suterella as well as to assess biological

activities of its extracts, fractions and isolated compounds. Seventeen compounds

were isolated and identified from leaves and twigs of P. nuda, named sitosterol,

stigmasterol, campesterol, phytol, -sitosterol-3-O--D-glucoside, -stmasterol-3-O-

-D-glucoside, cinchonain Ia, cinchonain Ib, N,N,N-trimethyltryptamonium, lyaloside,

lawsofrutose, roseoside, strictosamide, scopoletin, rotungenic acid, strictosidine, and

5-carboxystrictosidine. The new iridoid named 9-epi-geniposidic acid, along with the

known compounds geniposidic acid, sucrose, 3-O-acethyloleanolic acid, pomolic

acid, spinosic acid, maslinic acid, tormentic acid, methyl oleanolate, lyalosidic acid,

and strictosidinic acid (11) were isolated and identified from leaves of P.suterella. In

this work, insecticidal, against Aedes aegypti larva, antifungal, against Fusarium

oxysporum, Curvularia lunata, Colletotrichum musae, Rhizoctonia solani, and

Sclerotium rolfsii, and citotoxic, THP-1 and U937 cancer cell lines, activities were

assessed. Extracts and fractions tested in the first two assays did not show promising

results. The alkaloid strictosamide, among the tested compounds, showed relevant

citotoxicity with IC50 values 120 ± 1 and 21.9 ± 1 g/mL, against THP-1 and U937 cell

lines, repectively.

Page 11: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

1

1. INTRODUÇÃO

A utilização de produtos naturais, principalmente da flora, com fins medicinais,

nasceu com a humanidade. Registros do uso de plantas medicinais e tóxicas datam

das civilizações mais antigas, sendo considerada uma das práticas mais remotas

empregadas para cura, prevenção e tratamento de doenças, atuando como

importante fonte de substâncias biologicamente ativas (Firmo et al. 2011).

Nos últimos anos, registrou-se um aumento expressivo no interesse em

substâncias derivadas de espécies vegetais, micro-organismos, insetos e

organismos marinhos. Newman & Cragg (2016) destacam que a prática da utilização

de produtos naturais e seus derivados estruturais na descoberta e desenvolvimento

de novos fármacos ainda está viva e progredindo. Por exemplo, na área de câncer,

considerando-se o período de 1940 até o final de 2014, das 175 pequenas

moléculas aprovadas, 131 ou 75% eram não sintéticas, com 85 ou 49% sendo

produtos naturais ou derivados diretamente deles.

O crescente interesse em novas substâncias biologicamente ativas está

diretamente relacionado à riqueza da biodiversidade. O Brasil ocupa posição

privilegiada em termos de biodiversidade, em diferentes aspectos. Considerando-se

apenas o restrito universo de espécies catalogadas no mundo, o país detém a maior

quantidade total (13%) e a segunda maior quantidade de espécies endêmicas em

valores absolutos. O território brasileiro é composto por sete biomas principais:

Amazônia, Cerrado, Caatinga, Mata Atlântica, Pampa, Pantanal e Zona Costeira e

Marinha. Desses, Mata Atlântica e Cerrado são exclusivos do território brasileiro

(Pimentel et al. 2015). Entretanto, poucas espécies da flora nativa foram

investigadas do ponto de vista químico e farmacológico.

Espécies do gênero Psychotria, pertencente à família Rubiaceae, se

destacam por sua importância na medicina tradicional, onde são utilizadas para uma

grande variedade de indicações terapêuticas como afecções do aparelho reprodutor

feminino, distúrbios gastrointestinais, úlceras, “tumores”, distúrbios oculares, no

tratamento de febres, dores de cabeça e ouvidos, sendo ainda empregadas em

rituais religiosos devido a suas propriedades alucinógenas (Faria 2009; Lima 2011).

O uso medicinal destas espécies estimulou a avaliação do potencial farmacológico

de extratos, frações semi-purificadas e substâncias isoladas, destacando-se

propriedades antivirais, anti-inflamatórias, antibióticas, antifúngicas, antitumorais,

dentre outras (Carvalho Junior et al. 2016).

Page 12: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

2

O gênero Psychotria é considerado de taxonomia complexa, em função das

poucas características morfológicas diferenciadoras. Por esse motivo, alcaloides

indólicos são considerados marcadores químicos, importantes para os estudos

quimiotaxônomicos de espécies deste gênero (Porto et al. 2009; Carvalho Junior et

al. 2017).

A potencialidade químico-farmacológica descrita para o gênero Psychotria

justifica os estudos químicos e biológicos de espécies deste gênero. Neste contexto,

objetivou-se com esta pesquisa realizar o estudo químico das espécies Psychotria

nuda e Psychotria suterella e avaliar as atividades inseticida, antifúngica e citotóxica

de extratos, frações e de algumas das substâncias isoladas.

2. REVISÃO DA LITERATURA

2.1 Informações sobre a família Rubiaceae e o gêner o Psychotria

A família Rubiaceae é composta por mais de 600 gêneros, totalizando

aproximadamente 13000 espécies, distribuídas pelo mundo (Rydin et al. 2009;

Barbhuiya et al. 2014). Suas espécies são classificadas em quatro subfamílias:

Cinchonoideae, Ixorideae, Antirheoideae e Rubiodeae, na qual o gênero Psychotria

é incluído (Tomaz et al. 2008). Este gênero possuí mais de 2000 exemplares

encontrados principalmente em regiões tropicais e subtropicais do globo, sendo

considerado o maior da família Rubiaceae (Oliveira et al. 2013). Com base em

características morfológicas e distribuição geográfica, o gênero Psychotria é dividido

em três subgêneros: Psychotria (pantropical), Heteropsychotria (espécies

neotropicais) e, Tetramerae (algumas encontradas na Africa e Madagascar) (Moraes

et al. 2011).

Alguns relatos têm apontado que espécies deste gênero têm sido utilizadas na

medicina popular como alternativa de tratamento de diversas doenças. Flores de P.

colorata, por exemplo, são usadas por caboclos da Amazônia para tratamento de

dor de ouvido, enquanto que seus frutos são empregados em casos de dores

abdominais (Verotta et al. 1998). Na Malásia, folhas de P. rostrata são empregadas

para o tratamento de constipação (Takayama et al. 2004). Infecção intestinal, tosse,

distúrbios respiratórios e estomacais são outros exemplos de doenças combatidas

pelo uso de outras espécies do gênero (Benevides et al. 2004). O uso

etnofarmacológico de suas espécies, provavelmente, estimulou o desenvolvimento

Page 13: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

3

de diversas pesquisas voltadas à investigação química e avaliação do potencial

biológico de seus metabólitos.

2.2 Composição química do gênero Psychotria

Em relação à composição química do gênero, vários trabalhos vêm sendo

realizados, destacando-o como uma potencial fonte de alcaloides. Aproximadamente

53 % dos metabólitos isolados de suas espécies são alcaloides, dois quais 87 % são

do tipo indólico. Esta classe de metabólitos secundários apresenta papel

fundamental no ponto de vista quimiotaxômico. Alcaloides pirrolidinoindólicos são

característicos de espécies do subgênero Psychotria (Lopes et al. 2004), enquanto

que alcaloides indólicos monoterpênicos são marcadores quimiotaxômicos do

subgênero Heteropsychotria (Kerber et al. 2008). Triterpenos (12 %) e flavonoides (6

%) são outras classes de metabólitos frequentemente isolados do gênero.

2.2.1 Alcaloides pirrolidinoindólicos

Os alcaloides pirrolidinoindólicos são caracterizados pela presença de várias

unidades de N-metiltriptamina em suas estruturas (Lopes et al. 2004), cujas

diferentes unidades apresentam, comumente, ligações do tipo C-3a/C-3a’ e C-3a/C-

7’ (Takayama et al. 2004). Os alcaloides deste tipo isolados do gênero têm

apresentado de dois a sete meros. Psicotridina, quadrigemina C e hodgkinsina são

os alcaloides mais comumente isolados de diversas espécies (Verotta et al. 1999)

(Hart et al. 1974) (Libot et al. 1987) (Roth et al. 1986) (Verotta et al. 1998) (Adjibade

et al. 1992) (Zhou et al. 2010).

Além da importância no ponto de vista quimiotaxônomico, estes alcaloides

despertaram interesse de pesquisadores no que tange às suas propriedades

biológicas. Diversos estudos têm apontado uma série de atividades biológicas, como

é o caso de quadrigemina B. Este alcaloide isolado da espécie P. rostrata

apresentou atividade citotóxica frente a células HEp-2 e atividade antibacteriana

frente a Escherichia coli e Staphulococcus aureus (Mahmud et al. 1993).

Psicotridina, isolado de P. forsteriana, também apresentou citotoxidade contra

células leucêmicas (Adjibade et al. 1989). Atividades analgésica (Amador et al.

2000) e antiparasitária são outros exemplos de atividades biológicas apresentadas

por este tipo de metabólitos (Muhammad et al. 2003). A Figura 1 apresenta alguns

exemplos de alcaloides pirrolidinoindólicos isolados de espécies Psychotria.

Page 14: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

4

N

N NH

NH

H Me

Me

NN

HMe H

N N

H MeH

N

NHMe

NN

HMe

H

N N

H Me

N

N

H

Me

N

N

H

Me

NN

HMeN

NH

Me

N N

H MeH

N

N

H

Me

H

N

N

H

Me

H

NN

HMe H

N N

H MeH

N

N

N

Me

N

Me

NN

HMe H

NN

HMe H

N N

H MeH

N

NH

Me

H Me

N

NN

NN

N

MeH

N

NMeH

N

N

NNH

Me

H

MeH

Figura 1 : Alcaloides pirrolidinoindólicos isolados do gênero Psychotria.

Psicotridina

(Verotta et al. 1999)

Quadrigemina C

(Verotta et al. 1998)

Psicoleina

(Rasolonjanahary et al. 1995)

Psicotridiasina

(Zhou et al. 2010)

(+) Quimonantina

(Verotta et al. 1999)

Psicohenina

(Liu et al. 2014)

Psicotrimina

(Takayama et al. 2004)

Hodgkinsina

(Hart et al. 1974)

Psicotripina

(Li et al. 2011)

Page 15: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

5

2.2.2 Alcaloides indólicos monoterpênicos (AIM)

Este tipo de alcaloide é característico de espécies encontradas no território

brasileiro. Sua biossíntese envolve reação entre a triptamina (oriunda do triptofano)

e o iridoide secologanina, levando a formação da estrictosidina. A diversidade

estrutural destes metabólitos está relacionada, pricipalmente, a modificações

envolvendo N1 e C-22, N4 e C-22. Os alcaloides correantinas A-C (Achenbach et al.

1995) exemplificam o primeiro caso enquanto que estrictosamida representa um

caso de ciclização entre N4 e C-22 (Faria et al. 2010). Oxidação de C-10 não é tão

comum, porém, 10-hidroxi-iso-depeaninol e 10-hidroxi-antirhina, isolados de P.

prunifolia (Kato et al. 2012) e 10-hidroxi-correantosideo (P. Correa) são exemplos de

alcaloides com esta característica.

N,-D-glucopiranosilvincosamida, isolado das folhas de P. leiocarpa,

apresentou característica peculiar por ser considerado, segundo os autores, o

primeiro relato de AIM N-glicosilado (Henriques et al. 2004). Bahienosídeos A e B,

isolados de P. bahiensis e P. acuminata, são exemplos raros de alcaloides que

apresentam uma porção terpênica adicional ligada ao N4 (Berger et al. 2012) (Paul et

al. 2003). A Figura 2 apresenta exemplos de AIMs isolados do gênero.

N

N

H

HO

H H OH

H

N

N

OHHH

H

HO

HO

N

NMeH

O

O

OGlcH

HH

HO

N

N

O

O

HOGlu

H

Glu

10-hidroxi-correantosídeo

(Achenbach et al. 1995)

10-hidroxi-iso-depeaninol

(Kato et al. 2012)

10-hidroxi-antirhina

(Kato et al. 2012)

N,-D-glucopiranosilvincosamida

(Henriques et al. 2004)

Page 16: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

6

N

NMeH

O

HOCO2Me

H

HMe

H

N

NMeH

O

OH

MeH

H CHO

N

NH C

OH

OGlc

H

H

O2Me

N

NMeH

O

HCHO

H

HOH

Figura 2 : Acaloides indólicos monoterpênicos isolados do gênero Psychotria.

Correantina A

(Achenbach et al. 1995)

Correantina B

(Achenbach et al. 1995)

Correantina C

(Achenbach et al. 1995)

Estrictosidina

(Berger et al. 2012)

Page 17: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

7

Glc

N

N

H

O

O

O

Glc

Glc

CO2Me

O

O

H

H

N

N

H

H

O2Me

O

C

H

H OGlc

Glc

CO2Me

O

O

H

H

N

N

H

H

O2Me

O

C

H

H O

N

N

O

O

H

H

OGlc

H

Figura 2 : Continuação.

2.3 As espécies Psychotria nuda e Psychotria suterella

A espécie P. nuda (Figura 3 ), conhecida popularmente como casca d’ anta, é

encontrada, pricipalmente, na forma de arbustos, medindo de 1 a 5 metros de altura

(Miguel et al. 2009) principalmente nos estados do Rio de Janeiro, Minas Gerais, até

o estado de Santa Catarina (Ferreira et al. 2014).

A espécie P. suterella (Figura 4 ) vulgarmente conhecida como grandiuva-de-

anta cafezinho-roxo-da-mata, apresenta porte arbustivo-arbóreo, podendo alcançar

até 6 m de altura (Lopes & Buzato 2005). O período de floração desta espécie

ocorre de janeiro a março e frutificação de setembro a maio (Bertani 2006), períodos

que facilitam a sua identificação, viabilizando sua coleta.

Bahienosídeo B

(Berger et al. 2012)

Bahienosídeo A

(Paul et al. 2003)

Estrictosamida

(Van De Santos et al. 2001)

Estaquiosídeo

(Pimenta et al. 2010)

Page 18: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

8

Figura 3 : Fotografia da espécie P. nuda.

Fonte: https://www.flickr.com/photos/gustavolf/7291965490

(Acessado dia 27/01/2018)

Figura 4 : Fotografia da espécie P. suterella.

Fonte: http://www.ufrgs.br/fitoecologia/florars/open_sp.php?img=11745

(Acessado dia 27/01/2018).

Em relação à química destas espécies, há relatos escassos a esse respeito.

Referente à espécie P. nuda há o relato apenas de isolamento de um alcaloide

indólico monoterpênico: estrictosamida (Farias et al. 2008). Já das folhas de

P.suterella há o relato de identificação do alcaloide mencionado anteriormente,

outros dois: lialosídeo, e naucletina (Van De Santos et al. 2001).

Page 19: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

9

3. TRABALHOS

3.1 Trabalho 1:

Psychotria Genus: Chemical Constituents, Biological Activitie s And

Synthetic Studies**

Almir Ribeiro de Carvalho Junior1, Mario Geraldo de Carvalho2, Raimundo Braz

Filho1,2, Ivo Jose Curcino Vieira1*

1. Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade

Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ-28013-

602, Brazil

2. Departamento de Química, ICE, Universidade Federal Rural do Rio de Janeiro,

Seropédica, RJ-23890-000, Brazil

Abstract: Natural products have been used by humankind for thousands of years in applications such as pigments, flavourings, and drugs. Since antiquity, the use of natural products has been the best or the only alternative adopted by many people worldwide, in the treatment of several diseases. In fact, plants are a potential source of bioactive compounds, but most of the world’s biodiversity has not been evaluated for any biological activity. In this context, several studies have been performed regarding the chemical composition and biological properties of various species from different genera such as Psychotria L. (Rubiaceae). This genus is the largest of the Rubiaceae family, comprising about 2000 species, mainly found in tropical and subtropical regions of the globe. Several works have been reported concerning the chemical composition and biological activities of species of this genus. The aim of this overview is to summarise the advances in knowledge on Psychotria species, compiling reports related to chemical composition and biological activities of the genus.

** Trabalho publicado como capítulo do livro Studies i n Natural Products

Chemistry, volume 48, páginas 231-261, do ano 2016, doi: 10.1016/B978-0-

444-63602-7.00007-2.

Introduction

Natural products have been employed in the treatment of several diseases for

thousands of years [1]. Even recently, despite availability of synthetical drugs, plants

remain widely used for medicinal purposes [2]. The diversity of biologically active

compounds in plants has motivated chemical studies of various species. Recently,

many plant-derived drugs, including semi-synthetics compounds, have either been

Page 20: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

10

introduced to the market or are involved in clinical trials [3,4], highlighting the

importance of medicinal plants in drug discovery.

The family Rubiaceae Juss. comprises 620 genera totaling about 13526 species,

distributed worldwide [5]. Psychotria L. is the largest of the Rubiaceae, possessing

more than 2000 species, mainly found in tropical and subtropical regions [6]. Based

on its morphological features and geographical distribution, the genus was divided

into three subgenera: Psychotria (pantropical), Heteropsychotria (neotropical

species) and, Tetramerae (some African and Madagascan species) [7]. However,

Nepokroeff et al. (1999) proposed the reorganization of the genus based on a

molecular phylogenetic study [8].

Several Psychotria species are widely used in folk medicine around the world for

the treatment of various illnesses. Flowers and fruits of P. colorata, for example, are

used by “caboclos” from the Amazon to treat earache and abdominal pain,

respectively [9]. In Malaysia, leaves of P. rostrata are employed for the treatment of

constipation [10]. P. viridis is used as an ingredient in the hallucinogenic beverage

called ayahuasca [11], owing to the presence of N,N-dimethyltriptamine, an indole

alkaloid structurally related to neurotransmitter serotonin [12]. Intestinal infections,

coughs, respiratory and stomach disorders are other examples of illnesses which

have been treated using other Psychotria species [13].

Chemical Constituents

Many studies have examined the chemical composition of the species of the genus

Psychotria (Rubiaceae). Since 1974 several works have shown that Psychotria is a

potential source of alkaloids. Approximately 52 % of the metabolites reported were

characterised as alkaloids (about 87 % belong to the subgroup of indole alkaloids),

followed by triterpenes (12 %), flavonoids (6 %), along with constituents of other

classes. Since Psychotria is taxonomically complex, alkaloids can be an important

tool to distinguish its species from others which belong to genera with similar features

such as Cephaelis Sw. and Palicourea Aubl. [14]. Moreover, these metabolites have

shown a range of biological activities, increasing interest in the study of this genus,

with the aim of discovering new natural medicines.

Page 21: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

11

Dimeric and Polyindoline Alkaloids Isolated from Psychotria Species.

The main alkaloids found in pantropical Psychotria (subgenus Psychotria) are

polyindole alkaloids, which are characterized by the presence of several N-methyl

triptamine moieties in their structures [15], such as psychotridine (1). This alkaloid,

derived from five N-methyltriptamine units, was isolated from P. beccarioides, P.

forsteriana, P. oleoides, and P. colorota [16-19]. Quadrigemine C (2) is another

example of a polyindole alkaloid identified in this genus having been isolated from P.

colorata and P. oleoides [9,16,18,20–22].

Four polyindoline alkaloids, named quadrigemines A (4) and B (5), psychotridine

(1), and isopsychotridine C (6), were isolated from leaves of P. forsteriana [19, 23].

Besides these compounds, meso-chimonathine (7), a dimeric indole alkaloid, was

also isolated from the same species. It was the first isolation of a dimeric isomer of

calycanthine, which are commonly present in the genus Calycanthus, from

Psychotria [24].

The chemical study of P. rostrata leaves led to the isolation of two new alkaloids:

psychopentamine (8) and psychotrimine (9). Compound 8 was the first example of a

polymeric pyrrolidinoindoline alkaloid which contains a C-3a/C-5’ bond. This group of

compounds generally display two types of common linkages: C-3a/C-3a’ bond and C-

3a/C-7’ bond [10].

Other examples of polyindoline alkaloids isolated from Psychotria, along with the

compounds mentioned above, are summarised in Table 1 and their structures are

shown in Fig. (1).

Table 1 . Dimeric and polyindoline alkaloids isolated from Psychotria species Compound Species Part Reference

Psichotridine (1) P. forsteriana

P. oleoides

P. colorata

P. beccarioides

Leaves

Leaves

Leaves

Leaves

[16–19]

Quadrigemine C (2) P. colorata P. oleoides

Flowers and leaves

Leaves

[9, 15, 18, 20–22]

Psycholeine (3) P. oleoides Leaves [21]

Page 22: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

12

Quadrigemine A (4) P. forsteriana Leaves [19]

Quadrigemine B (5) P. forsteriana P. colorata P. rostrata

Leaves

Leaves

Leaves and twigs

[16, 19,25]

Isopsychotridine C (6) P. forsteriana Leaves [19]

Meso-chimonanthine (7) P. forsteriana P. muscosa

Not specified

Leaves

[16, 24]

Psichopentamine (8) P. rostrata Leaves [10]

Psychotrimine (9) P. rostrata Leaves [10]

Psichotriasine (10) P. calocarpa Leaves [26]

Hodgkinsine (11) P. colorata P. oleoides P. lyciiflora P. muscosa; P. beccarioides P. rostrata

Flowers and leaves

Leaves

Leaves

Leaves

Branches and twigs

[9, 16, 17, 22, 25]

(+)-Chimonanthine (12) P. colorata P. muscosa P. rostrata

Flowers

Leaves

Branches and twigs

[9, 16, 25]

(13) P. henryi Leaves and twigs [27]

(14) P. henryi Leaves and twigs [27]

Nb-demetyl-meso-Chimonantina (15)

P. lyciiflora Leaves [22]

Psychohenin (16) P. henryi Leaves and twigs [28]

Quadrigemine I (17) P. oleoides Leaves [22]

Isopsychotridine B (18) P. oleoides Leaves [18, 22]

Oleoidine (19) P. oleoides Leaves [22]

Caledonine (20) P. oleoides Leaves [22]

Psychotripine (21) P. pilifera Leaves [29]

Page 23: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

13

N N

H MeH

N

N

H

Me

H

N

N

H

Me

H

NN

HMe H

(2)

N N

H MeH

N

N

N

Me

N

Me

NN

HMe H

(3)N N

H Me

N

N

H

Me

N

N

H

Me

NN

HMeN

NH

Me

(1)

NN

H

Me

NN

H

Me

NN H

Me

N

NH

Me

N

N

H

Me

N

N

Me

H

(6)N N

H Me

N

N

H

Me

N

N

H

Me

NN

HMe

(4) N

N

H

Me

N

N

H

Me

N

N

H

Me

NN

HMe

NNHMe

(5)

N N

NN

MeH H

H MeH

(7)

N

NMeH

N

N

NNH

Me

H

MeH

(9)

Me

N

NMe

HN N

HMe

N

N

H

N

N

H

Me

N

N

H

Me

(8)

(12)

NN

HMe H

N N

H MeH

N

NHMe

NN

HMe

H

(10)

NN

HMe H

N N

H MeH

N

NH

Me

H

(11)

Fig. (1). Dimeric and polyindoline alkaloids isolated from Psychotria species

Page 24: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

14

N N

Me

N

H

(13)

N N

MeH

N

N Me

H

(14)

N N

H Me

NN

HMe NN H

Me

N

N

H

Me

(17) (21)

Me

N

NN

NN

N

MeH

N N

H Me

NNMe N

N H

Me

n = 3 (18)n = 4 (19)n = 5 (20)

N N

H H

NNHMe

(15)

N

N NH

NH

MeH

Me(16)

H

n

Fig. (1) continued

Monoterpene Indole Alkaloids Isolated from Psychotria Species.

Monoterpene indole alkaloids (MIAs) are biosynthesised by the coupling of

tryptophan and the iridoid terpene secologanin. These kinds of metabolites have

exhibited several biological activities, being used, for example as anti-cancer, anti-

malaria and anti-arrhythmia agents [30]. MIAs are the main type of alkaloids found in

the subgenus Heteropsychotria (neotropical species) [31], being considered

chemotaxonomic markers for this subgenus [32].

The chemical investigation of P. correae led to the isolation of seven MIAs, along

with other kinds of metabolites. Among them, six alkaloids were reported for the first

time: correantoside (22), 10-hydroxycorreantoside (23), correantine A (24),

correantine B (25), 20-epi-correantine B (26), and correantine C (27) [33].

Henriques et al. (2004) reported the isolation of N--D-glucopyranosyl

vincosamide (28) from leaves of P. leiocarpa. It was the first report of a N-

glycosylated monoterpenoid indole alkaloid. The authors also concluded that the

accumulation of this alkaloid depends on the age of the plant and light exposure,

being restricted to the aerial parts of P. leiocarpa [34].

The chemical study of P. brachyceras led to the isolation of a new MIA named

brachycerine (29). According to Nascimento et al. (2013), this alkaloid belongs to a

new subclass of MIAs since its terpenoid moiety is probably derived from epiloganin

rather than secologanin, as is the usual case. Subsequent studies also showed that

Page 25: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

15

the concentration of brachycerine (29) increases on UV-B radiation exposure and

osmotic/oxidative stress, suggesting that this compound may play a role in plant

defence mechanisms [35,36].

From leaves of P. umbellata, an unusual alkaloid named psychollatine (30) was

isolated. This compound is mainly accumulated in aerial parts of the plant but low

amounts were also found in its roots [37,38]. Other studies regarding P.

umbellatahave beenmade leading to the isolation of three new MIAs: 3,4-Dehydro-

18,19--epoxy-psychollatine (31), N4-[1-((R)-2-hydroxypropyl)]-psychollatine (32),

and N4-[1-((S)-2-hydroxypropyl)]-psychollatine (33) [39].

Table 2 provides information concerning these compounds, as well as other MIAs

isolated from Psychotria species. Their structures are displayed in Fig. (2).

Table 2 . Monoterpene indole alkaloids isolated from Psychotria species

Compound Species Part Reference

Correantosideo (22) P. correae Leaves [33]

10-hidroxicorreantosideo (23) P. correae Leaves [33]

Correantine A (24) P. correae Leaves [33]

Correantine B (25) P. correae Leaves [33]

20-epi-correantine B (26) P. correae Leaves [33]

Correantine C (27) P. correae Root [33]

N--D-glucopiranosil vincosamide (28) P. leiocarpa Aerial parts [34]

Brachycerine (29) P. brachyceras Leaves [40]

Psichollatine (30) P. umbellata Leaves [37, 39]

3,4-Dehydro-18,19--epoxy-Psychollatine (31)

P. umbellata Leaves [39]

N4-[1-((R)-2-hydroxypropyl)]-psychollatine (32)

P. umbellata Leaves [39]

N4-[1-((S)-2-hydroxypropyl)]-Psychollatine (33)

P. umbellata Leaves [39]

5-carboxystrictosidine (34) P. acuminata P. bahiensis

Leaves

Aerial parts

[41, 42]

Bahienoside B (35) P. acuminata P. bahiensis

Leaves

Aerial parts

[41, 42]

Desoxicordifoline (36) P. acuminata Leaves [41]

Lagamboside (37) P. acuminata Leaves [41]

(E/Z)-vallesiachotamine (38 + 39) P. acuminata P. bahiensis

Leaves [41–44]

Page 26: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

16

P. laciniata P. suterella

Aerial parts

Leaves

Leaves

Strictosidinic acid (40) P. acuminata P. barbiflora P. myriantha P. myriantha

Leaves

Leaves

Leaves

Aerial pars

[6, 41, 45,46]

Strictosidine (41) P. acuminata Leaves [41]

Palicoside (42) P. acuminata; Leaves [41]

Bahienoside A (43) P. bahiensis Aerial parts [42]

Angustine (44) P. bahiensis P. laciniata

Aerial parts

Leaves

[42, 43]

Strictosamide (45) P. bahiensis; P. nuda; P. prunifolia; P. suterella P. laciniata

Aerial parts

Leaves

Leaves

Leaves

Leaves

[14, 42, 44, 47, 48]

Isodolichantoside (46) P. correae Leaves [33]

10-hydroxy-iso-deppeaninol (47) P. prunifolia Branches [49]

10-hydroxy-antirhine (48) P. prunifolia Branches [49]

N-oxide-10-hydroxyantirhine (49) P. prunifolia Branches [49]

14-oxoprunifoleine (50) P. prunifolia Branches [49]

17-Vinil-19-oxa-2-azonia-12-azapentaci-clo[14.3.1.02,14.05,13.06,11]icosa-2(14),3,5(13),6(11),7,9-hex-aeno (51)

P. prunifolia Leaves [47]

17-vinil-19-oxa-2-azonia-12-azapentaci-clo[14.3.1.02,14.05,13.06,11]icosa-2(14),3,5(13),6(11),7,9-hex-aeno (52)

P. prunifolia Leaves [47]

N-demethyl-correantoside (53) P. stachyoides Leaves [50]

Naucletine (54) P. suterella Leaves [48]

Croceaine A (55) P. umbellata Leaves [37]

Umbellatine (56) P. umbellata Leaves [51]

Correantosine E (57) P. stachyoides Leaves [32]

Correantosine F (58) P. stachyoides Stem bark [32]

Stachyoside (59) P. stachyoides Aerial parts [52]

Nor-methyl-23-oxo-correantoside (60) P. stachyoides Aerial parts [52]

Page 27: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

17

Lyaloside (61) P. laciniata P. suterella

Leaves [44]

Myrianthosine (62) P. myriantha Aerial parts [46]

R= H (22)R= OH (23)

N

NMeH

O

O

OGlcH

HH

R

N

NMeH

O

HOCO2Me

H

HMe

H

(24)

N

NMeH

O

OR1

MeH

R2H

R1 = H; R2 = CHO (25)R1 = CHO; R2 = H (26)

GlcN

N

O

O

HOGlu

H

(28)

N

N

OH

H

H CO2Me

O

HO

Glc

H

H

(29)

N

NMeH

O

HCHO

H

HOH(27)

Fig.(2) . Monoterpene indole alkaloids isolated from Psychotria species

Page 28: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

18

(30)

N

N

GlcOH

H

CO2CH3

H

H

H

N

N

O

O

H

H

CO2Me

GlcOH

(31)

N

N

O

H

H

CO2Me

H

HO

GlcOH

N

N

O

H

H

CO2Me

H

HO

GlcOH

(32)

(33)

N

NH C

OH

OGlc

H

CO2H

H

O2Me

(34)

N

N C

OH

OGlc

H

H

O

OGlcMeO2C

H

O2Me

(35)

N

N C

CO2H

O

OGlc

H

H

O2Me

(36) (37) (38 + 39)

N

N

H

CO2Me

CHOH

N

NH C

OH

OGlc

H

H

O2H

(40)

GlcN

N

H

CO2Me

CH2OHH

N

NH C

OH

OGlc

H

H

O2Me

N

N C

OH

OGlc

H

H

MeO2H

(41) (42)

H

Fig.(2) continued.

Page 29: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

19

(43)

Glc

Glc

O

O

H

H

MeO2C

N

N

H

H

O2Me

O

C

H

H O

(45)

Glc

N

N

H

O

O

OH

N

NMeH

OMeO2C OGlc

HH

(46) (48)

N

N

H

HO

H H OH

H

N

N

OHHH

H

HO

HO

(47)

N

N

N

H

O

(44)

ON

N

H O(49)

-

+N

N

H

HO

H H

O

OH

H

ON

N

H

(51)

(52)

N

N

N

H

O

O(54)

+

(50)

N

N

H

O

HO

H

H

Glc

N

N H

O

H

O O

H

H

H

(53)

Fig.(2) continued.

Page 30: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

20

N

N H

GlcO H

H

CO2CH3

H

H

(55) (57)

(58)

H

N

N

OH

H

HOGlc

CO2CH3H

(56)

N

N

O

O

H

H

OGlcH(59)

N

N

O

O

H

H

OGlcH

H

O

(60)

N

N

OH

H OGlu

H3CO2C

H

(61)

N

NH

HO

O

OOGluH

(62)

Glc

N

N

O

O

H

O

H

Fig.(2) continued.

Other classes of alkaloids Isolated from Psychotria Species

Besides the above-mentioned compounds, other kinds of alkaloids have also been

reported for the genus Psychotria. From aerial parts of P. glumerulla, for example,

three new quinoline alkaloids, named glomerulatine A to C (63–65, Table 3 , Fig. 3 )

were isolated [53].

The chemical study of P. klugii led to the isolation of two new benzoquinolizidine

alkaloids: klugine (66) and 7’-O-demethylisocepaheline (67). In addition, cephaeline

(68), isocephaeline (69), and 7-O-methyllipecoside (70) were also isolated from stem

bark of P. klugii [54].

Table 3. Other classes of alkaloids isolated from Psychotria species. Compound Species Part Reference

Glomerulatine A (63) P. glumerulata Aerial parts [53]

Glomerulatine B (64) P. glumerulata Aerial parts [53]

Glomerulatine C (65) P. glumerulata Aerial parts [53]

Klugine (66) P. klugii Stem bark [54]

Page 31: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

21

7'-O-demethylisocefaeline (67)

P. klugii Stem bark [54]

Cephaelina (68) P. klugii Stem bark [54]

Isocephaelina (69) P. klugii Stem bark [54]

7-O-methylipecoside (70)

P. klugii Stem bark [54]

Harmane (71) P. barbiflora P. suerrensis

Leaves [6, 55]

N

N

MeH

N

NN

N

M

Me

e

N

NN

N

H

MeN

NN

N

M

Me

He

(63) (66)(64)

N

NHO

MeO

H

H

OHHH

OMe

OH(66)

N

NMeO

MeO

H

H

HHH

OMe

OH

N

NMeO

MeO

H

H

HHH

OR1

R2OR1= R2= H (68)R1= Me, R2= H (69)

N

O

MeO

O H

COCH3

OH

HO

MeO

(67)

Glc

(70) (71)

Fig. (3) . Other classes of alkaloids isolated from Psychotria species.

Triterpenoids from Psychotria Species

Some studies have also reported the isolation of tritepenoids from Psychotria

species, such as psychotrianosides A to G (72–78) and other common compounds

as lupeol (83), betulin (84), friedelin (88), and so on. In Table 4 we can find

information regarding these and other triterpenoids and Fig. 4 shows their structures.

Page 32: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

22

Table 4 . Triterpenoids isolated from Psychotria species.

Compound Species Part Reference

Psychotrianoside A (72) P. sp Whole plant [56]

Psycotrianoside B (73) P. sp Whole plant [56]

Psycotrianoside C (74) P. sp Whole plant [56]

Psycotrianoside D (75) P. sp Whole plant [56]

Psycotrianoside E (76) P. sp Whole plant [56]

Psycotrianoside F (77) P. sp Whole plant [56]

Psycotrianoside G (78) P. sp Whole plant [56]

Ardisianoside D (79) P. sp Whole plant [56]

Barbinervic acid (80) P. stachyoides Leaves [50]

-amirin (81) P. stachyoides P. adenophylla

Leaves

Leavese

[50, 57]

Ursolic acid (82) P. adenophylla

P. mariniana

Leaves [57, 58]

Lupeol (83) P. mariniana;

P. vellosiana

Aerial parts

[58, 59]

Betulin (84) P. adenophylla

P. mariniana

Leaves [57, 58]

Betulinic acid (85) P. adenophylla Leaves [57]

Bauerenol (86) P. adenophylla Leaves [57]

Bauerenol acetate (87) P. adenophylla Leaves [57]

Friedelin (88) P. adenophylla Leaves [57]

Page 33: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

23

HO

OH

COOH

OH

H

H

(78)

(86) R= H (87) R= Ac

O

(88)

R4O

R2R1

O

R3H

H

R1 R2 R3

(81) H CH3 CH3 (82) CH3 H CO2H

HO

R3

R1

R2

HO

R

(83) R= H(84) R = OH (85) R = CO2H

RO

H

H

R1 R2 R3 R4 (72) CH2OH CH3 H Ara (73) CH3 CHO -OH -D-Xyl(1 2)-b-D-Glc(1 4)--L-Ara (74) CH3 CH3 =O -D-Xyl(1 2)-b-D-Glc(1 4)--L-Ara (75) CH3 CH3 -OH -L-Rha(1 4)--D-Glc --D-Xyl(1 2)--D-Glc--L-(1 4)-Ara (76) CH3 CH3 -OH -D-Xyl(1 4)--D-Glc(1 2)--D-Glc(1 2)--L-Ara (77) CH2OH CH3 -OH -D-Xyl(1 4)--L-Rha(1 2)--6-Acethyl-Glc(1 4)--L-Ara (78) CHO CH3 -OH -L-Ara (79) CH3 CH3 -OH -D-Xyl(1 2)--D-Glc(1 4)--L-Ara

Fig. (4) . Triterpenoids isolated from Psychotria species.

Other Classes of Metabolites from Psychotria Species

Other types of metabolites isolated from this genus are summarised in Table 5 and

their structures are displayed in Fig. (5).

Table 5 . Other classes of metabolites isolated from Psychotria species. Compound Species Part Reference

Blumenol A (89) P. yunnanensis Aerial parts [60]

Drummondol (90) P. yunnanensis Aerial parts [60]

3-hydroxy-5�, 6�-epoxi-7-megastimen-9-one (91)

P. yunnanensis Aerial parts [60]

Salicylic acid (92) P. yunnanensis Aerial parts [60]

Resorcinol (93) P. yunnanensis Aerial parts [60]

(-)-Loliolide (94) P. yunnanensis Aerial parts [60]

(6S)-Menthiafolic acid (95) P. yunnanensis Aerial parts [60]

4-hydroxybenzoic acid (96) P. yunnanensis Aerial parts [60]

Vanillic acid (97) P. yunnanensis Aerial parts [60]

Siringic acid (98) P. yunnanensis Aerial parts [60]

Ethyl protocatechuate (99) P. yunnanensis Aerial parts [60]

hydroxy-1-(3,5-dimethoxy-4hydroxyphenyl)propan-1-one (100)

P. yunnanensis Aerial parts [60]

Page 34: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

24

-hydroxypropiovanillone (101) P. yunnanensis Aerial parts [60]

(-)-Butin (102) P. yunnanensis Aerial parts [60]

2-(4-hydroxy-3-metoxyphenil)-3-(2-hydroxy-5-metoxyphenyl)-3-oxo-1-propanol (103)

P. yunnanensis Aerial parts [60]

(+)-siringaresinol (104) P. yunnanensis Aerial parts [60]

Feoforbídeo A (105) P. acuminata Leaves [61]

Pirofeoforbídeo A (106) P. acuminata Leaves [61]

-sitosterol (107) P. adenophylla P. hainanensis P. mariniana; P. vellosiana

Leaves Leaves Aerial parts

[57–60, 62]

-sitosterol glycosylated (108) P. stachyoides Leaves [50]

Stigmasterol glycosylated (109) P. stachyoides Leaves [50]

Stigmasterol (110) P. vellosiana Aerial parts [59]

Psicotramida A (111) P. sp. Stem [63]

Psicotramida B (112) P. sp. Stem [63]

Psicotramida C (113) P. sp. Stem [63]

Psicotramida D (114) P. sp. Stem [63]

Psicorubrina (115) P. rubra Stem [64]

Stearic acid (116) P. hainanensis Leaves [62]

6-hydroxy-luteolin-7-O-rutinoside (117) P. rubra Aerial parts [65]

Luteolin-7-O-rutinoside (118) P. rubra Aerial parts [65]

Quercetin (119) P. hainanensis; P. spectabilis

Leaves

Leaves

[13, 62]

Kaempferol-7-O-glucopyranoside (120) P. hainanensis Leaves [62]

Kaempferol-3-O-glucopyranoside (121) P. hainanensis Leaves [62]

Rutin (122) P. hainanensis Leaves [62]

Psychorubrin (123) P. rubra Aerial parts [65]

6-hydroxygeniposide (124) P. rubra Aerial parts [65]

Daucosterol (125) P. hainanensis Leaves [62]

Psycacoraone (126) P. yunnanensis Aerial parts [66]

Scopoletin (127) P. vellosiana Aerial parts [59]

Squalene (128) P. vellosiana Aerial parts [59]

Cyclopsychotride A (129) P. longipes Whole plant [67]

Deoxysolidagenone (130) P. spectabilis Leaves [13]

Solidagenone (131) P. spectabilis Leaves [13]

Page 35: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

25

Coumarin (132) P. spectabilis Leaves [13]

Umbelliferone (133) P. spectabilis Leaves [13]

Psoralene (134) P. spectabilis Leaves [13]

Benz[g]isoquinoline-5,10-dione (135) P. camponutans Wood [68]

1-hydroxybenzoisochromanquinone I (136)

P. camponutans Wood [68]

OH

O

OH

(89)

OH

O

H3CO

HO

OCH3(98)

OH

O

OCH3

HO

(97)

OHHO

(93)

OH

CO2H(92)

O

O

O

(91)

OH

O

OH

(90)

HO

O

H3COOH

OCH3

HO

O

H3COOH

HO

O

O

HO

(99)

CO2H

OH

(95)

HO

OH

O

(96)

OHO

O

(94)

Fig. (5) . Other classes of metabolites isolated from Psychotria species

Page 36: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

26

O

OH

OH

HO

O(102)

OH OH

H3CO

OH

OCH3

O(103)

O

O

OCH3

OH

H3CO

OH

OCH3H3CO

(104)

NNH

HNN

RHO

O

O

RO

(107) R = H(108) R = Glu

(109) R = Glu,

(110) R = H R(105) CO2Me(106) H

(111) n= 16 (113) n= 15(112) n= 14 (114) n= 13

( )14

( )n

HO

NH

OH

OH

O

OH

O

O

O

OH

(115)

H3CCH2( )

O

OH16

(116)

O

O

R3

OH

R2

OH

R1O

R

R R1 R2 R3

(117) OH Rut; OH; H (118) H Rut; OH; H (119) H H OH; OH (120) H Glc H OH (121) H H H O-Rut(122) H H OH O-Rut

Fig. (5) continued

Page 37: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

27

O

O

O

OOH

OHO

OH

OH

OH(123)

HO O

OOH

O

OHO

OH

OH

OH(124)

OO OH

O

(127) (128)

RO

(125)

OH

OHO

(126)

OR

O R(130) H(131) OH

O OR

R(132) H(133) OH

O OO

(134)

N

O

O(135)

O

OHO

O(136)

Fig. (5) continued

Biological Activities

Many studies have evaluated the biological properties of extracts, fractions, and

isolated compounds from Psychotria species. These plants have been shown to have

mostly cytotoxic, analgesic, antioxidant, and antimicrobial activities, as described in

the next sections.

Cytotoxic Activity

Roth et al. (1986) evaluated cytotoxic activities of four polyindoline alkaloids, isolated

from P. forsterianaon rat hepatoma cells (HTC line). Quadrigemines A (4) and B (5),

psychotridine (1), and isopsychotridine C (6) exhibited higher cytotoxity than

vincristine , used in antitumor chemotherapy.

CYS GLY

GLU SER

CYS

PRO

PHE

VAL

ILE

THR

VAL

ALA LEU LEU GLY

CYS

CYS

THR

CYS

LYS

SER

LYS

VAL

CYS

TYR

SER

SER

LYS

ASN

PRO ILE

(129)

Page 38: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

28

N

H

N

MeO2C

OH

NMeO

N

OAcHHO CO2Me

OH

Vincristine

In this essay, the authors concluded that the concentrations necessary to promote

100 % cellular mortality (after 24 hours of incubation) were 2.5, 5, 5, and 10 �M for

compounds 1, 4, 6, and 5, respectively [14]. In a subsequent study, quadrigemine B

(5) also showed time- and dose-dependent cytotoxic activity against HEp-2 cells [69].

Hayashi, Smith and Lee (1987) reported that psychorubrin (123), a new

naphthoquinone isolated from P. rubra, showed cytotoxic activity in the KB cell assay

(ED50 = 3.0 g/mL). In addition, another four naphthoquinone derivatives (137–140)

were prepared as a way to establish its structure-activity relationships. All derivatives

exhibited higher cytotoxity than psychorubrin (ED50 ranging from 0.3 to 0.6 g/mL).

The authors concluded that extension of conjugation (observed for compounds 137

and 140) is not sufficient to increase cytotoxic activity, since compound 141 (another

naphthoquinone tested) was not active. Thus, other factors must be considered [64].

O

O

O

O

O

O

O

O

O

(137) (138) (139)

O

O

OO

O

O

(140) (141)

Fig. (6) . Structures of compounds 137–141

The in vitro cytotoxic activity of klugine (66), cephaelin (68), and isocephaelin (69),

isolated from P. klugii, was evaluated against four human cancer cells lines, SK-MEL,

KB, BT-549, and SK-OV-3. In this assay, doxorubicin and 5-fluorouracil were used

as positive controls, whereas DMSO was used as a negative control.

Page 39: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

29

O

O

OOMe

OH

OH

OHO

OH

H O

Me

NH2

HO

Doxorubicin

N

N

OO

F H

H

5-fluorouracil

Compound 66 was more potent against these human cancer cell lines (IC50 values

of 0.25, 0.3, 0.86, and 0.18 g/mL, respectively) than doxorubicin (IC50 values of

1.57, 1.7, 1.0, and 1.3 g/mL, respectively). On the other hand, compounds 66 and

69 did not show cytotoxic activity against these cell lines [54].

Analgesic Activity

Aiming at discovering new painkillers, some researchers have investigated the

analgesic properties of extracts and isolated compounds (mostly alkaloids) from

Psychotria species, such as P. colorata, used by Amazonian Cablocos to treat

earache and abdominal pain. The analgesic activity of an alkaloid extract from P.

colorata was assessed by the formalin, writhing, and tail-flick methods, confirming the

opioid-like analgesic activity of this species [70]. In a subsequent study, it was

reported that the alkaloids from this plant exhibited inhibitory activity on [3H]naloxone

binding in rat striata membranes [71].

Other work related to P. colorata was carried out by Both et al. (2000) in order to

evaluate the analgesic activity of hodgkinsine (11), a major alkaloid isolated from this

plant. The authors concluded that this compound presented dose-dependent

analgesic activity in mice, probablymediated by opioid and glutamate receptors,

suggesting that it participates in the analgesia previously reported for P. colorata [72].

Umbellatine (56), an alkaloid from P. umbellata, is other example of a compound

which showed analgesic properties [51].

Both et al. (2002) evaluated the analgesic activity of alkaloid extracts from three

Psychotria species classified as P. myriantha, P. nuda, and P. pubigera. In this work,

it was reported that only P. myriantha showed this property (hot plate method) [73].

Antioxidant Activity

Fragosos et al. (2008) evaluated antioxidant and antimutagenic potentials of

psychollatine (30) and the crude foliar extract of P. umbellata. Antioxidant properties

Page 40: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

30

were assessed in strains of Saccharomyces cerevisiae deficient in superoxide

dismutase and/or catalase (exposed to H2O2 and paraquat) and by the

hypoxanthine/xanthine oxidase assay. Psychollatine (30) was more efficient in

protection of strains treated with paraquat, whereas the crude foliar extract showed

better results for strains treated with H2O2. In the hypoxanthine/xanthine oxidase

assay both psychollatine (30) and the crude extract showed a marked dose-

dependent antioxidant activity, but the crude extract was more active (possibly owing

to the presence of flavonoids) than the isolated compound. Both the crude extract

and psychollatine (30) showed antimutagenic effects on strains of S. cerevisiae

(mutagenesis was induced by H2O2) [74]. Brachycerine (29), isolated from P.

brachyceras, is another example of an MIA which possessed antioxidant and

antimutagenic activities [75].

The in vitro antioxidant activity of fruits, stems, and leaf extracts of P. nilgiriensis

was investigated by DPPH, ABTS.+, and FRAP assays. An acetone extract of fruits,

had the highest total phenolics (505.74 �g GAE/g extract), tannin (460.78 g GAE/g

extract), and flavonoids (67.78 g RE/g extract). In addition, this extract presented

higher values for DPPH (IC50 = 20.0 g/mL), ABTS (41,343.51 mol TE/g extract),

and FRAP (4,713.33 mol Fe (II)/mg extract) assays [76].

Antimicrobial Activity

The antimicrobial activity of methanolic extracts of leaves, roots, and stem barks of P.

microlabastra against bacteria, protozoa, and fungi, was evaluated by the disk

diffusion method. In addition, fractions obtained by partition of these extracts with

petrol, dichloromethane, and ethyl acetate were also tested. In this work, the authors

reported that all extracts displayed activity against all bacteria and protozoa tested,

especially ethyl acetate fractions [77].

Three Psychotria species, along with other Rubiaceae and Meliaceae species,

were studied in order to investigate their antimicrobial properties by the disc diffusion

method. Extracts of leaves and bark of P. gardineri, P. nigra, and P stenophylla were

prepared using n-hexane, dichloromethane, and methanol as solvents and tested

against Saccharomyces cerevisiae, Ustilago maydis, Escherichia coli, Micrococcus

luteus, Bacillus subtilis, Bacillus cereus, and Aspergillus niger. P. gardineri and P.

stenophyllashowed a broad antimicrobial activity against six of the seven

Page 41: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

31

microorganisms tested while P. nigra was active against four species [78]. The

biological activities reported for Psychotria species are summarized in Table 6 .

Table 6 . Biological activities reported for Psychotria species

Species Plant part Extract or compound Activity Ref erence

P. rubra Stem Psychorubrin Cytotoxic activity [64]

P. rostrata Bark and twigs Quadrigemine B Cytotoxic activity [69]

P. forsteriana Leaves Psychotridine,

auadrigemines A and B,

isopsychotridine, and

chimonanthine

Cytotoxic activity

[19,79]

P.

camponutans

Wood Benz[g]isoquinoline-

5,10-dione

1-

hydroxybenzoisochroma

nquinone

Cytotoxic activity

[68]

P. spectabilis Leaves Solidagenone and

psoralene

Cytotoxic activity [13]

P. colorata Leavesand

flowers

Aqueous and alkaloid

extracts

Analgesic activity [70, 71]

P. colorata Flowers Hodgkinsine Analgesic activity [72]

P.

brachypoda

Leaves ethanol extract Analgesic activity [80]

P. umbellata Leaves Umbellatine Analgesic activity [51]

P. myriantha Leaves Alkaloid extract Analgesic activity [73]

P. nilgiriensis Stem and fruit Acetone extract Analgesic and

antioxidant activities

[76]

P.

sarmentosa

Leaves and stems Aqueous extract Analgesic activity [81]

P. umbellata Leaves Methanol extract and

umbellatine

Antioxidant and

antimutagenic

activities

[74]

P. Leaves Methanol extract and Antioxidant and [75]

Page 42: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

32

brachyceras brachycerine antimutagenic

activities

P. leiocarpa Leaves N,-D-glucopyranosyl

vincosamide

Antioxidant activity [82]

P.

microlabastra

Leaves, stem,

and roots bark

Methanol extract, petrol

and ethyl acetate

fractions

Antimicrobial activity [77]

P. gardineri Branches and

leaves

Dichloromethane and

methanol extracts

Antimicrobial activity [78]

P. nigra Branches and

leaves

Dichloromethane,

hexane and methanol

extracts

Antimicrobial activity [78]

P. reevesii Aerial parts Methanol extract Antimicrobial activity [83]

P. spectabilis Leaves Coumarin,

deoxysolidagenone,

psoralene, and

solidagenone

Antifungal activity [13]

P. prunifolia Branches Ethanol extract,

strictosamide, and 14-

oxoprunifoleine

Antiprotozoal activity [49]

P. serpens Not specified Ethanol extract Inhibition of herpes

simplex virus (HSV-

1) replication

[84]

P. klugii Stem bark Klugine, 7’-O-

demethylisocephaeline,

cephaeline,

isocephaeline, and 7-O-

methylipecoside

Antiparasitic activity [54]

P. laciniata Leaves Alkaloid fraction,

lyaloside, and

strictosamide

Monoamine oxidase

inhibition

[44]

P. suterella Leaves Alkaloid extract and

(E/Z)-vallesiachotamine

Monoamine oxidase

inhibition

[44]

P. myriantha Leaves Strictosidinic acid Monoamine oxidase

inhibition

[45]

Page 43: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

33

P. myriantha Aerial parts Alkaloid extract,

myrianthosine, and

strictosidinic acid

Antichemotactic

activity

[46]

P. leiocarpa Leaves Aqueous extract Allelopathic activity [85]

P. capitata Leaves Ethanol extract

P. leiocarpa Leaves Ethanol extract Antimycobacterial

activity

[86]

P. glaziovii Leaves Ethanol extract Antimycobacterial

activitiy

[86]

P. nuda Leaves Ethanol extract Antimycobacterial activitiy

[86]

P. pubigera Leaves Ethanol extract Antimycobacterial activitiy

[86]

P. racemosa Leaves Ethanol extract Antimycobacterial activitiy

[86]

P. ruelliifolia Leaves Ethanol extract Antimycobacterial activitiy

[86]

P. suterella Leaves Ethanol extract Antimycobacterial activitiy

[86]

P. vellosiana Leaves Ethanol extract Antimycobacterial activitiy

[86]

Synthesis Of Some Compounds From Psychotria Species

Quadrigemine C (2) and Psycholeine (3)

The total synthesis of quadrigemine C (2) and psycholeine (3), isolated from P.

oleoides [15], was performed by Lebsack et al. (2002) [87]. The route reported starts

with meso-chimonanthine (7) which was obtained by reaction of oxindole with isatin

in 13 steps, as had been reported in previous work [88]. After some steps,

quadrigemine C (2) was obtained and acid-catalysed isomeration led to the formation

of psycholeine (3), as described in Fig. (7).

Page 44: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

34

N N

N N

H

H

MeH

MeH

NO

H

NO

O

H

+

13 Steps

N N

N N

H

HI

I MeH

MeH

Bn

MeH

N N

N N

H

H

ON

TfO

TsMeN

O

NMeTs

N

TfO

MeH

Bn

Bn

Bn

MeH

N N

N N

H

H

N O

TsMeN

NO

TsMeN

MeH

Bn

Bn

MeH

N N

N N

H

H

NO

TsMeN

N O

TsMeN

MeH

H

Me

H

Me

MeR

N N

N N

H

HN

N

N

N

MeR

N

N

N

Me

N

Me

N N

H MeH

NN

HMe H

H

H

1. BuLi, TMEDA,Et2O 78 °C

2. ICH2CH2I, Et2O-78 °C to 0 °C

XPd2(dba)3.CH3, P(2-furyl)3, CuI, NMP, rt

X =

N

O

SnBu3

NMeTs

Bn

Pd(OAc)2, R-ToI-BINAP,

PMP, MeCN, 80 °C

Pd(OH)2, EtOH, MeOHH2 (100 psi), 80 °C

Na, NH3, THF, -78 °C

NH4Cl

0.1 N AcOH

100 °C

oxindole

isatin

meso-chimonanthine

(2) (3)

Fig.(7) . Synthesis of quadrigemine C (2) and psycholeine (3) proposed by Lebsack et

al. (2002)

Psychotrimine (9)

The first total synthesis of psychotrimine (9) was proposed by Matsuda, Kitagima and

Takayama (2007), involving 16 steps [89]. On the other hand, Newhouse and Baran

(2008) carried out the total synthesis of (±)-psycotrimine in four steps, using 7-

bromotryptamine as starting material. According to them, there had been no

methodology, up to that point, to construct that kind of C-N bond [90], as can be seen

in Fig. (8).

Page 45: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

35

1. NIS, Et3N

NH2

I

H

N

NH

Br

HN

I

H

CO2Me

N

NH

Br

NNH

H

CO2MeMeO2C

N

NH

NNH

N

NHCO2Me

H

CO2MeMeO2C

N

NH

NNH

N

NHMe

MeMe

Br

N

NHCO2Me

H

Br NNHCO2Me

HN

I

2. Pd(OAc) Na2CO3

LiCl, X

R = CH2CH2NHCO2Me

N

R

H

NHCO2Me

TMS

= X

4. Red-Al

NHMe

NHMe

3. CuI

K2CO3

Fig .(8). Synthesis of psychotrimine (9) proposed by Newhouse and Baran (2008)

1-Hydroxybenzoisochromanquinone

This benzoquinone was isolated from the wood of P. camponutans. Its synthesis,

performed by Jacobs, Claessens and Kimpe (2008), was achieved with a phthalide

annulation reaction using 3-cyano-1(3H)-isobenzofuranone (142) and 5,6-

dihydropyran-2-one (143), followed by reduction of the lactone moiety. This synthetic

route is described in Fig. (9) [91].

O

O

CN

+O

O OH

OH

O

O OMe

OMe

O

O

OMe

OMe

O

OH O

O

O

OH

(136)

1.1 equiv. t-BuOLi

THF-60 °C, 3h; rt, 14h

5 equiv. K2CO3

2.2 equiv. Me2SO4

Acetone,, 2h

OMe

OMe

O

O

1.2 equiv. DIBAL-H

Toluene,-60 °C, 2.5 h

3 equiv. CAN

CH3CN/H2O 1/2rt, 30 min

(142) (143)

Fig.(9) . Synthesis of 1-hydroxybenzoisochromanquinone proposed by Jacobs,

Claessens and Kimpe (2008)

Page 46: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

36

Concluding Remarks

The genus Psychotria presents a wide chemical diversity, comprising mainly

alkaloids. The more abundant alkaloids of the subgenus Psychotria are polyindole

alkaloids whereas MIAs are predominant in the subgenus Heteropsychotria.

Terpenoids, flavonoids, and other compounds are well known for their biological

properties and although a suite of compounds belonging to these phytochemical

classes has been isolated from the Psychotria genus, few have been subjected to

pharmacological assays. From two thousand species, only forty-seven have been

examined so far. There is a perception that extensive research work has been done

with some species of this genus; however, a large number of species are still

chemically and/or pharmacologically unknown. While this review has attempted to

unite the relevant information about Psychotria species, the bioactivity profiles from

the genus, and its alkaloids as the main bioactive compounds, clearly suggest future

research priorities. The presence of alkaloids makes the species of Psychotria

extremely promising, considering that this class of metabolites has shown a range of

biological activities. Moreover, these compounds can be used as models to obtain

more potent and effective synthetic derivatives.

Abbreviations

Ac acetyl

CAN Cerium (IV) ammonium nitrate

Et Ethyl

MIAs Monoterpene indole alkaloids

NIS N-iodosuccinimide

Pd2(dba)3 tris(dibenzylidineacetone)dipalladium (0)

PMP 1,2,2,6,6-pentamethylpiperidine

Rt room temperature

Page 47: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

37

THF Tetrahydrofuran

TMEDA Tetramethylethylenedramine

TMSOTf trimethylsilyl trifluoromethanesulfonate

References

[1] Tomaz, A. C.; Nogueira, R. B. S. S.; Pinto, D. S.; Agra, M. F.; Souza, M. F. V.; Cunha, E. V. Braz. J. Pharmacogn. 2008, 18, 47-52.

[2] Cragg, G. M.; Newman, D. J. Biochim. Biophys. Acta 2013, 1830, 3670-3695. [3] Mishra, B. B.; Tiwari, K. Eur. J. Med. Chem. 2011, 46, 4769-4807. [4] Butler, M. S.; Robertson, A. B.; Cooper, M. A. Nat. Prod. Rep. 2014, 31, 1612-1661. [5] Govaerts, R.; Ruhsam, M.; Anderson, L.; Robbricht, E.; Bridson, D.; Davis, A.; Shanzer, I.;

Sonké, B. 2015. World Check List of Rubiaceae. Facilitated by the Royal Botany Garden, kew Published on the internet; http://apps.kew.org/wcsp/ Retrieved 2015/05/30.

[6] Marques de Oliveira, A.; Lyra Lemos, R. P.; Conserva, L. M. Biochem. Syst. Ecol.2013, 50, 339–341.

[7] Steyermark, J. A. Mem. N. Y. Bot. Gard. 1972, 23, 404-717. [8] Nepokroeff, M.; Bremer, B.; Sytsma, K. J. Syst. Botany. 1999, 24, 5-27. [9] Verotta, L.; Pilati, T.; Tato, M.; Elisabetsky, E.; Amador, T. A. J. Nat. Prod.1998, 61, 392–396. [10] Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H. Org. Lett 2004, 6, 2945–2948. [11] Porto, D.D.; Henriques, A. T.; Fett-Neto, A. G. The Open Bioactive Coumpounds Journal 2009,

2, 29-36. [12] Alvarenga, T. A.; Polesel, D. N.; Matos, G.; Garcia, V. A.; Costa, J. L.; Tufik, S.; Andersen, M.

L. Behavorial Processes 2014, 108, 110-116. [13] Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. D. S. Pharm. Biol.2004, 42, 565–569. [14] Farias, F. M.; Konrath, E. L.; Zuanazzi, J. A. S.; Henriques, A. T. Biochem. Syst. Ecol.2008, 36,

919–920. [15] Lopes, S.; von Poser, G. L.; Kerber, V. a.; Farias, F. M.; Konrath, E. L.; Moreno, P.; Sobral, M.

E.; Zuanazzi, J. a. S.; Henriques, A. T. Biochem. Syst. Ecol.2004, 32, 1187–1195. [16] Verotta, L.; Peterlongo, F.; Elisabetsky, E.; Amador, T. a; Nunes, D. . J. Chromatogr. A1999,

841, 165–176. [17] Hart, N. K.; Johns, S. R.; Lamberton, J. A.; Summons, R. E. Aust. J. Chem.1974, 27, 639–646. [18] Libot, F.; Miet, C.; Kunesch, N.; Poisson, J. E. J. Nat. Prod.1987, 50, 468–473. [19] Roth, A.; Kuballa, B.; Bounthanh, C.; Cabalion, P.; Sévenet, T.; Beck, J. P.; Anton, R. Planta

Med.1986, 6, 450–453. [20] Gueritiz-voegelein, F.; Sévenet, T.; Pusset, J.; Adeline, M.-T.; Gillet, B.; Beloeil, J.-C.;

Guénard, D.; Portier, P. J. Nat. Prod.1992, 55, 923–930. [21] Rasolonjanahary, R.; Sévenet, T.; Voegelein, F. G.; Kordon, C. Eur. J. Pharmacol.1995, 285,

19–23. [22] Jannic, V.; Guéritte, F.; Lapre, Ol.; Serani, L.; Martin, M.-T.; Sévenet, T.; Potier, P. J. Nat.

Prod.1999, 33, 838–843. [23] Roh, A.; Kuballa, B.; Cabalion, P.; Anton, R. Planta Med.1985, 3, 289. [24] Adjibade, Yacoub; Weniger, Bernard; Quirion, Jean C.; Kuballa, Bernard; Cabalion, Pierre;

Anton, R. Phytochemistry1992, 31, 317–319. [25] Lajis, N. H.; Mahmud, Z.; Toia, R. F. Planta Med.1993, 59, 383–384. [26] Zhou, H.; He, H.; Wang, Y.; Hao, X. Helv. Chim. Acta2010, 93, 1650–1652. [27] Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y. Fitoterapia2013, 86, 178–182. [28] Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y. J. Asian Nat. Prod. Res.2014, 16, 29–33. [29] Li, X.; Zhang, Y.; Cai, X.; Feng, T.; Liu, Y.; Li, Y.; Ren, J.; Zhu, H.-J.; Luo, X.-D. Org. Lett.2011,

13, 5896–5899. [30] O’Connor, S. E.; Maresh, J. J. Nat. Prod. Rep.2006, 23, 532–547. [31] Klein-Junior, L. C.; Passos, C. S.; Moraes, A. P.; Wakui, V. G.; Konrath, E. L.; Nurisso, A.;

Carrupt, P-.A.; Oliveira, C. M. A.; Kato, L.; Henriques, A. T. Curr. Top. Med. Chem. 2014, 14, 1056-1075.

[32] Pimenta, A. A. T.; Braz-Filho, R.; Delprete, P. G.; De Souza, E. B.; Silveira, E. R.; Lima, M. A. S. Biochem. Syst. Ecol.2010, 38, 846–849.

Page 48: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

38

[33] Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G. A.; Correa, M. D.; Gupta, M. P. Phytochemistry1995, 38, 1537–1545.

[34] Henriques, A. T.; Lopes, S. O.; Paranhos, J. T.; Gregianini, T. S.; Von Poser, G. L.; Fett-Neto, A. G.; Schripsema, J. Phytochemistry2004, 65, 449–454.

[35] Do Nascimento, N. C.; Menguer, P. K.; Henriques, A. T.; Fett-Neto, A. G. Plant Physiol. Biochem.2013, 73, 33–40.

[36] Do Nascimento, N. C.; Menguer, P. K.; Sperotto, R. A.; de Almeida, M. R.; Fett-Neto, A. G. Mol. Biotechnol.2013, 54, 79–91.

[37] Kerber, V. A.; Passos, C. S.; Verli, H.; Quirion, J. P.; Henriques, A. T. J. Nat. Prod.2008, 71, 697–700.

[38] Paranhos, J. T.; Fragoso, V.; da Silveira, V. C.; Henriques, A. T.; Fett-Neto, A. G. Biochem. Syst. Ecol.2009, 37, 707–715.

[39] Kerber, V. a.; Passos, C. S.; Klein-Júnior, L. C.; Quirion, J.-C.; Pannecoucke, X.; Salliot-Maire, I.; Henriques, A. T. Tetrahedron Lett.2014, 55, 4798–4800.

[40] Kerber, V. A.; Gregianini, T. S.; Paranhos, T.; Farias, F.; Fett, J. P.; Fett-neto, A. G.; Zuanazzi, S.; Quirion, J.; Elizabetsky, E.; Henriques, T. J. Nat. Prod.2001, 64, 677–679.

[41] Berger, A.; Fasshuber, H.; Schinnerl, J.; Brecker, L.; Greger, H. Phytochem. Lett.2012, 5, 558–562.

[42] Paul, J. H. A.; Maxwell, A. R.; Reynolds, W. F. J. Nat. Prod.2003, 66, 752–754. [43] Passos, C. S.; Simões-Pires, C. a; Nurisso, A.; Soldi, T. C.; Kato, L.; de Oliveira, C. M. a; de

Faria, E. O.; Marcourt, L.; Gottfried, C.; Carrupt, P.-A.; Henriques, A. T. Phytochemistry2013, 86, 8–20.

[44] Dos Santos Passos, C.; Soldi, T. C.; Torres Abib, R.; Anders Apel, M.; Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A. T. J. Enzyme Inhib. Med. Chem.2013, 28, 611–618.

[45] Farias, F. M.; Passos, C. S.; Arbo, M. D.; Barros, D. M.; Gottfried, C.; Steffen, V. M.; Henriques, a T. Fitoterapia2012, 83, 1138–1143.

[46] Simoes-Pires, C. A.; Farias, F. M.; Martston, A.; Queiroz, E.; Chaves, C. G.; Henriques, A. T.; Hostettmann, K. Nat. Prduct Commun.2006, 1, 1101–1106.

[47] Faria, E. O.; Kato, L.; de Oliveira, C. M. a.; Carvalho, B. G.; Silva, C. C.; Sales, L. S.; Schuquel, I. T. a.; Silveira-Lacerda, E. P.; Delprete, P. G. Phytochem. Lett.2010, 3, 113–116.

[48] Van De Santos, L.; Fett-Neto, A. G.; Kerber, V. a.; Elisabetsky, E.; Quirion, J.-C.; Henriques, A. T. Biochem. Syst. Ecol.2001, 29, 1185–1187.

[49] Kato, L.; De Oliveira, C. M. A.; Faria, E. O.; Ribeiro, L. C.; Carvalho, B. G.; Da Silva, C. C.; Schuquel, I. T. A.; Santin, S. M. O.; Nakamura, C. V.; Britta, E. A.; Miranda, N.; Iglesias, A. H.; Delprete, P. G. J. Braz. Chem. Soc.2012, 23, 355–360.

[50] Pimenta, A. T. A.; Braz-filho, R.; Silveira, E. R.; Lima, M. A. S. J. Braz. Chem. Soc.2011, 22, 2216–2219.

[51] Both, Fernanda L.; Kerber, Vitor A.; Henriques, Amélia T.; Elisabetsky, E. Pharm. Biol.2002, 40, 336–341.

[52] Pimenta, A. T. A.; Braz-Filho, R.; Delprete, P. G.; de Souza, E. B.; Silveira, E. R.; Lima, M. A. S. Magn. Reson. Chem.2010, 48, 734–737.

[53] Solís, Pablo N.; Ravelo, Angel G.; Palenzuela, J. Antônio; Gupta, Mahabir P.; González, Antônio; Phillipson, J. D. Phytochemistry1997, 44, 963–969.

[54] Muhammad, I.; Dunbar, D. C.; Khan, S. I.; Tekwani, B. L.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Walker, L. A. J. Nat. Prod.2003, 6, 962–967.

[55] Murillo, R.; Castro, V. Ing. y Cienc. Quim.1998, 18, 61–62. [56] Zhang, C.-X.; Zhang, D.-M.; Chen, M.-F.; Guan, S.-Y.; Yao, J.-H.; He, X.-X.; Lei, L.-F.; Zhong,

Y.; Wang, Z.-F.; Ye, W.-C. Planta Med.2013, 79, 978–986. [57] Dan, S.; Dan, S. S. Fitoterapia1986, 57, 445–446. [58] Gonzales, J.; Dieck, T. Rev. Latinoam. Quim.1996, 24, 7–9. [59] Moreno, B. P.; Ricardo Fiorucci, L. L.; do Carmo, M. R. B.; Sarragiotto, M. H.; Baldoqui, D. C.

Biochem. Syst. Ecol.2014, 56, 80–82. [60] Lu, Q.; Wang, J.; Kong, L. Biochem. Syst. Ecol.2014, 52, 20–22. [61] Glinski, J. A.; David, E.; Warren, T. C.; Hansen, G.; Leonard, S. F.; Pitner, P.; Pav, S.; Arvigo,

R.; Balick, M. J.; Panti, E.; Grob, P. M. Photchemistry Photobiol.1995, 62, 144–150. [62] Li, H-F.; Huang, J.; Liu, M.-s.; Zhang, X.-P. . Zhongguo Shiyan Fangjixue Zazhi2011, 17, 125–

127. [63] Zhang, C.; He, X.; Guan, S.; Zhong, Y.; Lin, C. Nat. Prod. Res.2012, 26, 1864–1868. [64] Hayashi, T.; Smith, F. T.; Lee, K. J. Med. Chem.1987, 30, 2005–2008. [65] Lu, H.-X.; Liu, L.-Y.; Li, D.-P.; Li, J.-Z.; Xu, L.-C. Biochem. Syst. Ecol.2014, 57, 133–136. [66] Lu, Q.; Wang, J.; Luo, J.; Wang, X.; Shan, S.; Kong, L. Nat. Prod. Res.2014, 28, 2014. [67] Witherup, K. M.; Bogusky, M. J.; Anderson, P. S.; Ramjit, H. J. Nat. Prod.1994, 57, 1619–1625.

Page 49: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

39

[68] Solis, P. N.; Lang’at, C.; Gupta, M. P.; Kirby, G. C.; Warhurst, D. C.; Phillipaon, J. D. Planta Med.1995, 61, 62–65.

[69] Mahmud, Z.; Musa, M.; Ismail, N.; Lajis, N. H. Int. J. Pharmacog.1993, 31, 142–146. [70] Elisabetsky, E.; Amador, T. A.; Albuquerque, R. R.; Nunes, D. S.; Carvalho, C. T. 1995, 8741. [71] Amador, T. A.; Elisabetsky, E.; De Souza, D. O. 1996, 21, 97–102. [72] Amador, T. a; Verotta, L.; Nunes, D. S.; Elisabetsky, E. Planta Med.2000, 66, 770–772. [73] Both, F. L.; Farias, F. M.; Nicoláo, L. L.; Misturini, J.; Henriques, A. T.; Elisabtsky, E. E. Rev.

Bras. Pl. Med. 2002, 5, 41–45. [74] Fragoso, V.; do Nascimento, N. C.; Moura, D. J.; e Silva, A. C. R.; Richter, M. F.; Saffi, J.; Fett-

Neto, A. G. Toxicol. In Vitro2008, 22, 559–566. [75] Nascimento, Naila Cannes; Fragoso, Variluska; Moura, Dinara Jaqueline; Silva, Ana Catarina

Romano; Fett-neto, Arthur Germano; Saffi, J. Environ. Mol. Mutagen.2007, 48, 728–734. [76] Iniyavan, M.; Sangeetha, D.; Saravanan, S.; Parimelazhagan, T. Food Sci. Biotechnol.2012,

21, 1421–1431. [77] Khan, M. R.; Kihara, M.; Omoloso, A. D. Fitoterapia2001, 72, 818–821. [78] Jayasinghe, U. L. B.; Jayasooriya, C. P.; Bandara, B. M. R.; Ekanayake, S. P.; Merlini, L.;

Assante, G. Fitoterapia2002, 73, 424–427. [79] Adjibade, Y.; Kuballa, B.; Cabalion, P.; Jung, M. L.; Beck, J. P.; Anton, R. Planta Med.1989, 55,

567–568. [80] Leal, M. B.; Elisabetsky, E.; Alegre, P. 1996, 34, 267–272. [81] Ratnasooriya, W. D.; Dharmasiri, M. G. Med. Sci. Res.1999, 27, 715–718. [82] Matsuura, H. N.; Fett-Neto, A. G. Nat. Prod. Res.2013, 27, 402–411. [83] Phan, M. G.; Ha, V. S.; Phan, T. S. Tap Chi Hoa Hoc2007, 45, 628–633. [84] Kuo, Y.-C.; Chen, C.-C.; Tsai, W.-J.; Ho, Y.-H. Antiviral Res.2001, 51, 95–109. [85] Corrêa, L. R.; Soares, G. L. G.; Fett-Neto, a. G. South African J. Bot.2008, 74, 583–590. [86] Papers, O. 2010, 964–970. [87] Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearns, B. a. J. Am. Chem. Soc.2002, 124, 9008–

9009. [88] Overman, L. E.; Larrow, J. F.; Stearns, B. A.; Vance, J. M. Angew. Chem. Int.2000, 31, 213–

215. [89] Matsuda, Y.; Kitajima, M.; Takayama, H. 2008. [90] Newhouse, T.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 10886–10887. [91] Jacobs, J.; Claessens, S.; De Kimpe, N. Tetrahedron2008, 64, 412–418.

Page 50: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

40

3.2 Trabalho 2:

13C-NMR Spectral Data of Alkaloids Isolated from

Psychotria Species (Rubiaceae)**

Almir Ribeiro de Carvalho Junior 1, Ivo Jose Curcino Vieira 1* , Mario Geraldo de Carvalho 2,

Raimundo Braz-Filho 1,2, Mary Anne S. Lima 3, Rafaela Oliveira Ferreira 4, Edmilson José Maria 1,

Daniela Barros de Oliveira 5 1Laboratório de Ciências Químicas, CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos

Goytacazes, RJ - 28013-602, Brazil;

2Departamento de Química, ICE, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ - 23890-000,

Brazil;

3Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará,

,Fortaleza–CE - 60021-940, Brazil;

4Colegiado de Ciências Agrárias e Biotecnológicas, Universidade Federal do Tocantins, Gurupi-TO – 77402-970,

Brazil; 5Laboratório de Tecnologia de Alimentos, CCTA, Universidade Estadual do Norte Fluminense Darcy Ribeiro,

Campos dos Goytacazes, RJ - 28013-602, Brazil.

*Correspondence: [email protected]; Tel.: +55-22-27486504

Academic Editor: Prof. Dr. Thomas J. Schmidt Received: date; Accepted: date; Published: date

Abstract: The genus Psychotria (Rubiaceae) comprises more than 2,000 species, mainly found in

tropical and subtropical forests. Several studies have been conducted concerning their chemical

compositions, showing that this genus is a potential source of alkaloids. At least 70 indole alkaloids

have been identified from this genus so far. This review aimed to compile 13C-NMR data of alkaloids

isolated from the genus Psychotria as well as describe the main spectral features of different skeletons.

Keywords: Rubiaceae; Psychotria; 13C-NMR Spectral Data.

** Trabalho publicado no periodico Molecules, volume 22, páginas 1-22, no ano 2017,

doi: 10.3390/molecules22010103.

1. Introduction

In phytochemistry and related areas, structural elucidation techniques play a key

role because precise knowledge of the chemistry of plants requires unequivocal

structural characterization of its metabolites to obtain information related to the

taxonomy of plant groups. Moreover, correct identification of biologically active

Page 51: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

41

compounds is important, both to understand their possible mechanisms of action and

propose chemical modifications aimed at enhancing their activity.

The characterization of natural products requires, apart from patience and

dedication, knowledge about spectroscopic techniques (interpretation of these data)

and the biosynthesis of different types of metabolites. Comparison with literature data

is another important auxiliary tool that aids the structural characterization of a given

compound. In this context, finding a material that provides as much information as

possible about the spectral data of metabolites isolated from a genus (such as

Psychotria) may enable saving time.

The genus Psychotria (Rubiaceae) comprises more than 2,000 species, which

occur mostly in tropical and subtropical regions[1], with many of these species being

employed in folk medicine to treat several diseases [2,3]. The biological potential of the

chemical constituents of the species of this genus has possibly motivated several

studies regarding the chemical composition of such species. Most of these have

focused on investigating alkaloid fractions obtained by acid–base extraction, probably

owing to the biological importance of this type of metabolite. Such efforts have led to

the isolation and/or identification of various alkaloids, primarily indole-type. Some of

them exhibit some biological properties such as analgesic [4,5], antioxidant [6],

antiparasitic [7], and cytotoxic[8,9] activities.

This review aimed to compile 13C NMR spectral data of alkaloids isolated from

Psychotria species as well as to discuss the main spectral features observed for the

different types of skeletons.

2. Discussion

2.1. 13C Chemical Shifts of Monoterpene Indole Alkaloids Isolated from Psychotria

Species.

Monoterpene indole alkaloids (MIAs) comprise a wide group of secondary

metabolites, found mainly in the Apocynaceae, Loganiaceae, and Rubiaceae families

[10]. Their biosynthesis involves a reaction between tryptamine (derived from

Page 52: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

42

tryptophan) and the iridoid secologanin, catalyzed by strictosidine synthase [11]. This

initial step leads to the formation of strictosidine (1) (Table 1 , Figure 1 ), the key

precursor of other MIAs.

Strictosidine (1) was isolated from P. elata [12] and P. nuda (data not reported),

and presents an ortho-substituted ring system (as do most of the MIAs isolated from

this genus), characterized by the presence of four methine carbon signals at δC 118.8

(CH-9), 120.1 (CH-10), 122.7 (CH-11), and 112.0 (CH-12), and two quaternary carbon

signals at δC 127.9 (C-8) and 137.9 (C-13). The signals of two quaternary carbons at δC

133.2 (C-2) and 107.7 (C-7), along with a methine carbon at δC 52.4 (CH-3) and two

methylene carbons at δC 42.9 (CH2-5) and 21.0 (CH2-6) complete the

tetrahydro-β-carboline system. The secologanin moiety is confirmed by the presence

of signals resonating at δC170.6 (C-22), δC 109.9 (C-16), and 156.1 (C-17), relative to

an α,β-unsaturated carboxyl group, a terminal vinyl at δC135.7 (CH-19) and 119.5

(CH2-18), besides signals at δC97.5 (CH-21), 45.6 (CH-20), 35.9 (CH2-14), and 32.5

(CH-15). The carbon signals of the glucose unit are observed at δC100.3 (CH-1’), with

four mono-oxygenated methines in the interval from δC78.6 to 71.7 and one

oxygenated methylene at δC 62.9 [13].

Strictosidine (1) may function as a precursor of other biosynthetic pathways,

leading to different skeletons and consequently changes in spectral properties.

Carbonylation at C-5 (δC = 176.5 ppm), as observed for 5-carboxystrictosidine (4), for

example, promotes a chemical shift displacement of CH2-6 (Δδ = 4.2 ppm, β effect)

when compared with 1, as can be seen in Table 2. A similar pattern was observed for

methylation of N-4 on correantoside (7) isolated from P. correa [14], where

Δδvariations of 5.4 and 3.5 ppm are observed for CH-3 and CH2-5, respectively (β

effect). For 10-hydroxycorreantoside (8), it is possible to observe the electronic

influence of a hydroxyl by the inductive effect at the ipso carbon (C-10) and an increase

in the electron densities at the ortho (CH-9 and CH-11) and para (C-13) positions by

the mesomeric effect. On the basis of this mesomeric effect, the signals corresponding

to carbon atoms at the ortho, CH-9 [δC118.8 (1) and 104.4 (8), ΔδC= −14.8 ppm] and

Page 53: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

43

CH-11 [δC 122.7 (1) and 114.2 (8), ΔδC= −8.5 ppm], and para positions, C-13 [δC 137.9

(1) and 131.4 (8), ΔδC= −6.5 ppm], are displaced upfield.

Other metabolic pathways of this class of alkaloid revealed cyclization reactions

involving N-1(5 and 6) or N-4 (7–14) with C-22, or N-1 with C-18 and N-4 with C-22, as

particularly observed for stachyoside (30) isolated from P. stachyoides [15] (Figure 2 ).

Strictosamide (5), isolated from four different species,[16-19] is an example of lactam

formation between N-4 and C-22. By examining Table 2 ,it is possible to notice, apart

from the absence of a methoxyl group (carbomethoxy function) signal at δC 52.4, a

slight difference in the chemical shift of C-22 (δC 167.1 ppm), when compared with

compound 1 (δC 170.6 ppm), as well as a ΔδC variation of 6.9 ppm for C-17. In contrast,

correantoside (7) exemplified the first possibility involving cyclization between N-1 and

C-22. It is possible, in this case, to observe the variation in the chemical shifts of the

ortho CH-12 (Δδ = 4.0 ppm) and para CH-10 (Δδ = 4.1 ppm) atoms, promoted by the

inductive and mesomeric effects of the carboxyl group at C-22. These effects were

also observed for compounds 8 [ΔδC = 4.8 (CH-12) ppm], 13 [ΔδC = 4.4 (CH-12) and

4.1 (CH-10) ppm], 14 [ΔδC = 4.4 (CH-12) and 4.5 (CH-10) ppm], 18 [ΔδC = 7.8 (CH-12)

and 6.2 (CH-10) ppm], and 19 [ΔδC = 7.3 (CH-12) and 5.4 (CH-10) ppm], showing that

the downfield displacements of the CH-12 and CH-10 signals may be used to suggest

that N-1 is attached to C-22.

There are some examples of alkaloids isolated from this genus, whose

biosynthesis involves hydrolysis of a glycoside moiety such as

(E/Z)-vallesiachotamines, 23 and 24, isolated from P. bahiensis [17],

and10-hydroxy-iso-deppeaninol (27) and N-oxide-10-hydroxyantirhine (29) isolated

from P. prunifolia [20]. These types of skeletons may be suggested by analysis of the

region of the 13C spectrum that is typical of sugar, revealing the absence of the typical

signal of the anomeric carbon around δC 100.0, apart from additional signals of the

oxy-carbons characteristic of this unit.

Kerber et al. (2001) reported the isolation of a new MIA from P. brachyceras leaves

[21], named brachycerine (33), which showed a new alkaloid skeleton. Its biosynthesis

Page 54: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

44

involved the coupling of tryptamine to a 1-epi-loganin derivative. Psychollatine (34), a

new MIA from P. umbellate [22], presented a terpenoid derivative from geniposide.

Both alkaloids as well as compounds 21, 22, and 35 revealed an important

characteristic in their 13C spectra: the absence of typical signals of a terminal vinyl

group (~δC 119 ppm). In contrast, bahienosides A (38) and B (37), isolated from P.

bahiensis[17], showed duplicate signals relative to two secologanin moieties. Figure 2

shows typical carbon assignments, which may indicate some different structural

possibilities in comparison with those values observed for strictosidine (1).

Table 1 . Monoterpene indole alkaloids from Psychotria species.

Compounds Species Reference

s

13C NMR Data

Strictosidine (1) P.elata [12] [13]

Strictosidinic acid (2) P. acuminata

P. barbiflora

P. myriantha

[1, 23-25] [25]

Palicoside (3) P. racemosa [12] [26]

5α-carboxystrictosidine (4) P. acuminata

P. bahiensis

[17, 23] [27]

Strictosamide (5) P. bahiensis

P. nuda

P. prunifolia

P. suterella

[16-19] [18]

N,β-D-glucopyranosilvincosamide (6) P. leiocarpa [28] [28]

Correantoside (7) P. correae [14] [14]

10-hydroxycorreantoside (8) P. correae [14] [14]

Correantine B (9) P. correae [14] [14]

20-epi-correantine B (10) P. correae [14] [14]

Correantine A (11) P. correae [14] [14]

Correantine C (12) P. correae [14] [14]

N-desmethyl-correantoside (13) P. stachyoides [29] [29]

Nor-methyl-23-oxo-correantoside (14) P stachyoides [15] [15]

14-oxoprunifoleine (15) P. prunifolia [18, 20] [18]

17-vinyl-19-oxa-2-azonia-12-azapentacy-clo

[14.3.1.02,14.05,13.06,11]icosa-2(14),3,5(13),6(

11),7,9-hex-aene (16)

P. prunifolia [18] [18]

Naucletine (17) P. suterella [19] [30]

Correantosine E (18) P stachyoides [31] [31]

Correantosine F (19) P stachyoides [31] [31]

Page 55: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

45

Lagamboside (20) P. acuminata [23] [23]

N4-[1-((R)-2-hydroxypropyl)]-psychollatine

(21)

P. umbellata [32] [32]

N4-[1-((S)-2-hydroxypropyl)]-psychollatine

(22)

P. umbellata [32] [32]

(E/Z)-vallesiachotamine (23 + 24) P. bahiensis

P laciniata

[17, 33] [34]

Isodolichantoside (25) P. correae [14] [14]

Angustine (26) P. bahiensis

P laciniata

[17, 33] [35]

10-hydroxy-iso-deppeaninol (27) P. prunifolia [20] [20]

10-hydroxy-antirhine (28) P. prunifolia [20] [20]

N-oxide-10-hydroxyantirhine (29) P. prunifolia [20] [20]

Stachyoside (30) P stachyoides [15] [15]

Lyaloside (31) P. laciniata

P. suterella

[19, 36] [37]

Myrianthosine (32) P. myriantha [25] [25]

Brachycerine (33) P. brachyceras [21] [21]

Psychollatine (34) P. umbellata

P umbellata

[5, 22, 38] [22]

3,4-Dehydro-18,19-β-epoxy-psychollatine

(35)

P. umbellata [32] [32]

Desoxycordifoline (36) P. acuminata [23] [39]

Bahienoside B (37) P. acuminata

P. bahiensis

[17, 23] [17]

Bahienoside A (38) P. bahiensis [17] [17]

Page 56: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

46

R1 R2 R3(1) H H Me(2) H H H(3) H Me H(4) CO2H H Me

C

OH

OGlc

N

NR2

H

H

R1

O2R3

2216

1520

19

17

1432

7

6 5

89

10

11

1213

18

21

22

16

15

20

19

17

14

3

2

7

6 5

89

10

11

1213

18

21

1''

1'

22

16

15

20

19

17

14

3

2

7

65

89

10

11

1213

18

21

Glc

N

N

R2

O

O

OR1

R1 R2(5) H 3a-H (6) Glc 3b-H

N

NMeH

O

O

OGlcH

H

R

H

R (7) H (8) OH

2216

1520

1917

1432

7

6 5

89

10

11

1213

18

212216

1520

1917

1432

7

6 5

89

10

11

1213

18

N

NMeH

O

OR2

MeH

R1H

R1 R2 (9) CHO H (10) H CHO

2120

1516

1719

1432

7

6 5

89

10

11

1213

18

22N

NMeH

O

CO2MeH

H

HHO

(11)

N

NMeH

CHOH

HO

HO

H

(12)

ON

N

R

H

N

N

N

H

O

O

(17)

N

NR

O

O

H

H

OGlc

H R(13) H(14) CHO

+16

15

20

19

17

1432

7

6 5

89

10

11

1213

18

21

2216

1520

19

17

1432

7

6 5

89

10

11

1213 18

21

22 16

15

2019

17

14

32

7

6 5

89

10

11

1213

18

21

R (15) C=O (16) CH2

(18)

3,4 (19)

Glc

N

N

O

O

H

O

H N

N

R

O

OGlc

CO2Me

H

H

H

H

22

16

1520

19

17

14

3

2

7

6 5

89

10

11

1213

18

21

21

2015

16

17

19

1432

7

6 5

8

9

10

11

1213 18

22 2120

15

16

17

19

14

32

7

6 5

89

10

11

1213

18

22

24

25 26

R(21) 25a-OH(22) 25b-OH (20)

GlcN

N

H

CO2Me

CH2OHH

Figure 1. Structures of monoterpene indole alkaloids from Psychotria species

Page 57: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

47

(23 + 24)

N

N

H

CO2Me

CHOHH

(28)

N

N

OHHH

H

HO

HO

(27)

2216

15

20

19

17

14

3

2

7

6 5

89

10

11

1213

1821

22

16

15

20

19

17

14

3

2

7

6 5

89

10

11

1213

18

1''

2216

15

20

19

17

1432

7

6 5

89

10

11

1213

18

21

1''

16

15

20 19

17

14

3

2

7

6 5

89

10

11

1213

1821

16

15

20

19

17

1432

7

6 5

89

10

11

1213

18

21

N

N

H

HO

H

H

OHH

N

NMeH

OMeO2C OGlc

HH

(25)

N

N

N

H

O

(26)

(29)

16

15

20 19

17

14

3

2

7

6 5

8

9

10

11

1213

1821

-

+N

N

H

HO

H

O

H

OH

H

N

N

OH

H

H CO2Me

O

HO

H

H

GlcH

(33) (34)

N

N

O

GlcOH

H

CO2CH3

H

H

H

N

N

O

O

H

H

CO2Me

GlcOH

(35)

N

N C

CO2H

O

OGlc

H

H

O2Me

(36)

22

16

15

20

19

17

14

32

7

6 5

89

10

11

1213

18

21

22

16

1520

19

17

14

32

7

6 5

89

10

11

1213

18

21

22

16

1520

19

17

14

32

7

6 5

89

10

11

1213 18

21

1616

21

20

1516

17

19

14

32

7

6 5

89

10

11

1213

18

22

(31)

N

N

O

H

H OGlu

H3CO2CH

22

16

15

20

19

17

14

32

7

6 5

89

10

11

1213

18

21

22

16

15

20

19

17

14

3

2

7

6 5

89

10

11

1213

18

21

b

N

N

O

O

H

H

OGlc

H(30)

20

1516

17

19

1432

7

6 5

89

10

11

1213 18

21

22

16

15

20

19

17

14

3

2

7

6 5

89

10

11

1213

18

21

3b

1415

16 17

b

19

18

2021

bb

b

b

b b

1' '

Glc

Glc

O

O

H

H

MeO2C

N

N

H

R

O2Me

O

C

H

H O

R (37) 3-OH(38) 3-OH

N

NH

HO

O

OOGlu

H

(32)

Figure 1 . Continued

Page 58: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

48

C

OH

OGlc

N

NH

H

H

O2Me22

16

15

20

19

17

14

3

2

7

6 5

89

10

11

1213

18

21

(1)

4

1

CH

14N

NH

22

32

789

10

11

1213

O(30)

CH CH2

GlcH

N

NHH

H

O

HO

H

H

(33)

21

2015

19

14

32

7

6 5

18

C

CH

(27)

16

15

20

19

17

1432

7

6 5 18

21

N

N

OHHH

HHO

C

N4-O+

(28)(29)

16

15

20 19

17

14

3

2

7

6 5

1821

N

N

HH

H

OHH

4

(5)(6)

56

7

2

3

14

17

15

16

22O

N

N

H

H

(34)

H

H

15

20

19

14

32

7

6 5

N

N

GlcOH

H

H

21

GlcOHN

NO

H

H

(35)

1520

19

14

32

7

6 5

18

21

18

OCH3

Figure 2 . Structural signaling based on specific signals compared with values

for strictosidine (1): absence of a given signal in red and presence in green.

Table 2 . 13C NMR data of MIAs from Psychotria species.

Carbons Compounds/ δC (ppm)

1I 2III 3III 4I 5I 6I 7I 8I 9II 10II

C

2 133.2 132.3 134.7 133.2 134.8 136.1 134.3 133.8 132.9 133.0

7 107.7 106.0 105.2 109.0 110.3 111.5 115.7 115.3 114.8 114.8

8 127.9 126.1 126.6 128.0 128.7 129.5 130.4 131.3 129.1 129.1

13 137.9 135.8 135.8 138.4 137.8 137.7 137.3 131.4 136.0 136.0

22 170.6 170.0 168.4 170.9 167.1 166.3 168.2 167.8 166.2 166.2

16 109.9 113.4 112.5 109.9 109.2 109.1 112.2 112.0 108.6 109.6

CH

3 52.4 49.6 56.1 53.2 55.1 54.5 57.8 58.2 56.4 56.7

5 - - - 60.1 - - - - - -

9 118.8 117.8 117.4 118.8 118.7 119.3 119.2 104.4 118.1 118.0

10 120.1 118.7 118.1 120.1 120.2 121.3 124.2 155.1 123.2 123.2

Page 59: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

49

11 122.7 121.2 120.3 122.6 122.6 122.9 125.5 114.2 124.6 124.6

12 112.0 111.5 110.8 112.1 112.3 114.8 116.0 116.8 115.4 115.2

15 32.5 31.8 30.6 32.4 24.9 27.9 35.7 35.6 29.7 29.2

17 156.1 150.0 151.8 156.1 149.2 149.2 155.7 155.5 158.0 156.4

19 135.7 135.6 135.6 135.2 134.4 133.4 135.1 135.0 70.2 69.4

20 45.6 44.3 44.0 45.7 44.7 44.1 45.4 45.4 51.8 53.9

21 97.5 95.1 95.9 97.6 98.1 97.5 97.4 97.3 - -

CH2

5 42.9 40.0 45.2 60.1 44.8 41.6 46.4 46.7 45.5 45.5

6 21.0 19.2 15.9 25.2 22.1 22.3 18.8 18.8 17.6 17.7

14 35.9 33.7 35.3 35.6 27.3 35.6 34.4 34.1 39.1 35.3

18 119.5 117.8 117.8 119.6 120.6 120.7 119.2 119.3 - -

CH3

MeN- - - 39.8 - - - 41.4 41.2 - 41.5

Me - - - - - - - - 18.3 19.3

Gluc

ose

1’ 100.3 98.9 98.7 100.5 100.5 99.6 100.5 100.5 - -

2’ 78.6 69.8 73.0 74.7 74.3 74.9 74.7 74.7 - -

3’ 78.0 73.1 77.2 78.0 77.9 77.9 78.6 78.6 - -

4’ 74.6 77.2 70.0 71.9 71.3 71.6a 71.6 71.7 - -

5’ 71.7 76.5 76.6 78.6 78.2 78.3 78.0 78.0 - -

6’ 62.9 61.0 61.0 63.1 62.6 62.7 62.9 62.9 - -

1’’ - - - - - 87.6 - - - -

2’’ - - - - - 71.9 - - - -

3’’ - - - - - 75.1 - - - -

4’’ - - - - - 71.6a - - - -

5’’ - - - - - 81.2 - - - -

Page 60: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

50

6’’ - - - - - 62.9 - - - -

CHO - - - - - - - - 199.5 199.2

CO2

Me

52.4 - - 52.6 - - - - - -

CO2H - - - 176.5 - - - - - -

I CD3OD, II CDCl3 e III DMSO-d6, letters (a–e) indicate signals that may be interchanged.

Table 2 . Continued.

Carbons Compounds/ δC (ppm)

11II 12I 13I 14I 15I 16I 17II 18I 19I 20I

C

2 136.2 134.6 136.0 132.4 134.4 132.2 127.4 145.7 134.4 136.0

3 - - - - 139.7 139.5 140.8 - 148.1 -

7 108.0 117.4 117.0 116.2 124.6 132.9 116.9 138.0 134.0 111.3

8 126.8 130.6 131.0 130.1 118.9 119.7 125.7 123.9 125.2 129.7

13 137.1 137.7 137.3 137.7 146.9 144.6 139.0 140.0 142.3 136.0

14 - - - - 191.6 - - - - -

15 - - - - - - 141.1 - - -

16 111.2 - 112.7 111.8 - - 117.1 113.5 114.5 95.3

19 - - - - - - 199.6 - - -

20 - - - - - - 138.8 - - -

21 - 194.3 - - - - - - - -

22 167.5 174.8 168.6 168.1 - - 161.6 167.9 168.8 171.8

CH

3 61.4 58.5 50.6 47.9 - - - 50.0 - 50.2

5 - - - - 134.1 132.5 - 137.0 142.6 -

6 - - - - 120.6 116.0 - 116.2 114.5 -

9 118.5 117.8 119.2 119.5 123.6 122.8 119.3 123.9 122.3 119.0

10 119.8 119.0 124.4 124.6 123.4 122.4 119.9 126.3 125.5 121.0

11 121.5 125.0 125.5 126.0 137.2 132.3 120.9 133.5 131.3 122.7

Page 61: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

51

12 109.2 126.0 116.4 116.4 113.7 113.2 112.0 119.8 119.3 114.6

14 - - - - - - 95.6 - - -

15 30.8 34.5 35.7 35.6 42.8 25.6 - 30.5 21.2 33.7

16 - 52.0 - - - - - - - -

17 155.2 67.5 155.6 156.5 87.9 86.7 154.0 157.2 155.9 149.3

19 74.8 149.7 135.2 134.9 132.8 134.9 - 133.6 134.1 140.8

20 52.0 - 45.6 45.3 42.0 41.2 - 46.4 46.7 55.2

21 75.5 - 97.5 97.6 - - 155.4 97.9 97.9 -

CH2

5 52.0 48.0 40.0 41.6 - - 40.7 - - 53.0

6 20.9 19.6 23.2 23.2 - - 19.8 - - 23.4

14 36.7 35.9 36.7 34.8 - 24.8 - 36.7 39.8 35.1

16

- - - - 42.8 25.6 - - - -

18 - 33.8 119.3 119.5 118.9 117.9 - 121.8 121.3 116.9

21 - - - - 63.4 61.9 - - - 65.4

CH3

18 18.6 - - - - - 29.3 - - -

MeN- 43.0 41.9 - - - - - - -

-

Glucose

1’ - - 100.7 100.8 - - - 100.1 100.1 87.6

2’ - - 74.9 74.9 - - - 74.8 74.7 72.4

3’ - - 78.7 78.2 - - - 78.0 77.9 79.4

4’ - - 71.8 71.7 - - - 71.7 71.7 71.8

5’ - - 78.2 78.7 - - - 78.0 78.6 81.2

6’ - - 63.1 63.0 - - - 62.9 62.9 63.0

CHO - - - 163.9 - - - - - -

CO2Me 51.1 - - - - - - - - 51.2

I CD3OD, II CDCl3 e III DMSO-d6, letters (a–e) indicate signals that may be interchanged.

Page 62: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

52

Table 2 . Continued.

Carbons Compounds/ δC (ppm)

21I 22I 23III 24III 25I 26III 27I 28I 29I

C

2 134.0 133.4 133.1 133.6 134.0 126.8 136.9 130.5 131.0

3 - - - - - 136.9 145.5 - -

7 108.4 108.4 106.6 107.4 106.5 114.8 130.6 106.0 105.7

8 138.6 138.1 126.2 127.0 128.1 125.5 123.1 128.6 128.3

10 - - - - - - 152.6 151.8 152.0

13 128.4 128.0 136.1 136.8 137.8 138.5 137.5 133.1 133.6

15 - - - - - 139.0 - - -

19 141.0 142.1 - - - - - - -

16 112.2 112.0 93.2 93.4 112.0 119.8 - - -

20 - - 146.1 143.9 - 127.8 - - -

22 169.7 169.0 166.9 167.6 169.8 161.1 - - -

CH

3 61.7 59.3 48.6 47.9 58.8 - - 57.0 71.6

5 - - - - - - 135.7 - -

6 - - - - - - 114.6 - -

9 118.6 118.0 117.4 118.4 118.7 119.9 106.6 103.2 103.3

10 119.5 120.0 118.3 119.2 119.9 119.9 - - -

11 121.9 122.0 120.7 121.6 122.3 124.6 120.4 112.9 113.2

12 112.0 112.0 110.8 111.8 111.8 112.0 113.7 112.8 113.0

14 - - - - - 93.8 - - -

15 33.0 35.3 27.4 30.5 30.5 - 36.4 31.1 30.6

17 153.3 153.0 147.2 148.5 154.0 149.7 - - -

18 132.6 131.0 - - - - - - -

19 - - 152.0 146.3 135.8 130.2 138.1 138.7 138.2

20 49.0 48.4 - - 45.5 - 51.0 50.8 52.3

21 95.6 97.0 - - 97.8 147.7 - - -

25 65.1 66.3 - - - - - - -

CH2

5 49.0 49.6 49.8 50.7 47.9 40.4 - 52.4 69.0

6 21.4 19.7 21.3 22.2 17.9 19.2 - 18.1 20.6

Page 63: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

53

14 39.4 39.5 32.9 32.9 34.5 - 37.0 31.6 28.5

17 - - - - - - 61.4 48.0 59.1

18 - - - - 119.8 119.8 118.7 118.5 118.5

21 - - - - - - 64.4 64.0 63.8

24 62.4 61.6 - - - - - - -

CH3

18 - - 14.3 13.8 - - - - -

26 20.7 21.2 - - - - - - -

MeN- - - - - 40.6 - - - -

Gluc

ose

1’ 100.1 100.1 - - 100.5 - - - -

2’ 74.6 74.8 - - 74.7 - - - -

3’ 78.0 78.0 - - 78.6 - - - -

4’ 78.2 71.6 - - 71.6 - - - -

5’ 76.2 78.5 - - 78.0 - - - -

6’ 62.7 62.5 - - 62.9 - - - -

CHO - - 195.5 191.5 - - - -

CO2

Me

51.6 51.7 49.7 50.8 51.9 - - - -

I CD3OD, II CDCl3 e III DMSO-d6, letters (a–e) indicate signals that may be interchanged.

Table 2 . Continued.

Carbons Compounds/ δC (ppm)

30I 31 32III 33I 34I 35I 36I 37I 38I

C

2 137.1 140.3 134.8 130.7 131.1 128.8 135.6 135.0 138.0

3 - 143.8 - - - 158.9 142.9 - -

5 - - - - - - 135.6 - -

7 118.4 121.0 121.0 108.3 107.9 118.8 128.4 107.3 106.6

8 129.2 126.9 121.5 127.7 127.6 139.9 121.7 128.4 128.0

13 139.1 134.6 140.2 112.3 138.1 126.1 141.6 137.8 138.0

15

19 - - - - 140.0 67.3 - - -

Page 64: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

54

16 114.8 109.9 112.0 111.8 112.2 110.2 108.7 112.1 111.5

21 169.0 - - - - - - - -

22 - 166.6 170.0 169.1 169.1 168.9 171.3 169.7 170.0

22

b

- - - - - - 169.5 169.4

C

H

3 51.7 - 48.5 54.7 53.7 - - 58.8 59.6

5 - 137.3 137.0 - - - - - -

6 - 112.6 118.0 - - - 114.2 - -

9 119.7 121.4 126.6 118.9 119.0 121.2 121.4 120.6 118.7

10 125.2 119.0 118.9 120.2 120.3 121.1 119.9 119.7 120.0

11 126.8 127.6 127.5 123.2 123.6 126.2 128.4 122.0 122.5

12 118.3 111.8 112.5 112.3 112.3 113.6 111.6 112.0 112.0

15 32.9 30.1 - 35.5 37.5 31.7 34.5 31.5 31.6

17 148.7 151.6 151.0 153.5 153.4 153.1 153.2 154.0 154.7

18 - - - 74.3 138.5 62.5 - - -

19 53.3 134.0 134.5 49.0 - - 133.8 136.2 136.1

20 95.5 42.9 45.5 41.9 49.0 43.8 44.4 45.5 45.4

21 - 95.9 95.4 99.0 99.4 95.2 96.1 98.2 97.9

15

b

- - - - - - 30.3 30.5

17

b

- - - - - - 153.2 153.5

19

b

- - - - - - 135.7 135.5

20

b

- - - - - - 44.8 44.8

21

b

- - - - - - 98.5 98.3

C

H2

5 48.0 - - 41.8 42.1 48.2 - 44.8 44.8

6 21.2 - - 24.4 20.5 20.1 - 17.6 17.4

14 43.7 32.1 45.6 43.5 40.5 34.7 34.0 36.9 36.7

Page 65: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

55

15 - - 30.0 - - - - - -

17 - - - - - - - - -

18 72.4 118.6 118.9 - - - 117.6 119.8 119.8

3b - - - - - - 52.0 51.9

14

b

- - - - - - - 28.0 27.4

18

b

- - - - - - - 120.1 120.1

C

H3

M

e

- - 10.4 - - - - - -

Gluc

ose

1’ 100.3 98.79 98.6 100.6 101.5 99.4 99.0 100.4 100.4

2’ 74.9 73.1 73.0 74.0 71.0 74.7 73.2 74.6 74.8c

3’ 78.5 77.3 69.9 71.1 78.6 78.1 76.6 78.0 78.6a

4’ 71.9 71.10 77.3 78.3 74.6 72.1 70.4 71.6 71.7d

5’ 78.5 77.8 76.8 77.7 77.6 78.8 76.6 78.4 78.2b

6’ 63.0 61.2 61.0 62.1 61.8 63.3 61.8 62.9 62.9e

1’’ - - - - - - - 100.3 100.4

2’’ - - - - - - - 74.8 74.6c

3’’ - - - - - - - 78.1 78.4a

4’’ - - - - - - - 71.6 71.6d

5’’ - - - - - - - 78.3 78.0b

6’’ - - - - - - - 62.8 62.8e

C

O2

M

e

- 50.7 - 51.8 51.9 51.9 50.6 52.1 52.1

I CD3OD, II CDCl3 e III DMSO-d6, letters (a–e) indicate signals that may be interchanged.

2.2. 13C Chemical Shifts of Pyrrolidinoindoline Alkaloids Isolated from Psychotria

Species.

Page 66: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

56

Some studies have also reported that the isolation of pyrrolidinoindoline alkaloids

seems to be specific to the Psychotria species (Table 3 ). As shown in Figure 3 , its

chemical structures present the condensation of some N-methyl-tryptamine units with

different connection patterns, mainly involving C-3a-C3’a, C-3a-C-7, and N-C-3 bonds

or containing N-methyl-tryptamine units linked to a bis-quinoline part. The compound

(+)-chimonanthine (40) was isolated from several Psychotria species[40-42] and is an

example of a dimer that presents a C-3a-C-3’a-type linkage between its two units. Its

13C spectrum exhibited 11 carbon-signal equivalents for both units. The signals at δC

52.4 (CH2-2) and 84.6 (C-8a) are typical of carbons bearing one and two nitrogen

atoms, respectively. The signals at δC 33.2 and 63.6 were attributed to C-3 and C-3a,

respectively, whereas the signal at δC 33.8 is consistent with a methyl carbon attached

to a nitrogen atom. The ortho-substituted aromatic rings are characterized by signals at

δC 124.9 (CH-4/CH-4’), 128.3 (C-4a/C-4a’), 122.3 (CH-5), 119.8 (CH-5’), 129.9

(CH-6/CH-6’), 110.5 (CH-7/CH-7’), and 150.5 (C-7a/C-7a’) [40] (Table 4 ).

Since some compounds with more than two units present a chimonanthine portion

in their structures, the monitoring of C-3a and C-7 (main binding sites) and their

neighborhood may be a good alternative, in order to determine the positions of the

other monomeric units. Hodgkinsine (52) occurs frequently in the genus [41-46] and

presents a third unit with a C-3’’a-C-7’ linkage. In this case, besides replacement of a

methine aromatic carbon by a quaternary carbon (C-7’), observing the upfield

displacements of C-6’ and C-4’ (Δδ around 3.0 ppm) is possible probably because of

the presence of a group that increases the electron densities of these positions

(comparison with compound 40). Takayama et al. (2004), however, reported the

isolation of psychopentamine (60) from P. rostrata2, which showed a new type of

linkage between C-3’’’a and C-5’’ [2].

The chemical study of P. calocarpa leaves [43] led to the isolation of a new alkaloid

named psychotriasine (45), which presents a tryptamine unit linked to a pyrroloindole

unit by an N-C3’a linkage. This type of junction was also observed for psychohenin (46)

and compound 48 isolated from P. henryi [47, 48] and may be indicated by the

Page 67: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

57

presence of a quaternary carbon (C-3’a) that resonates at δC 79.4, 77.8, and 76.7 ppm,

in the three compounds, respectively. In contrast, psychotrimine (53), isolated from P.

rostrata [2] shows, besides the N-C-3’a bond, an N-C-7’ linkage indicated by the signal

of a quaternary aromatic carbon C-7’ at δC 121.5 ppm.

Alkaloids with more complex structures, containing from four to seven units, such

as quadrigemines A–C (55–57), psychotridine (61), oleoidine (64), and caledonine

(65), have also been isolated from this genus; however, the structural elucidation of

these compounds becomes more difficult as the number of units increases. Probably

owing to this, some studies did not provide detailed attributions of their carbon signals.

In such cases, mass spectrometry plays an important role in establishing the number

of units present in their structures as well as the pattern of the junctions.

Table 3 . Pyrrolidinoindoline alkaloids from Psychotria species.

Compounds Species References 13C NMR Data

Meso-chimonanthine (39) P. forsteriana

P. muscosa

[41, 49, 50] [50]

(+)-Chimonanthine (40) P. colorata

P. muscosa

P. rostrata

P. hoffmannseggiana

[40-42] [40]

Iso-calycanthine (41) P. forsteriana [50] [50]

Calycanthine (42) P. forsteriana [50] [50]

(8-8a),(8’-8’a)-tetradehydroisocalycanth

ine 3a(R), 3’a(R) (43)

P. colorata [42] [42]

Nb-desmethyl-meso-chimonanthine (44) P. lyciiflora [49] [49]

Psychotriasine (45) P. calocarpa [43] [43]

Psychohenin (46) P. henryi [47] [47]

Compound (47) P. henryi [48] [48]

Compound (48) P. henryi [48] [48]

Glomerulatine A (49) P. glumerulata [51] [51]

Glomerulatine B (50) P. glumerulata [51] [51]

Page 68: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

58

Glomerulatine C (51) P. glumerulata [51] [51]

Hodgkinsine (52) P. colorata

P. oleoides

P. lyciiflora

P. muscosa

P. beccarioides

P. rostrata

[41-46] [42]

Psychotrimine (53) P. rostrata [2] [2]

Psychotripine (54) P. pilífera [52] [52]

Quadrigemine A (55) P. forsteriana [53] [53]

Quadrigemine B (56) P. forsteriana

P. colorata

P. rostrata

[41, 53] [53]

Quadrigemine C (57) P. colorata

P. oleoides

[41-43, 45, 46,

50, 54]

[45]

Quadrigemine I (58) P. oleoides [49] [49]

Psycholeine (59) P. oleoides [46, 54] [46]

Psychopentamine (60) P. rostrata [2] [2]

Psychotridine (61) P. forsteriana

P. oleoides

P. colorata

P. beccarioides

[41, 44, 45, 53] [45]

Isopsychotridine C (62) P. forsteriana [53, 55] [55]

Isopsychotridine B (63) P. oleoides [49, 50] [45]

Oleoidine (64) P. oleoides [49] [49]

Caledonine (65) P. oleoides [49] [49]

Page 69: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

59

N N

NN

MeH H

H MeH

1'

2'3

3'a

8'a

4'a

4' 5'

6'

7'7'a

1

2

33a

8a

4a

45

6

7 7a

1'

2'

3'3'a

8'a

4'a

4'5'

6'

7'7'a

(39)

1

2

33a

8a

4a

45

6

77a N

NN

N

H

H

Me

Me1'

2'

3' 3'a

8'a

4'a

4'

5'

6'

7'7'a

1

2

33a

8a

4a

4

5

6

77a

(41)

N

NN

N

Me

Me1'

2'

3' 3'a

8'a

4'a

4'

5'

6'

7'7'a

1

233a

8a

4a

4

5

6

77a

(43)

1' 4

5

6

77a

6'4'5'

4'a7'

7'a

2

3

3'a

89

2'

3'

1

1'

(45)

N

NHMe

NN

HMe

H

(46)

1'2'

3'

3'a

8'a

4'a4'

5'

6'

7' 7'a

1

2

3

2'''

84a

4 5

77a

69

(40)

NN

HMe H

N N

H MeH

N

NN

N

H

HMe

Me

(42)

1'

2'3'

3'a

8'a

4'a

4'

5'

6'

7'7'a

1

23

3a

8a

4a

4

5

6

77a

N N

NN

MeH H

H HH

'

2'

3'3'a

8'a

4'a

4'5'

6'

7'7'a

(44)

b

2

33a

8a

4a

45

6

77a

6

45

7 7a6'

4' 5'

4'a

7'7'a

2

3

3'a

8

9

2'

3'

1

1'

N

NHMe

N NHMe

H

4a

N

NN

N

M

Me

e

N

NN

N

H

Me

N

NN

N

M

Me

He

(49)

(51)

(50)

1'

2' 3'

3'a

8'a

4'a

4'

5'

6'

7'7'a

1

23

3a

8a

4a4

5

6

77a

1'

2' 3'

3'a

8'a

4'a

4'

5'

6'

7'7'a

1

23

3a

8a

4a4

5

6

77a

1'

2' 3'

3'a

8'a

4'a

4'

5'

6'

7'7'a

1

23

3a

8a

4a4

5

6

77a

N N

Me

NN

H

Me

(47)

1'2'

3'

3'a

8'a

4'a

4'5'

6'

7' 7'a

1

2

3

2'''

84a

4 5

77a

69

N N

Me

NN

H

Me

H(48)

Figure 3 . Structures of pyrrolidinoindoline alkaloids from Psychotria species.

Page 70: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

60

(53)

1

7'a

7

4

23a4a

6

5

8a7a

3

6'

7'

7''a

8''a

3'a

2'3'

1'8'a

6''

3''

5''4''a3''a

7''

4''

2''

2'''

5'

4'

4'a

1'''

4'''

3'''

7'''

3'''a

4'''a 6'''

5'''

8'''a 7'''a

1''

N N

H Me

N

N

H

Me

N

N

H

Me

NN

HMe

(55)

6''

4''5''

7'' 7''a6'

4' 5'

4'a

7'

7'a

2''

3''

3'a

8''

9''

2'

3'

1''

1'

N

NHMe

N NHMe

N

N

H

Me

H

1

2

3

7 6

5

44a

8

9

7a

N N

NN

MeH H

H MeH

N

N Me

HH

1'

2'

3'3'a

8'a

4'a

4'5'

6'

7'7'a

(52)

1

2

33a

8a

4a

45

6

77a

1'''2''

3''3''a

8''a

4''a

4''

5''

6''

7''a

(54)

Me

N

NN

NN

N

MeH

1

7'a

7

5'

4'

4

6'

7'

2

7''a

4'a

8''a 1''

3'a

2' 3'

3a

1'

4a

8'a

6 5

8a

7a

3

6''3''

5'' 4''a3''a

7''

4''

2''

8''

3'''a8'''a

(56)

7''a

8''a

3'a

2'3'

1'8'a

6''

3''

5''

4''a

3''a

7''

4''

2''

2'''

5'

4'

4'a

1'''

4'''

3'''

7'''

4'''a

6'''

5'''

7'''a

1''

N

N

H

MeN

N

H

Me

N

N

H

Me

N N

H Me1

7'a

7

4

23a4a

6

5

8a7a

3

6'

7'

1''

1

7'a

7

4

2

7''a

8''a

3'a

2'3'

3a

1'

4a

8'a

6

5

8a7a

3

6''

3''

5''4''a3''a

7''

4''

2''

2'''

5' 4'

6'

7'

4'a

1'''

4'''

3'''

7'''

3'''a4'''a 6'''

5'''

8'''a 7'''a

N N

H MeH

N

N

H

Me

H

N

N

H

Me

H

NN

HMe H

(57)

N N

H MeH

N

N

N

Me

N

Me

NN

HMe H

3

7a 8a

4a

3a

1

2

4

7

1''

7'''a8'''a

5'''

6'''4'''a

3'''a7'''

3'''

4'''

1'''

4'a4'

5'

2'''

2''

4''

7''

3''a4''a

5''

3''

6''8'a1'

3'2'3'a

8''a

7''a

7'6'5

6

7'a

(59)

6

5

7

4'

7'

6'

3

7a8a

4a

3a2

7'a

1

4

4'a

1'

3'a

5'

8'a

N N

H Me

NN

Me

NN

HMe

NN H

Me

H

1'''

4''a4''

7''

3''a

5''

6''

7''a

2'

3'

3''2''

8''a

7'''a

8'''a

5'''

6'''

4'''a

3'''a

7'''

3'''

4'''

2'''

1''

(58)

Figure 3 . Continued

Page 71: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

61

1''''

7'''a

8'''a

5'''

6'''

4'''a

3'''a

7'''

3'''

4'''

1'''

4'a4'

2'''4''

7''

3''a 4''a 5''

3''

6''

1'

2''

2''''

8''a

7''a

7'

6'

3

7a8a

4a

3a 2

7'a

7''''a

4''''a 5''''1

3'a

2'3'

8'a

6''''

3''''

5'

8

7''''

4''''

9

Me

N

NMe

HN N

H Me

N

N

H

N

N

H

Me

N

N

H

Me

(60)

5

6

4

7

6

5

7

4'

7'

6'

3

7a8a

4a

3a2

7'a

1

4

1'''

4'a

4''a

1'3'a

5'

4''

7''

3''a5''

6''

7''a

2'3'3''2''

8''a

1''''

7'''a8'''a

5'''

6'''4'''a

3'''a7'''

3'''

4'''

2'''

8'a

2''''

7''''a

4''''a

5''''

6''''

3''''

7''''

4''''

3''''a

8''''a

1''

N N

H Me

N

N

H

Me

N

N

H

Me

NN

HMeN

NH

Me

(61)

6

5

7

4'

7'

6'

3

7a8a

4a

3a2

7'a

1

4

4'a

1'

3'a

5'

8'a

N N

H Me

NN

Me

NN

HMe

NN H

MeN

NH

Me

(62)

H

1'''

4''a4''

7''

3''a

5''

6''

7''a

2'

3'

3''2''

8''a

1''''

7'''a

8'''a

5'''

6'''

4'''a

3'''a

7'''

3'''

4'''

2'''

2''''

7''''a4''''a

5''''6''''

3''''

7''''4''''

3''''a

8''''a

1''

n

1

7'a

7

5'

4'4 6'

7'

2

7''a

4'a

8''a1''

3'a3'

3a4a

8'a

6

5

8a

7a3

3''

4''a

3''a

2''

2'

1'

5''

4'' 6''

7''

N N

H Me

NNMe N

N H

Me

n = 3 (63)n = 4 (64)n = 5 (65)

Figure 3 . Continued

Table 4 .13C NMR data of pyrrolidinoindoline alkaloids from Psychotria species.

Carbons Compounds/ δC (ppm)

39II 40II 41ns 42II 43II 44II 45I 46I 47II

C

3 - - - - - - 112.7 110.0 112.3

3a 64.7 63.6 37.8 36.8 48.9 62.8 - - -

4a 133.7 128.3 127.0 125.9 125.6 132.2 130.4 130.5 130.0

7a 152.5 150.5 145.3 146.2 145.8 151.7 137.7 138.0 135.0

8a - - - - 165.0 - - - -

3’a 64.7 63.6 37.8 36.8 48.9 63.9 79.4 77.8 75.3

4’a 133.7 128.3 127.0 125.9 125.6 130.0 131.3 131.3 128.9

Page 72: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

62

7’a 152.5 150.5 145.3 146.2 145.8 150.3 152.5 152.7 152.4

8’a - - - - 165.0 - - - -

CH

2 - - - - - - 125.0 126.1 123.4

4 125.2 124.9 118.3 117.1 123.0 123.9 124.7 119.5 119.0

5 119.2 122.3 122.2b 122.1 118.5 119.9 119.3 118.8e 119.1f

6 128.9 129.9 127.7 127.3 128.2 128.2 130.7 123.0 121.4

7 109.5 110.5 112.9 112.8 123.9 109.1 120.1 117.4 112.8

8a 83.9 84.6 71.7 71.82 - 79.3 - - -

4’ 125.2 124.9 118.3 117.1 123.0 124.4 112.2 124.9 126.4

5’ 119.2 119.8 125.2 125.2 121.9 117.9 122.4 119.8 118.7

6’ 128.9 129.9 127.7 127.3 128.2 128.4 119.6 130.9 130.2

7’ 109.5 110.5 112.9 112.8 123.9 108.2 110.0 110.4 108.8

8’a 83.9 84.6 71.7 71.82 - 82.4 87.0 87.3 86.6

CH2

2 53.1 52.4 46.9 47.3 48.5 44.9 - - -

3 36.4 33.2 34.9 32.5 29.9 35.3 - - -

2’ 53.1 52.4 46.9 47.4 48.5 51.8 52.0 52.3 53.6

3’ 36.4 33.2 34.9 32.5 29.9 38.1 39.9 40.0 37.7

2’’ - - - - - - - - 69.1

CH3

Me-

N1-

nd 33.8 46.9 43.4 31.1 - 36.3 33.9 40.6

MeN

1’-

nd 33.8 46.9 43.4 31.1 35.12 35.7 36.4 37.1

I CD3OD, II CDCl3 e III benzene-d6, letters indicate signals that may be interchanged.

Table 4 .Continued.

Carbons Compounds/ δC (ppm)

48II 49III 50III 51III 52II 53II 54I + II 55II* 56II*

C

2 129.6 - - - - - - - -

3 109.4 - - - - 114.9 - - -

3a - 49.1 48.6 49.2 62.8 - 69.1 60.9c 60.1c

4a 128.0 126.4 126.1a 129.5 131.7 128.3 133.8 132.3d 133.2e

7a 137.4 177.3 147.1 148.6 150.8 136.1 152.2 150.9h 150.6h

Page 73: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

63

8a - 165.1 164.7 166.5 - - 106.9 - -

3’a 76.7 49.1 48.6 45.3 63.0 76.7 37.0 63.2j 63.9i

4’a 130.5 126.4 125.4a 122.3 132.3 132.0 122.0 132.4d 132.9e

7’ - - - - - 121.5 130.9 108.9g -

8’a - 165.1 164.7 - - - - - -

3’’ - - - - - 112.5 - - -

3’’a - - - - 60.0 - 38.4 62.9j 63.3i

8’’ - - - - - 25.7b 68.0 - -

9’’ - - - - - 52.0 - - -

4’’a - - - - 131.7 129.8 122.3 132.6d -

7’’a - - - - 151.1 136.1 144.4 - -

3’’’a - - - - - - - 60.8c 60.9c

CH

2 - - - - - 126.0 - - -

4 117.9 123.7 120.9 123.0 126.4 119.4a 122.9 - 125.9d

5 119.2 122.3 122.2b 122.1 118.5 119.9 119.3 118.8e 119.1f

6 121.3 128.9 129.0c 128.8 127.9 122.4 128.2 127.9f 128.0g

7 112.1 125.0 125.2d 125.2 109.0 111.2 107.7 109.0g 108.9

8a - - - - 86.4 - - 86.9i 85.9i

4’ 124.5 123.7 124.0d 117.5 121.9 123.7 123.7 122.5 125.1d

5’ 119.0 122.3 122.6b 124.9 116.8 119.3a 122.0 116.3k 118.3f

6’ 129.6 128.9 128.8c 127.1 126.0 127.3 121.1 125.4 127.8g

7’ 108.9 125.0 124.4d 114.4 - - - - -

8’a 86.5 - - 76.5 81.7 86.1 69.7 86.1i 83.3j

2’’ - - - - - 124.3 - - -

4’’ - - - - 124.2 119.3a 125.4 - -

5’’ - - - - 117.5 119.3a 117.8 118.7e 117.2f

6’’ - - - - 127.4 121.7 127.6 - -

7’’ - - - - 108.1 112.2 112.5 - -

8’’a - - - - 82.3 - 69.4 - 82.3j

8’’’a - - - - - - - - 87.1i

5’’’ - - - - - - - 116.2k 116.8f

6’’’ - - - - - - - 126.4f -

Page 74: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

64

CH2

2 - 48.2 48.1 48.5 51.7 - 54.9 52.6a 52.3a

3 - 30.3 30.3 31.7 37.6 - 36.3 38.8b 38.5b

2’ 51.2 48.2 48.1 50.5 51.9 51.7 42.3 52.5a 52.2a

3’ 40.6 30.3 30.3 34.0 36.7 39.1 33.1 38.7b 36.6b

2’’ - - - - 51.9 - 45.9 52.2a -

3’’ - - - - 38.0 - 33.7 38.5b -

3’’’ - - - - - - - 36.6b -

CH3

Me-N

1-

44.8 30.9 30.8 30.7 35.2 36.3 36.4 35.7l 35.8k

MeN1’

-

36.1 30.9 - 36.6 35.0 36.4 - 35.5l 35.7k

Me-N

1’’-

- - - - 35.1 36.4 41.8 35.0l 35.6k

Me-N

1’’’ -

- - - - - - - - 35.2k

I CD3OD, II CDCl3 e III benzene-d6, letters indicate signals that may be interchanged, * indicates cases for

which there was no complete detailed attribution of carbon signals.

Table 4 .Continued.

Carbons Compounds/ δC (ppm)

57II* 58II* 59II* 60II 61II* 62II* 63II* 64II** 65II*

C

3a 60.6 60.0 59.6b 61.1 60.1a 60.9c 63.0a 60.4c 60.0c

4a - 132.0 132.4c 132.9b - 132.7d - 132.8 132.1e

7a - - - 152.8 - 150.6f - 150.7e 150.5f

3’a 62.6 63.0 37.5f 63.1 62.9 63.7h 63.3a 63.3c 63.0

4’a - - - 132.8b - 132.0d - - 132.4e

7’ - 110.0c - 123.8 - - - - 108.8

7’a - - - 151.0 - 148.9f - 150.3e 148.9f

5’’ - - - 136.2 - 117.1 - - -

3’’a 62.6 - 38.0f 64.2 62.9 63.2h 59.8c 60.9c -

Page 75: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

65

4’’a - - - 132.6 - - - - -

7’’a - - - 149.8 - - - - 148.6

3’’’a 60.6 - 60.6b 62.3 60.6a 60.1c 59.8c - 60.5c

4’’’a - - 133.8c 138.6 - - - - -

7’’’ - - - 120.4 - - - - -

7’’’a - - - 144.7 - - - - -

3’’’’ - - - 114.5 - - - - -

3’’’’a - - - 128.3 60.8a - 60.7c - -

4’’’’a - - - - - - - -

CH

4 - 126.0 - 126.9 - 123.6 - 126.1d 125.3d

4’ - 124.0 - 122.1 - 122.2 - 124.1 125.2d

5 - 117.0b - 118.8 - 119.1e - 116.3 118.9

6 - 129.5 - 128.0 - 128.2 - 128.7 128.1

7 - 109.0c - 110.5 - 109.0 - 109.3 107.7

8a 85.8a 88.0d 88.5d 87.3 86.0b 87.2g 81.8b 86.6 86.9

5’ - 118.5b - 116.2 - 118.4e - 119.4 117.3

6’ - 127.5 - 126.5 - 126.1 - 126.2 125.3

8’a 82.3 83.0d 74.0g 82.4 82.6c 85.8g 86.8b 82.8 86.0

4’’ - - - 121.4 - - - 125.7d 124.1

5’’ - 119.0b - - - 117.1 - - -

6’’ - - - 126.1 - 125.4 - 128.4 -

7’’ - - - 108.5 - - - - -

8’’a 82.3 - 72.0g 83.4 82.3c 83.1 86.8d 83.0 -

4’’’ - - - 123.3 - - - 122.7 123.6

5’’’ - 119.5b - 118.8 - - - - -

6’’’ - 128.5 - 125.1 - - - - -

7’’’ - - - 120.4 - - - - -

8’’’a 86.7a - 87.5d 88.4 86.9b 82.1 85.5d - -

2’’’’ - - - 126.1 - - - - -

4’’’’ - - - 119.3 - - - 125.7 123.2

5’’’’ - - - 111.2 - - - - -

6’’’’ - - - 122.3 - - - - -

Page 76: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

66

7’’’’ - - - 119.7 - - - - -

8’’’’a - - - - 85.1b - 84.8d - -

CH2 - - - - - - - - -

2 - 53.0 47.17a 52.7a - 52.5a - 52a 52.1a

3 - 38.0a - 37.8 - 38.8b - 38.7b 38.3d

8 - - - - - - - -

9 - - - - - - - -

2’ - - 52.7a - 52.0a - 52.8a 52.4a

3’ 39.0a 32.8e 35.8 - 38.5b - 38.7b 38.6b

2’’ - - 52.6a - - - 52.9a -

3’’ - 32.4e 37.2 - - - - -

2’’’ - 48.0a 52.5a - - - - -

3’’’ - - 39.2 - - - - -

3’’’’ - - 114.5 - - - - -

CH3 - - - - - - - -

Me-N

1-

36.0 36.1h 34.8 - 35.6i - 35.7 35.4g

Me-N

1’-

- 42.6i 35.3 - 35.1i - - 35.6g

Me-N

1’’-

- 42.6i 35.8 - - - - -

Me-N

1’’’ -

- 36.1h 35.7 - - - - -

Me-N

1’’’’ -

- - 36.5 - - - - -

I CD3OD, II CDCl3 e III benzene-d6, letters indicate signals that may be interchanged, * indicates cases for

which there was no complete detailed attribution of carbon signals.

2.3. 13C Chemical Shifts of Benzoquinolizidine Alkaloids Isolated from Psychotria

Species.

Muhammad et al. (2003) reported the isolation of five benzoquinolizidine alkaloids

from Psychotria klugii [7] (Table 5 ). Among them, klugine (66) and

7’-O-demethylisocephaeline (67) were reported for the first time, whereas cephaeline

Page 77: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

67

(68), isocephaeline (69), and 7-O-methylipecoside (70) were previously isolated from

Cephaelis species [56, 57].

Compound 68 (ipecac alkaloid) as along with compounds 66, 67, and 69

possesses an unusual skeleton with two tetrahydroisoquinoline ring systems [10]

characterized by the presence of four quaternary carbon signs at δC 147.2, 147.5 (C-9

and C-10, oxygenated ortho-substituted carbons), 126.8 (C-7a), and 130.1 (C-11a),

two methine carbons at δC 108.6 (CH-11) and 111.5 (C-8), and signals at δC 62.4

(CH-11b), 52.3 (CH2-6), and 29.2 (CH2-7). A similar system is observed for the lower

unit, with the exception of the absence of a methoxyl group attaching C-6’ (a hydroxyl

group in this position). The remarkable difference between compounds 68 and 69

(isomers) is associated with the chemical shift of carbon C-1' at δC 51.9 and 55.3

respectively, whereas compounds 66 and 67 differ from 68 and 69 in the number and

positions of the methoxyl groups. Interestingly, compound 70 exhibits carbon

assignments relative to a tetrahydroisoquinoline ring attached to a secologanin moiety

at C-1.

The chemical structures of compounds 68–70 are shown in Figure 4 , and their 13C

NMR data are listed in Table 6 .

Table 5 .Benzoquinolizidine Alkaloids from P. kluggi. Compound Species Reference 13C NMR Data

klugine (66) P. klugii [7] [7]

7’-O-demethylisocephaeline

(67)

P. klugii [7] [7]

cephaeline (68) P. klugii [7] [56]

isocephaeline (69) P. klugii [7] [56]

7-O-methylipecoside (70) P. klugii [7] [57]

Page 78: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

68

N

R1O

R2O

N

R3

H

H OR4

OH

12

312

13

4

6

77a

89

1011

11a11b

14

1'

3'

4'4'a

5'6'

7'8'

8'a

(70)

NAc

HO

MeO

H

O

OGlc

MeO2C

6'5'

9'1'

10'

8'

3

44a

56

78

8a1

4'11'

3'

1''

R1 R2 R3 R4(66) H Me OH Me(67) Me Me H H (68) Me Me 1'-H Me(69) Me Me 1'-H Me

Figure 4 . Structures of Benzoquinolizidine Alkaloids from P. klugii

Table 6 .13C NMR Data ofBenzoquinolizidine Alkaloids from P. kluggi.

Carbons Compound/ C (ppm)

66ns 67ns 68II 69II 70I

C

6 - - - - 146.5a

7 - - - - 147.8a

9 146.5a 146.8 147.2a 147.2a -

10 147.8b 148.0 147.5a 147.4a -

4a - - - - 126.9

7a 127.8 126.9 126.8 126.5 -

8a - - - - 130.2

11a 129.7 127.9 130.1 129.9 -

1’ 79.5 - - - -

4’ - - - - 111.7

4’a 127.7 123.2 127.6 127.9 -

6’ 146.4a 145.6 143.9b 144.0 -

7’

11’ - - - - 169.2

8’a 129.7 126.0 131.1 131.0 -

CH

Page 79: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

69

1 - - - - 50.6

2

3 42.5 41.3 41.7 61.5 -

5 - - - - 116.2

8 116.2 112.1 111.5 111.4 111.1

11 109.7 109.0 108.6 108.2 -

11b 63.8 62.7 62.4 62.8 -

1’ - 53.6 51.9 55.3 98.7

3’ - - - - 153.1

4’ 28.5 27.6 29.0 29.3 -

5’ 116.4 115.2 114.7 114.8 27.5

8’ 110.0 113.2 108.4 108.6 136.3

9’ - - - - 45.1

CH2

1 40.6 36.9 36.9 39.3 -

3 - - - - 36.1

4 62.2 61.6 61.3 52.6 29.1

6 53.3 51.9 52.3 52.6 -

7 29.3 25.3 29.2 29.1 -

12 24.4 23.3 23.6 24.0 -

14 37.0 38.0 40.9 40.4 -

3’ 41.0 39.5 40.1 41.4 -

4’ 28.5 27.6 29.0 29.3 -

6’ - - - - 41.1

10’ - - - - 120.1

CH3 11.5 10.1 11.2 11.3 -

13 11.5 10.1 11.2 11.3 -

Me7-O

-

- - - 56.5

Page 80: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

70

Me9-O

-

- 55.4d 55.8e 55.8f -

Me10-

O-

56.8c 55.8d 56.0e 56.0f -

Me7’-

O-

56.6c - 56.3e 56.0f -

Gluco

se

1’’ - - - - 100.5

2’’ - - - - 74.8

3’’ - - - - 78.2b

4’’ - - - - 71.5

5’’ - - - - 78.3b

6’’ - - - - 62.7

CO2M

e

51.7

I CD3OD, II CDCl3 e nsnot specified, letters indicate signals that may be interchanged.

3. Conclusions

In this work, we attempted to compile 13C data of alkaloids isolated from the

Psychotria genus and provide information that may be useful in order to distinguish

different types of skeletons. For monoterpene indole alkaloids (MIAs), mainly found in

tropical species, a good strategy for their structural elucidation is to compare their

spectral data with those observed for strictosidine (1). The monitoring of differences in

specific parts of the spectrum, such as the signals of C-22, CH-17, CH-12, CH2-5, and

CH-1’, may suggest alternative structural possibilities. Note that all comparisons

performed in this work are restricted preferably to compounds whose 13C NMR

experiments were run in the same solvent.

The main pyrrolidinoindoline alkaloids found in this genus are chimonanthine

derivatives, with units linked mostly by C3a-C3’a or C-3a-C7a bonds. Some examples

have shown different patterns of linkages between N (from tryptamine terminal units)

Page 81: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

71

and C-3a. For compounds with more than three units, such as quadrigemines A–C and

psychotridine and its isomer, obtaining detailed assignments of these carbons is not

possible owing to structural complexity.

The occurrence of benzoquinolizidine alkaloids in Psychotria species is less

common, comprising some compounds isolated from Psychotria klugii.

Acknowledgments: The authors are grateful to Fundação de Amparo à Pesquisa do

Estado do Rio de Janeiro (FAPERJ) for grants and a research fellowship, to Conselho

Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de

Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) for research fellowships.

Author Contributions: All authors contributed equally to the realization of the

manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Marques de Oliveira, A.; Lyra Lemos, R. P.; Conserva, L. M. β-Carboline alkaloids

from Psychotria barbiflora DC. (Rubiaceae). Biochem. Syst. Ecol. 2013, 50, 339–341.

2. Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H. New Type of Trimeric and

Pentameric Indole Alkaloids from Psychotria rostrata. Org. Lett. 2004, 6, 2945–2948.

3. Benevides, P. J. C.; Young, M. C. M.; Bolzani, V. D. S. Biological Activities of

Constituentsfrom Psychotria spectabilis. Pharm. Biol. 2004, 42, 565–569.

4. Amador, T. a; Verotta, L.; Nunes, D. S.; Elisabetsky, E. Antinociceptive profile of

hodgkinsine. Planta Med. 2000, 66, 770–772.

5. Both, Fernanda L.; Kerber, Vitor A.; Henriques, Amélia T.; Elisabetsky, E. P.

umbellata 4 (G’).pdf. Pharm. Biol. 2002, 40, 336–341.

6. Matsuura, H. N.; Fett-Neto, A. G. The major indole alkaloid N,β-D-glucopyranosyl

vincosamide from leaves of Psychotria leiocarpa Cham. & Schltdl. is not an antifeedant

but shows broad antioxidant activity. Nat. Prod. Res. 2013, 27, 402–11.

7. Muhammad, I.; Dunbar, D. C.; Khan, S. I.; Tekwani, B. L.; Bedir, E.; Takamatsu, S.;

Ferreira, D.; Walker, L. A. Antiparasitic Alkaloids from Psychotria klugii. J. Nat. Prod.

2003, 66, 962–967.

Page 82: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

72

8. Mahmud, Z.; Musa, M.; Ismail, N.; Lajis, N. H. Cytotoxic and Bacteriocidal Activities

of Psychotriu rostrutu. Int. J. Pharmacog. 1993, 31, 142–146.

9. Adjibade, Y.; Kuballa, B.; Cabalion, P.; Jung, M. L.; Beck, J. P.; Anton, R.

Cytotoxicity on human leukemic and rat hepatoma cell lines of alkaloid extracts of

Psychotria forsteriana. Planta Med. 1989, 55, 567–568.

10. Dewick, P. D. Medicinal Natural Products: A Biosynthetic Approach; 2002; p. 350.

11. O’Connor, S. E.; Maresh, J. J. Chemistry and biology of monoterpene indole

alkaloid biosynthesis. Nat. Prod. Rep. 2006, 23, 532–547.

12. Fasshuber, H. Strukturbestimmung sowie Untersuchung der enzymkatalysierten

Hydrolyse von Naturstoffen mit Glycosidstruktur aus der Pflanzengattung Psychotria

L., Universität Wien, 2011, p. 96.

13. Patthy-luka, A.; Károlyházy, L.; Szabó, L. F.; Podányi, B. First Direct and Detailed

Stereochemical Analysis of Strictosidine. J. Nat. Prod. 1997, 60, 69–75.

14. Achenbach, H.; Lottes, M.; Waibel, R.; Karikas, G. A.; Correa, M. D.; Gupta, M. P.

Alkaloids and other compounds from Psychotria correae. Phytochemistry 1995, 38,

1537–1545.

15. Pimenta, A. T. A.; Braz-Filho, R.; Delprete, P. G.; de Souza, E. B.; Silveira, E. R.;

Lima, M. A. S. Structure elucidation and NMR assignments of two unusual

monoterpene indole alkaloids from Psychotria stachyoides. Magn. Reson. Chem.

2010, 48, 734–737.

16. Farias, F. M.; Konrath, E. L.; Zuanazzi, J. A. S.; Henriques, A. T. Strictosamide

from Psychotria nuda (Cham. et Schltdl) Wawra (Rubiaceae). Biochem. Syst. Ecol.

2008, 36, 919–920.

17. Paul, J. H. A.; Maxwell, A. R.; Reynolds, W. F. Novel Bis ( monoterpenoid ) Indole

Alkaloids from Psychotria bahiensis. J. Nat. Prod. 2003, 66, 752–754.

18. Faria, E. O.; Kato, L.; de Oliveira, C. M. a.; Carvalho, B. G.; Silva, C. C.; Sales, L.

S.; Schuquel, I. T. a.; Silveira-Lacerda, E. P.; Delprete, P. G. Quaternary β-carboline

alkaloids from Psychotria prunifolia (Kunth) Steyerm. Phytochem. Lett. 2010, 3,

113–116.

Page 83: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

73

19. Van De Santos, L.; Fett-Neto, A. G.; Kerber, V. a.; Elisabetsky, E.; Quirion, J.-C.;

Henriques, A. T. Indole monoterpene alkaloids from leaves of Psychotria suterella

Müll. Arg. (Rubiaceae). Biochem. Syst. Ecol. 2001, 29, 1185–1187.

20. Kato, L.; De Oliveira, C. M. A.; Faria, E. O.; Ribeiro, L. C.; Carvalho, B. G.; Da Silva,

C. C.; Schuquel, I. T. A.; Santin, S. M. O.; Nakamura, C. V.; Britta, E. A.; Miranda, N.;

Iglesias, A. H.; Delprete, P. G. Short Report. J. Braz. Chem. Soc. 2012, 23, 355–360.

21. Kerber, V. A.; Gregianini, T. S.; Paranhos, T.; Farias, F.; Fett, J. P.; Fett-neto, A.

G.; Zuanazzi, S.; Quirion, J.; Elizabetsky, E.; Henriques, T. Brachycerine , a Novel

Monoterpene Indole Alkaloid from Psychotria brachyceras. J. Nat. Prod. 2001, 64,

677–679.

22. Kerber, V. A.; Passos, C. S.; Verli, H.; Quirion, J. P.; Henriques, A. T. Psychollatine

, a Glucosidic Monoterpene Indole Alkaloid from Psychotria umbellata. J. Nat. Prod.

2008, 71, 697–700.

23. Berger, A.; Fasshuber, H.; Schinnerl, J.; Brecker, L.; Greger, H. Various types of

tryptamine-iridoid alkaloids from Palicourea acuminata (=Psychotria acuminata,

Rubiaceae). Phytochem. Lett. 2012, 5, 558–562.

24. Farias, F. M.; Passos, C. S.; Arbo, M. D.; Barros, D. M.; Gottfried, C.; Steffen, V.

M.; Henriques, a T. Strictosidinic acid, isolated from Psychotria myriantha Mull. Arg.

(Rubiaceae), decreases serotonin levels in rat hippocampus. Fitoterapia 2012, 83,

1138–1143.

25. Simoes-Pires, C. A.; Farias, F. M.; Martston, A.; Queiroz, E.; Chaves, C. G.;

Henriques, A. T.; Hostettmann, K. Indole monoterpenes with antichemotactic activity

from Psychotria myriantha: chemotaxonomic significance. Nat. Prduct Commun. 2006,

1, 1101–1106.

26. Morita, H.; Ichihara, Y.; Takeya, K.; Watanabe, K.; Itokawa, H.; Motidome, M. A

New Indole Alkaloid Glycoside from the Leaves of Palicourea marcgra vii. Planta Med.

1989, 55, 288–289.

Page 84: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

74

27. Geran, R.; Greenberg, N.; Macdonald, M.; Schumacher, A.; Abbott, B.; Rep, C. C.;

Cattolica, U.; Cuwe, S.; I, L. F. V. Constituents of Guettarda Platypoda. J. Nat. Prod.

1986, 49, 1150–1151.

28. Henriques, A. T.; Lopes, S. O.; Paranhos, J. T.; Gregianini, T. S.; Von Poser, G. L.;

Fett-Neto, A. G.; Schripsema, J. N,beta-D-Glucopyranosyl vincosamide, a light

regulated indole alkaloid from the shoots of Psychotria leiocarpa. Phytochemistry

2004, 65, 449–54.

29. Pimenta, A. T. A.; Braz-filho, R.; Silveira, E. R.; Lima, M. A. S. Short Report. J.

Braz. Chem. Soc. 2011, 22, 2216–2219.

30. Liew, S. Y.; Mukhtar, M. R.; Hadi, a H. a; Awang, K.; Mustafa, M. R.; Zaima, K.;

Morita, H.; Litaudon, M. Naucline, a new indole alkaloid from the bark of Nauclea

officinalis. Molecules 2012, 17, 4028–4036.

31. Pimenta, A. A. T.; Braz-Filho, R.; Delprete, P. G.; De Souza, E. B.; Silveira, E. R.;

Lima, M. A. S. Unusual monoterpene indole alkaloids from Psychotria stachyoides

Benth. Biochem. Syst. Ecol. 2010, 38, 846–849.

32. Kerber, V. a.; Passos, C. S.; Klein-Júnior, L. C.; Quirion, J.-C.; Pannecoucke, X.;

Salliot-Maire, I.; Henriques, A. T. Three new monoterpene indole alkaloids from

Psychotria umbellata Thonn. Tetrahedron Lett. 2014, 55, 4798–4800.

33. Passos, C. S.; Simões-Pires, C. a; Nurisso, A.; Soldi, T. C.; Kato, L.; de Oliveira, C.

M. a; de Faria, E. O.; Marcourt, L.; Gottfried, C.; Carrupt, P.-A.; Henriques, A. T. Indole

alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases

inhibitors. Phytochemistry 2013, 86, 8–20.

34. Sacconnay, L.; Ryckewaert, L.; Passos, C. S.; Guerra, M. C.; Kato, L.; De Oliveira,

C. M. A.; Henriques, A.; Carrupt, P.-A.; Simões-Pires, C.; Nurisso, A. Alkaloids from

Psychotria Target Sirtuins: In Silico and In Vitro Interaction Studies. Planta Med. 2015,

81, 517–524.

35. Abreu, P.; Pereira, A. A new indole alkaloid from Sarcocephalus latifolius.

Heterocycles 1998, 48, 885–891.

Page 85: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

75

36. Dos Santos Passos, C.; Soldi, T. C.; Torres Abib, R.; Anders Apel, M.;

Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A. T. Monoamine oxidase

inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria

suterella and Psychotria laciniata. J. Enzyme Inhib. Med. Chem. 2013, 28, 611–618.

37. Levesque, J.; Jacquesy, R. Alcoyl--gluco-alcaloides: nouveaux composes isoles

de Pauridiantha Lyalii Brem (Rubiacees). Tetrahedron 1982, 38, 1417–1434.

38. Paranhos, J. T.; Fragoso, V.; da Silveira, V. C.; Henriques, A. T.; Fett-Neto, A. G.

Organ-specific and environmental control of accumulation of psychollatine, a major

indole alkaloid glucoside from Psychotria umbellata. Biochem. Syst. Ecol. 2009, 37,

707–715.

39. Brandt, V.; Tits, M.; Geerlings, A.; Frédérich, M.; Penelle, J.; Delaude, C. .;

Verpoorte, R.; Angenot, L. b -Carboline glucoalkaloids from Strychnos mellodora.

Phytochemistry 1999, 51, 1171–1176.

40. Naves, R. F. Estudo Fitoquímico das Folhas de Psychotria hoffmannseggiana

Roem . & Schult (Rubiaceae), 2014, pp. 1–212.

41. Verotta, L.; Peterlongo, F.; Elisabetsky, E.; Amador, T. a; Nunes, D. .

High-performance liquid chromatography–diode array detection–tandem mass

spectrometry analyses of the alkaloid extracts of Amazon Psychotria species. J.

Chromatogr. A 1999, 841, 165–176.

42. Verotta, L.; Pilati, T.; Tato, M.; Elisabetsky, E.; Amador, T. A. Pyrrolidinoindoline

Alkaloids from Psychotria colorata 1. J. Nat. Prod. 1998, 61, 392–396.

43. Zhou, H.; He, H.; Wang, Y.; Hao, X. A New Dimeric Alkaloid from the Leaf of

Psychotria calocarpa Introduction . – Plants of the genus Psychotria have been used in

folk medicine for the treatment of constipation in Malaysia [ 1 ]. Several polymeric

indole alkaloids have been isolated from re. Helv. Chim. Acta 2010, 93, 1650–1652.

44. Hart, N. K.; Johns, S. R.; Lamberton, J. A.; Summons, R. E. a CssH ,, N ,, Alkaloid

from Psychotria beccarioides ( Rubiaceae ). Aust. J. Chem. 1974, 27, 639–646.

45. Libot, F.; Miet, C.; Kunesch, N.; Poisson, J. E. Rubiacees d’oceanie: alcaloides de.

J. Nat. Prod. 1987, 50, 468–473.

Page 86: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

76

46. Gueritiz-voegelein, F.; Sévenet, T.; Pusset, J.; Adeline, M.-T.; Gillet, B.; Beloeil,

J.-C.; Guénard, D.; Portier, P. Alkaloids from Psychotria Oleoides with Activity on

Growth Hormone Release. J. Nat. Prod. 1992, 55, 923–930.

47. Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y. Absolute configuration study of a

new dimeric indole alkaloid from leaves and twigs of Psychotria henryi. J. Asian Nat.

Prod. Res. 2014, 16, 29–33.

48. Liu, Y.; Wang, J.-S.; Wang, X.-B.; Kong, L.-Y. Two novel dimeric indole alkaloids

from the leaves and twigs of Psychotria henryi. Fitoterapia 2013, 86, 178–82.

49. Jannic, V.; Guéritte, F.; Lapre, Ol.; Serani, L.; Martin, M.-T.; Sévenet, T.; Potier, P.

Pyrrolidinoindoline Alkaloids from Psychotria oleoides and Psychotria lyciiflora. J. Nat.

Prod. 1999, 33, 838–843.

50. Adjibade, Yacoub; Weniger, Bernard; Quirion, Jean C.; Kuballa, Bernard;

Cabalion, Pierre; Anton, R. Dimeric alkaloids from. Phytochemistry 1992, 31, 317–319.

51. Solís, Pablo N.; Ravelo, Angel G.; Palenzuela, J. Antônio; Gupta, Mahabir P.;

González, Antônio; Phillipson, J. D. e r g a m o n. Phytochemistry 1997, 44, 963–969.

52. Li, X.; Zhang, Y.; Cai, X.; Feng, T.; Liu, Y.; Li, Y.; Ren, J.; Zhu, H.-J.; Luo, X.-D.

Psychotripine : A New Trimeric Pyrroloindoline Derivative from Psychotria pilifera. Org.

Lett. 2011, 13, 5896–5899.

53. Roth, A.; Kuballa, B.; Bounthanh, C.; Cabalion, P.; Sévenet, T.; Beck, J. P.; Anton,

R. Cytotoxic Activity of Polyindoline Alkaloids of Psychotria forsteriana ( Rubiaceae ) (

1 ). Planta Med. 1986, 6, 450–453.

54. Rasolonjanahary, R.; Sévenet, T.; Voegelein, F. G.; Kordon, C. Psychotria

oleoides,. Eur. J. Pharmacol. 1995, 285, 19–23.

55. Roth, A.; Kuballa, B.; Cabalion, P.; Anton, R. Preliminary Study of the Alkaloids of

Psychotria forsteriana. Planta Med. 1985, 51, 289.

56. Itoh, A.; Ikuta, Y.; Baba, Y.; Tanahashi, T.; Nagakura, N. Ipecac alkaloids from

Cephaelis acuminata. Phytochemistry 1999, 52, 1169–1176.

Page 87: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

77

3.3 Trabalho 3:

Metabolites from Psychotria suterella Müll. Arg. and Psychotria nuda

Cham. & Schltdl. Wawra (Rubiaceae) and Evaluation of Cytotoxic

Activity

Almir Ribeiro de Carvalho Juniora*, Michel de Souza Passosa, Mario

Geraldo de Carvalhob, Raimundo Braz-Filhoa,b, Milton Masahiko

Kanashiroc, and Ivo Jose Curcino Vieiraa

The chemical study of P. suterella leaves led to the identification of a new iridoid named 9-epi-

geniposidic acid (1), along with the known compounds geniposidic acid (2), sucrose (3), 3-O-

acethyloleanolic acid (4), pomolic acid (5), spinosic acid (6), maslinic acid (7),tormentic acid

(8), methyl oleanolate (9), lyalosidic acid (10), and strictosidinic acid (11). From twigs and

leaves of P. nuda sitosterol (12), stigmasterol (13), campesterol (14), phytol (15), -sitosterol-

3-O--D-glucoside (16), -stmasterol-3-O--D-glucoside (17), cinchonain Ia (18), cinchonain

Ib (19), N,N,N-trimethyltryptamonium (20), lyaloside (21), lawsofrutose (22), roseoside (23),

strictosamide (24), scopoletin (25), rotungenic acid (26), strictosidine (27), and 5-

carboxystrictosidine (28) were identified. These structures were elucidated based on NMR,

HR-MS, IR spectrum as well as comparison with literature data. Furthermore, the cytotoxic

activity of compounds 20, 23, and 24 was evaluated against two cancer cell lines (THP-1 and

U937). Only compound 24 showed significant cytotoxic activity against the U937 cell line (IC50

= 29.1 ± 1 g/L).

Keywords: Psychotria; iridoid; 9-epi-geniposidic acid; alkaloids; MTT

** Este trabalho será submetido ao periódico Natural Product Research.

1. Introduction

The genus Psychotria comprises about 2000 species, occurring mostly in tropical and

subtropical regions of the world (Marques de Oliveira et al. 2013). Some of its species

are widely used in folk medicine for several purposes such as earache (Verotta et al.

1998), abdominal pain (Amador et al. 1996), constipation (Zhou et al. 2010), coughs

(Benevides et al. 2004), etc. Several biological activities have been reported for this

genus, such as cytotoxic (Zhang et al. 2013), analgesic (Both et al. 2002), and

antimicrobial (Jayasinghe et al. 2002) activities, highlighting the biological potential of

Page 88: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

78

its species.

Chemical studies related to these species have been shown that this genus is

a potential source of monoterpene indole alkaloids whose the biosynthesis involves

the coupling between tryptamine and the iridoid secologanin (Runguphan et al. 2009).

The chemical diversity of this genus also includes flavonoids (Lu et al. 2014),

triterpenes (Zhang et al. 2013), coumarins (Benevides et al. 2004), iridoids (Lu et al.

2014), etc.

In order to contribute to the expansion of the knowledge about the chemistry of

this genus, in this paper we describe the isolation and identification of metabolites from

P. suterella and P. nuda (Rubiaceae). In addition, it also shows the cytotoxic activity of

some of these compounds against THP-1 and U937 cancer cell lines.

2. Results and discussion

2.1 Metabolites from P. suterella

Compound 1 (Figure 1) was obtained in mixture with compounds 2 and 3 as a brown

oil. The molecular formula C16H22NaO10 was determined based on HR-ESI-MS (m/z

397.1064, [M + Na]+, calculated for 397.1111). Its NMR data (Table S1, Supplemental

online material) showed a doublet at H 5.15 (H-1, J = 3.4 Hz) attached to a carbon

at C 92.5 (CH-1), typical of methinedioxy group. The doublet at H 4.51 (d, 7.7, H-1’)

was attributed to the anomeric proton of the glucose moiety. The signal at H 7.50 (H-

3), attached to the carbon at C151.5 (CH-3) suggested a ,-unsatured carboxyl

group (C170.4, C-11). Moreover, it was also possible to verify signals of another

double bound (H-7, H 5.82) and a terminal hydroxyl group (CH2-10, C 60.1). Its

relative stereochemistry was proposed based on the coupling constant value of H-1

(3.4 Hz), typical of an axial-equatorial coupling and the shielding effect on C-1’ (C

96.6, suggesting H-9 in equatorial position). All correlations observed by 2D NMR

experiments are summarized in Table S1.

The known compounds were identified as geniposidic acid (2, Güvenalp et al.

2006), sucrose (3), 3-O-acethyloleanolic acid (4, Itokawa et al. 1989), pomolic acid (5,

Chama et al. 2015), spinosic acid (6, Wang et al. 2011), maslinic acid (7, Pnou et al.

2011), tormentic acid (8, Taniguchi et al. 2002), methyl oleanolate (9, Mahato &

Page 89: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

79

Kundu), lyalosidic acid (10, Lin et al. 2011), and strictosidinic acid (11, Berger et al.

2015).

2.2. Metabolites from P. nuda

The metabolites isolated from twigs and leaves of P. nuda were identified as pomolic

acid (5, Chama et al. 2015), spinosic acid (6, Wang et al. 2011), sitosterol (12),

stigmasterol (13), campesterol (14), phytol (15, Miranda et al. 2012), -sitosterol-3-O-

-D-glucoside (16), -stmasterol-3-O--D-glucoside (17, Kojima et al. 1990),

cinchonain Ia (18), cinchonain Ib (19, Nonaka & Nishioka 1982), N,N,N-

trimethyltryptamonium (20, Martins et al. 2009), lyaloside (21, Berger et al. 2015),

lawsofrutose (22, Uddin et al. 2013), roseoside (23, Otsuka et al. 1995), strictosamide

(24, Zhang et al. 2001), scopoletin (25, Darmawan et al. 2012), , rotungenic acid (26)

(Nakatani et al. 1989), strictosidine (27, Patthy-luka et al. 1997), and 5-

carboxystrictosidine (28, Ferrari et al. 1986).

R1 R2 R3 R4 R5 R6 R7

4 H Ac CH3 H H H H

5 H H CH3 CH3 OH H H

6 H H CH3 H OH CH3 H

7 OH H CH3 H H CH3 H

8 OH H CH3 CH3 OH H H

9 H H CH3 H H CH3 CH3

26 H H CH2OH CH3 OH H H

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

R1

R3

R2O

R6

CO2R7

R4

R5

H

O

O

HOHO

HO

OH

O

O OH

OH

OH

H

1

3

52

461'

2'

3'

4'

5'

6'

3

O

OH

HO

OH

OHO

H H

1

2

34

5

6

1'

2'

3'

4'

22

OH

15

1

23 4

5

67

8

9

10 11

1216

17

18

13

141520

19

1

2

3

4 6

7

8

9

10

11

12

13

14

19

18

21

17

16

15

20

23

24

25

27

5

22

R1 R2

12 H CH2CH3 22,23-dihydro

13 H CH2CH3 22,23

14 H CH3; 22,23 dihydro

16 Glc CH2CH3 22,23-dihydro

17 Glc CH2CH3 22,23

R2

R1

O

CO2H

OO

HO

OHOH

OH

HO H

H

1

2'

3

46

7

8

9

10

5

1'

3'

4'5'

6'

2

18

12

3

456

7

89

10

1'

2'

3'

4'

5'

6'

6'''

5'''

4'''

3'''

2'''

1'''9'' 7''

8''

O

OH

OH

OH

OH

O

O

OH

OH

O

CO2H

OO

HO

OHOH

OH

HO H

H

1

2'

3

46

7

8

9

10

5

1'

3'

4'5'

6'

1

Figure 1. Chemical structures of compounds 1-28.

Page 90: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

80

NN

O

H

O

O

H

H

H

O

HO

OHOH

OH

8

9

10

111

7

14

15

16

17

19

18

1213

21

20

4

5

32

6

2'1'

3'

4'5'

6'

24

10 R = H

21 R = CH3

1

NN

CO2R

O

OO

HO

OHOH

OH

H

22

1615

2019

1714

32

7

6

58

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

N

H

N+

12

34

56

7

89

1'

2'

20

R1 R2

11 H H

27 H CH3

28 CO2H CH3

1

NN

CO2R2

O

OO

HO

OHOH

OH

H

R1

22

1615

2019

1714

32

7

6

5

8

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

19

12

3

456

7

89

10

1'

2'

3'

4'

5'

6'

6'''

5'''

4'''

3'''

2'''

1'''9'' 7''

8''

O

OH

OH

OH

OH

O

O

OH

OH

10

O

O

HOO

HO

OHOH

OH

2

651

3

4

11

7

8 9

13

4'

3'

12

1'2'

6'

5'

23

19

8

6

7OO

OCH3

OH

54

2

310

25

Figure 1. Continued.

2.3. Assessment of cell viability by MTT assay

The cytotoxic potential of compounds 20, 23, and 24 was assessed by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results of cell

viability of THP-1 and U937 cell lines, treated with these compounds, after 48 h of

incubation, are shown in Figures S89 and S90 show the. In both cases, compounds

20 and 23 did not promoted significant cell death and the IC50 values were higher than

200 g/mL. Compound 24 did not display promising result against THP-1 cell line (IC50

= 120 ± 1 g/mL). However, this compound showed significant cytotoxicity against

U937 cell line (IC50 = 21.9 ± 1). This result is in accordance with previous reports in

literature, since indole alkaloids have been recognized by their cytotoxicity against

different cancer cell lines (Chaturvedula et al. 2003; Figueiredo et al. 2010; Shao et al.

2015; Zhang et al. 2015; Wang et al. 2015).

Page 91: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

81

3. Experimental

3.1. Apparatus and instruments

Fourier transform infrared (FTIR) spectra were recorded on an IRAffinity-1 Shimadzu

spectrometer using KBr disk. The NMR analysis were carried out on a Bruker Ascend

500 in pyridine-d5, CDCl3 or methanol-d4 at 500 MHz for 1H and 125 MHz for 13C, using

TMS as internal reference. Chemical shifts (δ) are expressed in ppm and coupling

constants (J) in Hz. HR-ESI-MS mass spectra were obtained on a micrOTOF-Q II

Bruker Daltonics mass spectrometer, using positive and negative ion mode of analysis.

Gas chromatography coupled to Mass Spectrometry (GC/MS) of low resolution

experiments were carried out on a GCMS-QP5050A Shimadzu, operating with an

ionization energy of 70 eV. Silica gel 60 and silica gel 60 silanized (0.063-0.200 mm,

MERCK) were used for column chromatography (CC) and silica gel 60 F254 for thin

layer chromatography (TLC, MERK).

3.2. Plant material

Leaves of P. suterella and leaves and twigs of P. nuda were collected at the Reserva

Biológica de Poço das Antas, Nova Iguaçu-RJ, Brazil, and identified by the botanist

Sebastião José da Silva Neto. Both voucher specimens (H9724 and H9726,

respectively) are deposited at the herbarium of UENF.

3.3. Extraction and isolation

3.3.1.1. P. suterella

The powdered air-dried leaves of P. suterella (345.4 g) were exhaustively extracted

with methanol, at room temperature, affording 50.1 g of crude extract. After suspended

in a MeOH-H2O (1:3) solution, part of this extract (40.0 g) was partitioned with

dichloromethane, ethyl acetate and n-butane, affording, respectively, 19.7 g, 5.1 g, and

8.4 g of each fraction. The dichloromethane fraction was suspended in a

hexane:MeOH (1:1) solution, obtaining a hexane fraction (11.0 g) and a methanol

fraction (7.8 g).

The methanolic fraction (7.0 g) was subjected to CC on silica gel and eluted with

CH2Cl2 and CH2Cl2:MeOH solutions, increasing polarity till 15% of MeOH, affording 10

Page 92: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

82

subfractions. Subfraction 4 (700 mg) was similarly chromatographed, affording

compound 9 (25.3 mg). Subfraction 5 (840.0 mg) was analogously chromatographed

affording compound 4 (27.0 mg) and a mixture of 5 and 6 (246.0 mg). From fraction 8

(660 mg), by analogous chromatographic procedure, a mixture of compounds 7 and 8

(88.0 mg) was obtained. Fraction 9 (457.3 mg) was also similarly chromatographed,

yielding a mixture of compounds 1, 2, and 3 (67.2 mg). The n-butanol fraction was

subjected to CC on silica silanized, eluted with isocratic mixture of MeOH:H2O (1:1),

yielding six fractions. Fraction 3 (300 mg) was chromatographed on Sephadex LH-20

and eluted with MeOH, affording compounds 10 (27.0 mg) and 11 (34.2 mg).

3.3.1.2. 9-epi-geniposidic acid

Brown oil. IR (KBr) max cm-1: 3418, 2928, 2860, 1686, 1639, 1275. 1H NMR (500 MHz,

CD3OD): 5.15 (1H, d, 3.4, H-1), 7.50 (1H, d, 0.9, H-3), 3.10 (1H, m, H-5), 2.85 (1H, dd,

16.4, 6.2, 1H-6), 2.14-2.04 (1H, m, 1H-6), 5.82 (1H, br s, H-7), 2.76 (1H, t, 7.5, H-9),

4.33 (1H, br d, 13.3, 1H-10), 4.21 (1H, br d, 13.3, 1H-10), 4.51 (1H, d, 7.7, H-1’), 3.15

(1H, m, H-2’), 3.45 (1H, m, H-3’), 3.55 (1H, m, 1H-4’), 3.54 (1H, m, 1H-5’), 3.80 (1H,

m, 1H-6’), 3.70 (1H, m, 1H-6’). 13C NMR (125 MHz, CD3OD): 96.8 (CH-1), 151.5 (CH-

3), 112.1 (C-4), 35.4 (CH-5), 38.4 (CH2-6), 127.2 (CH-7), 143.3 (C-8), 45.6 (CH-9),

60.1 (CH2-10), 98.7 (CH-1’), 73.4 (CH-2’), 76.3 (CH-3’), 70.1 (CH-4’), 76.9 (CH-5’),

61.3 (CH2-6’).

3.3.2. P. nuda

The methanolic extract of twigs (1.45 Kg) and leaves (426.0 g) of P. nuda were

obtained as previously mentioned (section 3.3.1.1), affording, respectively, 36.7g and

46.5 g of each crude extract. Both extracts were also partitioned as previously.

Part of the dichloromethane fraction of the twigs (1.2 g) was successively

chromatographed on silica gel and eluted with CH2Cl2 and CH2Cl2:MeOH solutions,

leading to the identification of a mixture of compounds 12-14 (153.0 mg), 15 (23.2 mg),

and a mixture of 16 and 17 (53.0 mg). The ethyl acetate fraction of leaves (790.0 mg)

was similarly chromatographed (except for the use of CH2Cl2:AcOET as eluent),

allowing the identification of compounds 18 and 19 (35.0 mg) whereas n-butanol

fraction yielded compound 20 (26.0 mg).

Page 93: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

83

The n-butanol fraction of leaves (1.85 g) was successively chromatographed,

leading to the identification compounds 21 and 22 (in mixture, 64.2 mg). Besides,

another fraction (88.0 mg), obtained from this procedure, was purified on Sephadex

LH-20 and compounds 23 (13.0 mg) and 24 (11.0 mg) were identified. The ethyl

acetate fraction (920 mg) was similarly chromatographed, affording 18 fractions.

Fraction 5 (28.3 mg) was purified by preparative TLC and compound 25 (4.0 mg) was

obtained. Fraction 12 (114.5 mg) was rechromatographed leading to the identification

of a mixture of compounds 5 and 6 (21.0 mg). Fraction 16 (121.3 mg) was

rechromatographed leading to the isolation of compound 26 (26.0 mg).

The metanolic fraction o leaves (1.7 g) was fractionated by CC on silica gel and

eluted with CH2Cl2 and CH2Cl2:MeOH solutions (till 20 % of MeOH), affording 12

fractions. Fraction 5 (200 mg) was similarly chromatographed and, after purification by

CC on Sephadex LH-20 (eluted with MeOH), compound 27 (22.0 mg) was identified.

From fraction 10 (210 mg), compound 28 (32 mg) was, analogously, obtained.

3.3. Culture of cells

Human leukemia cell lines U937 (histiocytic lymphoma cell line) and THP-1 (acute

monocytic leukemia cell line were cultured in DMEM-F12 medium (Gibco, BRL),

supplemented with 20 mg/mL gentamycin (Gibco, BRL) and 10 % fetal bovine serum

(Gibco, BRL). The cultures were replicated every 2 days and incubated at 37 °C, with

5 % of CO2 and humidity control.

3.4. MTT assay

Cell lines were plated into a 100 L/well (1x106 cells/mL) in 96-well plates and treated

with compounds 20, 23, and 24 at concentrations of 0, 6.25, 12.5, 25.0, 50.0, 100.0

and 200 g/mL. The cells were kept at 37 °C, with 5 % of CO2 and humidity control.

Cell viability was measured by MTT assay after 48 h of incubation (Terra et al. 2013).

The assays were analyzed by ANOVA, followed by Tukey test using Graph Pad

Software 5.0 program.

Page 94: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

84

4. Conclusion

This study led to the isolation and identification of 28 compounds from these two

species. To the best of our knowledge, besides the novel iridoid (compound 1),

compounds 2-10, 18-19, 20, and 23 are reported for the first time in this genus. This

work, then, may add relevant information related to the chemotaxonomy of this

complex genus. With respect to the MTT assay, only compound 24 showed significant

cytotoxicity.

Disclosure statement

No potential conflict of interest.

Acknowledgements

The authors are thankful to the botanist professor Dr. Sebastião José da Silva Neto

(UERJ) for the identification of plant material.

Funding

The authors are thankful to FAPERJ, CAPES, and CNPq for financial support.

References

Amador, T. A.; Elisabetsky, E.; De Souza DO. 1996. Effects of Psychotria colorata alkaloids in brain opioid system. Neurochem Res. 21:97–102.

Benevides PJC, Young MCM, Bolzani VDS. 2004. Biological activities of constituents from Psychotria spectabilis. Pharm Biol. 42:565–569.

Berger A, Kostyan MK, Klose SI, Gastegger M, Lorbeer E, Brecker L, Schinnerl J. 2015. Loganin and secologanin derived tryptamine-iridoid alkaloids from Palicourea crocea and Palicourea padifolia (Rubiaceae). Phytochemistry. 116:162–169.

Both FL, Farias FM, Nicoláo LL, Misturini J, Henriques AT, Elisabtsky EE. 2002. Avaliaçao da atividade analgésica de extratos alcaloídicos de espécies de Psychotria. Rev Bras Pl Med. 5:41–45.

Chama MA, Dziwornu GA, Waibel R, Osei-safo D, Addae-mensah I, Otchere J, Wilson M. 2015. Isolation , characterization , and anthelminthic activities of a novel dichapetalin and other constituents of Dichapetalum filicaule. Pharm Biol [Internet]. 00:1–10.

Page 95: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

85

Chaturvedula VSP, Sprague S, Schilling JK, Kingston DGI. 2003. New cytotoxic Indole Alkaloids from Tabernaemontana calcarea from the Madagascar rainforest. J Nat Prod. 66:528–531.

Darmawan A, Kosela S, Kardono LBS, Syah YM. 2012. Scopoletin , a coumarin derivative compound isolated from Macaranga gigantifolia Merr. J Aplied Pharm Sci. 2:175–177.

Ferrari F, Messana I, Botta B, Mello JF. 1986. Constituents of Guettarda Platypoda. J Nat Prod. 49:1150–1151.

Figueiredo ER, Vieira IJC, Souza JJ De, Braz-filho R, Mathias L, Kanashiro MM, Côrtes FH. 2010. Isolamento , identificação e avaliação da atividade antileucêmica de alcaloides indólicos monoterpênicos de Tabernaemontana salzmannii A . DC ., Apocynaceae. Rev Bras Farmacogn. 20:75–81.

Güvenalp Z, Kiliç N, Kazaz C, Kaya Y, Demirezer LÖ. 2006. Chemical constituents of Galium tortumense. Turk J Chem. 30:515–523.

Itokawa H, Qiao Y-F, Takeya K, Itaka Y. 1989. New Triterpenoids from Rubia Cordifolia. Chem Pharm Bull. 37:1670–1672.

Jayasinghe ULB, Jayasooriya CP, Bandara BMR, Ekanayake SP, Merlini L, Assante G. 2002. Antimicrobial activity of some Sri Lankan Rubiaceae and Meliaceae. Fitoterapia. 73:424–427.

Kojima H, Sato N, Hatano A, Ogura H. 1990. Sterol glucosides from Prunella Vulgaris. Phytochemistry. 29:2351–2355.

Xiao X-B, Lin Y-X, Xu G-B, Gong X-B, Gu Y, Tong J-F, Yang J. 2011. Two new cytotoxic alkaloids from Mappianthus iodoides Hand . -Mazz . Helv Chim Acta. 94:1594–1599.

Lu H, Liu L, Li D, Li J, Xu L. 2014. A new iridoid glycoside from the root of Psychotria rubra. Biochem Syst Ecol. 57:133–136.

Marques de Oliveira A, Lyra Lemos RP, Conserva LM. 2013. β-Carboline alkaloids from Psychotria barbiflora DC. (Rubiaceae). Biochem Syst Ecol. 50:339–341.

Martins CPB, Freeman S, Alder JF, Brandt SD. 2009. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry. J Chromatogr A. 1216:6119–6123.

Miranda MLD, Souza AF, Rodrigues ED, Garcez FR, Garcez WS. 2012. Constituintes Químicos das Folhas de Riedeliella graciliflora. Quim Nova. 35:1306–1311.

Nakatani M, Miyazaki Y, Iwashita T, Naoki H, Hase T. 1989. Triterpenes from Ilex rotunda Fruits. Phytochemistry. 28:1479–1482.

Nonaka G-I, Nishioka I. 1982. Phenylpropanoid-substituted epicatechins, cincochanains from Cinchona succirubra. Chem Pharm Bull. 30:4268–4276.

Page 96: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

86

Otsuka H, Yao M, Kamada K, Takeda Y. 1995. Alangiosides G-M: glycosides of megastigmane Derivatives from the leaves of Alangium premnifolium. Chem Pharm Bull. 43:754–759.

Patthy-luka Á, Károlyházy L, Szabó LF, Podányi B. 1997. First direct and detailed stereochemical analysis of strictosidine. J Nat Prod. 60:69–75.

Pnou BK, Teponno RB, Ricciutelli M, Nguelefack TB, Quassinti L, Bramucci M, Lupidi G, Barboni L, Tapondjou LA. 2011. Novel 3-oxo- and 3 , 24-dinor-2 , 4-secooleanane-Type triterpenes from Terminalia ivorensis A. CHEV. Chem Biodivers. 8:1301–1309.

Runguphan W, Maresh JJ, Connor SEO. 2009. Silencing of tryptamine biosynthesis for production of non natural alkaloids in plant culture. PNAS. 106:13673–13678.

Shao S, Zhang H, Yuan C, Zhang Y, Cao M, Zhang H, Feng Y, Ding X, Zhou Q, Zhao Q, et al. 2015. Phytochemistry cytotoxic indole alkaloids from the fruits of Melodinus cochinchinensis. Phytochemistry. 116:367–373.

Taniguchi S, Imayoshi Y, Kobayashi E, Takamatsu Y, Ito H, Hatano T, Sakagami H, Tokuda H, Nishino H, Sujita D, et al. 2002. Production of bioactive triterpenes by Eriobotrya japonica calli. Phytochemistry. 59:315–323.

Terra WS, Vieira IJC, Braz-filho R, Freitas WR De, Kanashiro MM, Torres MCM. 2013. Lepidotrichilins A and B, New protolimonoids with cytotoxic activity from Trichilia Lepidota (Meliaceae). Molecules. 18:12180–12191.

Uddin N, Siddiqui BS, Begum S, Ali MI, Marasini BP, Khan A, Choudhary MI. 2013. Bioassay-guided isolation of urease and α-chymotrypsin inhibitory constituents from the stems of Lawsonia alba Lam. (Henna). Fitoterapia. 84:202–207.

Verotta L, Pilati T, Tato M, Elisabetsky E, Amador TA. 1998. Pyrrolidinoindoline alkaloids from Psychotria colorata. J Nat Prod. 61:392–396.

Wang C, Zhang Z, Wang Y, He X. 2015. Cytotoxic indole alkaloids against human leukemia cell lines from the toxic plant Peganum harmala. Toxins (Basel). 7:4507–4518.

Wang X, Hay A, Matheeussen A, Gupta MP, Hostettmann K. 2011. Structure elucidation and NMR assignments of two new triterpenoids from the stems of Paragonia pyramidata ( Bignoniaceae ). Magn Reson Chem. 49:184–189.

Zhang B, Teng X, Bao M, Zhong X, Ni L, Cai X. 2015. Phytochemistry cytotoxic indole alkaloids from Tabernaemontana officinalis. Phytochemistry. 120:46–52.

Zhang C-Xi, Zhang Do-M, Chen M-F, Guan S-Y, Yao J-H, He X-X, Lei L-F, Zhong Y, Wang Z-F, Ye W-C. 2013. Antiproliferative triterpenoid saponins from the stem of Psychotria sp . Planta Med. 79:978–986.

Zhang Z, Elsohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM. 2001. New indole alkaloids from the bark of Nauclea orientalis. J Nat Prod. 64:1001–1005.

Page 97: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

87

Zhou H, He H, Wang Y, Hao X. 2010. A new dimeric alkaloid from the Leaf of Psychotria calocarpa . 93:1650–1652.

Supplemental online material

Compound 1

Table S1. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 1,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

HSQC HMBC

C H 2JCH 3JCH

C -

2 112.1 - H-3

4 143,3 - H-7; H-9; 2H-10 H-1

8 170.4 - H-3; H-5

11

CH H-3; H-1’

1 92.5 5.15 (d, 3.4) H-1; H-5

3 151.5 7.50 (d, 0.9) - -

4 - - H-1; H-3; H-7

5 35.4 3.22-3.15 (m) H-5; 2H-10

7 127.2 5.82 (brs) H-1 H-7

9 45.6 2.73 (t, 7.5) H-1

1’ 96.6 4.51 (d, 7.7)

2’ 73.4 3.22-3.15 (m)

3’ 76.3 3.45 (m)

4’ 70.1 3.55 (m)

5’ 76.9 3.54 (m)

CH2

6 38.4 2.85 (dd, 16.4, 6.2)

2.14 – 2.04 (m) H-5; H-7

10 60.1 4.33 (d, 13,3)

4.21 (d, 13.3) H-7

6’ 61.3 3.80 (m), 3.70 (m)

Compound 2

Page 98: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

88

Table S2. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 2,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

HSQC HMBC

C H 2JCH 3JCH

C

2 112.1 - H-3

4 143,3 - H-7; H-9; 2H-10 H-1

8 170.4 - H-3; H-5

11

CH H-3; H-1’

1 96.8 5.16 (d, 7.5) H-1; H-5

3 151.5 7.50 (d, 0.9) - -

4 - - H-1; H-3; H-7

5 35.4 3.10 (m) H-5; 2H-10

7 127.2 5.82 (brs) H-1 H-7

9 45.6 2.73 (t, 7.5) H-1

1’ 98.7 4.74 (d, 7.9)

2’ 73.4 3.15 (m)

3’ 76.3 3.45 (m)

4’ 70.1 3.55 (m)

5’ 76.9 3.54 (m)

CH2

6 38.4 2.85 (dd, 16.4, 6.2)

2.14 – 2.04 (m) H-5; H-7

10 60.1 4.33 (d, 13,3)

4.21 (d, 13.3) H-7

6’ 61.3 3.80 (m), 3.70 (m)

Compound 3

Page 99: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

89

Table S3. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 3,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

HSQC HMBC

C H 2JCH 3JCH

C

2 103.9 - 2H-1 H-1’

CH

3 77.9 4.13 (d, 8.3)

4 74.3 4.05 (t, 8.3) H-4; 1H-3

5 82.2 3.80 (m) H-4

1’ 92.5 5.42 (d, 3.8) H-3’

2’ 71.7 3.40 (m) H-1’

3’ 73.2 3.75 (m)

4’ 70.0 3.40 (m)

5’ 72.9 3.86 (m)

CH2

1 62.6 3.80 (m); 3.69 (m) H-3

6 62.0 3.80 (m); 3.70 (m)

6’ 60.9 3.82 (m); 3.75 (m)

Figure S1. Infrared spectrum of compounds 1-3.

Page 100: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

90

CCAS2.003.001.1r.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

Methanol

0.1

115

0.8

752

0.8

8310

.89

560

.90

96

0.9

228

0.9

499

1.2

718

1.2

953

1.3

179

1.3

246

1.3

325

1.3

392

1.5

464

1.5

970

1.6

095

2.0

956

2.1

004

2.1

053

2.1

105

2.1

178

2.1

273

2.1

431

2.2

746

2.7

186

2.7

335

2.7

494

3.1

5153.1

671

3.1

698

3.1

854

3.2

659

3.2

686

3.2

845

3.3

974

3.4

569

3.4

840

3.5

384

3.6

097

3.6

467

3.6

677

3.7

510

3.7

891

3.8

657

3.8

892

3.9

283

4.0

354

4.0

518

4.1

229

4.1

394

4.2

224

4.3

188

4.3

466

4.5

098

4.5

253

4.7

380

4.7

539

5.1

450

5.1

517

5.1

667

5.4

135

5.4

211

5.8

168

7.4

997

Figure S2. 1H NMR spectrum (500 MHz, CD3OD) of compounds 1-3.

1

OO

H

O

O

OH

OHOH

HH

OH

H

HOOC

NOE H 5.15 (d, 3.4 Hz)

H 4.51 (d, 7.7 Hz)

1

4

5

7

2'

36

8

3'

4'5'

6'

9

10

1'

Page 101: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

91

CCAS2.003.001.1r.esp

6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3

Chemical Shift (ppm)

4.3

188

4.3

466

4.5

098

4.5

253

4.7

380

4.7

539

5.1

450

5.1

517

5.1

667

5.4

135

5.4

211

5.8

168

Figure S3. Expansion of 1H NMR spectrum (500 MHz, CD3OD) of compounds 1-3.

Page 102: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

92

CCAS2.002.001.1r.esp

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

35.3

69

4

38.3

99

2

45.6

50

4

60.1

05

86

0.7

84

76

1.2

18

16

2.0

45

06

2.5

86

7

69.8

92

17

0.0

94

37

1.7

41

07

2.9

50

77

3.1

96

37

3.4

56

37

4.2

94

17

4.8

53

8

76.8

68

87

7.8

83

58

2.2

49

4

92.2

37

99

2.5

26

89

6.7

30

19

6.8

81

89

8.9

04

1

103

.88

75

112

.11

73

127

.17

22

143

.31

40

151

.49

33

170

.38

32

Figure S4. DEPTQ spectrum (125 MHz, CD3OD) of compounds 1-3.

Page 103: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

93

CCAS2.100.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

1

2

3

4

5

6

7

F1 C

hem

ica

l S

hift

(pp

m)

Figure S5. 1H-1H-COSY spectrum of compounds 1-3.

Page 104: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

94

CCAS2.200.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

F1 C

he

mic

al S

hift (p

pm

)

Figure S6. HSQC spectrum of compounds 1-3.

Page 105: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

95

CCAS2.300.001.2rr.esp

11 10 9 8 7 6 5 4 3 2 1 0 -1

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

200

F1 C

hem

ica

l S

hift

(pp

m)

Figure S7. HMBC spectrum of compounds 1-3.

Page 106: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

96

CCAS2.500.001.2rr.esp

7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

F1 C

hem

ica

l S

hift (p

pm

)

Figure S8. NOESY spectrum of compounds 1-3.

Page 107: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

97

Figure S9. ESI-MS spectrum of compounds 1-3 (positive mode).

102.1257

203.0487

365.1018

487.2037

707.2135

1049.3313

+MS, 0.3-1.0min #(16-61)

0

1

2

3

4

5

4x10

Intens.

100 200 300 400 500 600 700 800 900 1000 m/z

Page 108: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

98

Figure S10. ESI-MS2 (m/z 397.1064) spectrum of compound 1 (positive mode).

217.0408

235.0527

397.1064

+MS2(397.1064), 40eV, 0.1min #7

0

100

200

300

400

500

Intens.

100 150 200 250 300 350 400 m/z

Page 109: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

99

Compound 4

Table S4. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 4,

including results of HSQC and HMBC experiments. Chemical shifts are given inppm

and coupling constants in Hz

4 Literature*

HSQC HMBC

C C H 2JCH 3JCH C**

4 37.8 3H-23; 3H-24 37.9

8 39.6 - H-9; 3H-26 2H-11; 3H-27 40.0

10 37.1 - H-7b; 3H-25 2H-11 37.3

13 142.6 - H-18 2H-11; H-19 144.9

14 41.2 - 3H-27 H-9; H-18; 3H-26 42.2

17 45.3 - H-18 H-19 46.1

20 34.6 35.7

28 184.8 - H-16a; H-18; H-22a 180.9

O-Ac 171.0 - H-3 170.6

CH

3 80.9 4.50 (dd, 10.2, 6.2) 3H-23; 3H-24 80.8

5 55.3 0.90 (m) H-7b; 3H-23; 3H-24;

3H-25

55.6

9 47.8 1.70 (m) 2H-11 3H-25; 3H-26 48.2

12 125.18 5.43 (brs) 2H-11 H-18 123.2

18 43.4 3.09 (brs) H-19 2H-16; H-22b 44.8

19 81.5 3.34 (d, 3.6) H-18 H-21; 3H-29; 3H-30 81.3

CH2

1 37.8 1.62 (m); 1.08 (m) 3H-25 38.1

2 23.7 1.70-1.60 (m) 24.1

6 18.3 1.58 (m); 1.42 (m) H-7b 18.6

7 32.3 1.70 (m); 1.30 (m) 3H-26 33.7

11 23.4 1.96 (dd, 8.5, 2.4) 23.9

15 28.0 1.60 (m); 1.05 (m) 2H-16 3H-27 28.4

16 27.3 2.28 (td, 13.3, 3.2),

1.68 (m)

H-18 29.2

21 28.0 1.80 (m) H-19; 3H-29; 3H-30 29.1

22 32.5 1.85 (m); 1.48 (m) H-16b 33.2

CH3

23 28.0 0.87 (s) 3H-24 28.2

24 16.6 0.87 (s) 3H-23 16.9

25 15.2 0.93 (s) H-9 15.3

26 17.3 0.71 (s) H-9 17.4

27 25.0 1.25 (s) 24.9

29 28.0 0.98 (s) H-19; 3H-30 28.9

30 24.3 0.97 (s) H-19; 3H-29 24.9

O-Ac 21.3 2.05 (s) 21.1

* Itokawa et al. 1989 **Pyridine-d5

Page 110: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

100

AC4.001.001.1r.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

TMS

0.7

146

0.7

275

0.8

596

0.8

721

0.9

666

0.9

837

1.0

789

1.2

385

1.2

498

1.2

614

1.2

910

1.5

890

1.6

369

1.6

565

1.6

961

1.8

096

2.0

519

2.0

687

2.1

138

2.2

899

2.3

100

2.3

164

3.0

892

3.3

363

3.3

437

4.4

853

4.4

969

4.5

052

4.5

1775.3

076

5.4

317

7.2

837

Figure S11. 1H NMR spectrum (500 MHz, CDCl3) of compound 4.

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

O

CO2HH

O

4

Page 111: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

101

AC4.002.001.1r.esp

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

Chemical Shift (ppm)

TMS

15.2

26

41

6.6

23

91

7.3

38

9

18.3

60

9

21.2

93

2

23.4

41

82

3.7

30

7

24.3

59

02

5.0

23

5

27.3

49

12

7.9

26

8

27.9

84

6

32.5

31

1

37.6

73

33

7.8

10

63

9.6

37

84

1.1

61

7

43.3

89

8

45.2

74

8

47.7

34

0

55.3

13

8

80.9

06

18

1.4

62

2

125

.17

88

142

.58

10

171

.04

77

184

.79

53

Figure S12. 13C NMR spectrum (125 MHz, CDCl3) of compound 4.

Page 112: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

102

AC4.100.001.2rr.esp

7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

F1 C

he

mic

al S

hift (p

pm

)

Figure S13. 1H-1H-COSY spectrum of compound 4.

Page 113: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

103

AC4.200.001.2rr.esp

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

F1 C

hem

ica

l S

hift

(pp

m)

Figure S14. HSQC spectrum of compound 4.

Page 114: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

104

AC4.300.001.2rr.esp

6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift

(pp

m)

Figure S15. HMBC spectrum of compound 4.

Page 115: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

105

Compounds 5 and 6

Table S5. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 5,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

5 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

4 40.1 - 40.4

8 39.7 - 39.0

10 37,3 - 37.4

13 138.7 - H-18 3H-27 137.9

14 41.9 - 3H-27 H-12 42.4

17 48.0 - 2H-16; H-18 47.8

19 72.5 - H-18; 3H-29 72.7

28 180.4 - H-18; 3H-27 180.7

CH

3 78.0 3.43 (dd, 10.7, 5.2) 78.2

5 55.6 0.89 (m) 3H-25 55.9

9 47.9 1.85 (m) H-12; 3H-25 48.3

12 127.6 5.60 (t, 3.4) H-18 128.1

18 54.3 3.06 (sl) H-12; 3H-29 54.7

20 41.9 1.50 (m) H-18; 3H-29 42.2

CH2

1 39.8 2.15 (m) e 2.06 (m) H-3 39.4

2 28.2 1.28 (m) 28.2

6 18.7 1.58 (m) e 1.41 (m) 19.0

7 33.4 1.64 (m); 1.40 (m) 33.6

11 23.8 2.03 (m) 24.1

15 28.9 1.28 (m) 2H-16 3H-27 29.4

16 26.6 3.12 (dt, 13.0, 4.5) 26.4

21 26.7 1.39 (m) H-18 27.0

22 38.6 1.58 (m) e 0.98 (m) 38.5

CH3

23 28.5 1.19 (s) H-3 28.8

24 16.1 0.99 (s) H-3 16.8

25 15.3 0.96 (s) 15.6

26 16.8 1.06 (s) 17.3

27 24.4 1.73 (s) 24.7

29 26.9 1.45 (s) 1H-18 27.2

30 16.8 1.06 (m) 16.5

* Chama et al. 2015.

Page 116: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

106

Table S6. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 6,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

6 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

4 40.1 - 38.5

8 39.7 - 39.6

10 37,3 - 3H-25 37.2

13 144.6 - H-18 3H-27; H-19 143.4

14 41.9 - 3H-27 H-12 41.4

17 45.9 - 2H-16; 1H-18 45.5

28 180.7 - H-18; 3H-27 181.1

CH

3 77.9 3.43 (dd, 10.7, 5.2) 78.6

5 55.6 0.89 (m) 3H-25 55.7

9 47.9 1.85 (m) H-12; 3H-25 47.7

12 123.6 5.60 (t, 3.4) H-18 123.7

18 54.3 3.06 (sl) H-12; 3H-29 44.0

19 81.0 3.62 (m) H-18; 3H-29 81.3

20 41.9 1.50 (m) H-18; 3H-29 34.9

CH2

1 39.8 2.15 (m) e 2.06 (m) H-3 38.7

2 28.2 1.28 (m) 26.8

6 18.7 1.58 (m) e 1.41 (m) 18.5

7 33.4 1.64 (m) e 1.40 (m) 32.8

11 23.8 2.03 (m) 23.9

15 28.9 1.28 (m) 2H-16 3H-27 28.3

16 26.6 3.12 (td, 13.0, 4.5) 27.5

21 26.7 1.39 (m) H-18 28.4

22 38.6 1.58 (m) e 0.98 (m) 32.8

CH3

23 28.5 1.19 (s) H-3 27.6

24 15.1 0.88 (s) H-3 15.1

25 15.3 0.96 (s) 14.6

26 16.8 1.06 (s) 16.6

27 24.4 1.73 (s) 24.0

29 26.9 1.45 (s) H-18; 1H-19 27.5

30 24.2 1.14 (s) H-19 24.0

*Wang et al. 2011.

Page 117: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

107

AC 1.003.001.1r.esp

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0.7

3340.8

649

0.8

728

0.8

814

0.8

957

0.9

076

1.0

180

1.1

077

1.2

270

1.2

313

1.3

799

1.4

150

1.4

439

1.5

623

1.6

490

1.7

228

1.8

192

1.9

693

1.9

815

2.0

441

2.0

673

2.1

393

2.1

481

2.1

649

2.1

780

2.3

434

2.8

331

2.8

398

3.0

530

3.4

127

3.4

228

3.4

338

3.4

445

3.6

284

4.1

099

4.1

209

5.0

313

5.5

649

5.5

716

5.5

9785

.60

49

5.6

116

7.1

883

7.5

556

8.7

046

Figure S15. 1H NMR spectrum (500 MHz, Pyridine-d5) of compounds 5 and 6.

5

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

HO

CO2H

HO

H

6

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

HO

CO2H

HO

H

Page 118: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

108

AC 1.002.001.1r.esp

184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

15.2

44

51

5.3

52

81

6.2

98

91

6.5

55

31

6.9

99

51

7.2

84

8

18.7

22

02

3.8

02

9

24.4

67

42

4.6

33

5

26.1

79

02

6.7

13

52

7.8

87

1

28.5

58

82

8.6

20

2

29.0

93

22

9.7

72

133.3

79

7

37.1

35

3

38.2

76

43

8.7

89

23

9.1

61

13

9.7

93

14

0.1

47

04

1.8

94

8

42.1

51

2

44.5

95

9

47.5

60

7

48.0

84

3

48.1

49

3

54.4

11

05

5.6

53

3

72.4

70

4

77.9

84

6

81.0

61

4

123

.58

631

27

.82

94

139

.73

90

144

.65

37

180

.46

19

180

.69

31

Figure S16. DEPTQ spectrum (125 MHz, Pyridine-d5) of compounds 5 and 6.

Page 119: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

109

AC 1.100.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

1

2

3

4

5

6

7

8

F1 C

he

mic

al S

hift (p

pm

)

Figure S17. 1H-1H spectrum of compounds 5 and 6.

Page 120: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

110

AC 1.200.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

F1 C

he

mic

al S

hift (p

pm

)

Figure S18. HHSQC spectrum of compounds 5 and 6.

Page 121: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

111

AC 1.300.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift (p

pm

)

Figure S19. HMBC spectrum of compounds 5 and 6.

Page 122: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

112

Compounds 7 and 8

Table S7. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 7,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

7 Literature*

HSQC HMBC

C C H 2JCH 3JCH C**

4 39.8 - H-3 40.7

8 40.2 - 40.9

10 39.6 - 3H-25 39.5

13 144.6 - H-18 3H-27; H-19 144.9

14 41.9 - 3H-27 H-12 42.8

17 45.8 - 2H-16; H-18 46.8

20 35.1 - H-18; 3H-29 36.2

28 180.7 - H-18; 3H27 182.5

CH

2 68.5 4.08 (m) H-3; 2H-1 69.6

3 83.7 3.37 (dd, 9.4, 2.4) 2H-1; H-5 84.7

5 55.8 1.05 (m) 3H-25 57.0

9 48.0 1.94 (m) H-12; 3H-25 49.4

12 123.1 5.54 (m) H-18 124.9

18 54.4 3.03 (brs) H-12; 3H-29 54.3

19 81.2 3.59 (brs) H-18; 3H-29 82.6

CH2

1 47.3 2.2 (m);1.48 (m) H-3 48.1

6 18.7 1.42 (m) 19.8

7 33.4 1.64 (m)/1.39 (m) 34.0

11 24.1 2.10 (m) 25.0

15 28.9 1.57 (m) 2H-16 3H-27 29.6

16 28.6 1.43 (m) 28.7

21 29.0 1.08 (m) H-18 29.6

22 33.4 1.58 (m) 34.2

CH3

23 28.6 1.18 (s) H-3 29.4

24 17.0 1.06 (s) H-3 17.5

25 17.3 1.00 (s) 17.1

26 17.4 0.90 (s) 17.9

27 24.5 1.62 (s) 25.2

29 28.6 1.18 (s) H-18; 1H-19 28.8

30 24.6 1.10 (s) H-19 25.3

*Ponou et al. 2011. ** CD3OD.

Page 123: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

113

Table S8. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 8,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

8 Literature*

HSQC HMBC

C C H 2JCH 3JCH C**

4 39.8 - 1H-3 39.9

8 40.2 - 40.5

10 39.6 - 3H-25 38.5

13 139.7 - H-18 3H-27; H-19 140.0

14 41.9 - 3H-27 H-12 42.2

17 48.0 - 2H-16; H-18 48.3

19 72.5 - H-18; 3H-29 72.7

20 41.9 - H-18; 3H-29 42.4

28 180.4 - H-18; 3H27 180.6

CH

2 68.5 4.08 (m) H-3; 2H-1 68.6

3 83.7 3.37 (dd, 9.4, 2.4) 2H-1; H-5 83.9

5 55.8 1.05 (m) 3H-25 56.0

9 48.0 1.94 (m) H-12; 3H-25 47.9

12 127.7 5.54 (m) H-18 128.0

18 54.4 3.03 (brs) H-12; 3H-29 54.6

20 41.9 - H-18; 3H-29 42.4

CH2

1 47.3 2.2 (m)/1.48 (m) H-3 48.0

6 18.7 1.42 (m) 19.0

7 33.4 1.64 (m)/1.39 (m) 33.5

11 24.1 2.10 (m) 24.1

15 28.9 1.57 (m) 2H-16 3H-27 29.3

16 26.2 1.43 (m) 26.4

21 26.7 1.08 (m) H-18 27.1

22 38.5 1.58 (m) 38.5

CH3

23 28.6 1.18 (s) H-3 29.3

24 17.4 1.06 (s) H-3 17.7

25 17.3 1.00 (s) 16.9

26 17.4 0.90 (s) 17.2

27 24.5 1.62 (s) 24.7

29 26.7 1.18 (s) H-18; H-19 27.1

30 16.5 1.10 (d, 5.8) H-19 16.9

*Taniguchi et al. 2002. **Pyridine-d5.

Page 124: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

114

AC2.003.001.1r.esp

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0.8

4000

.85

35

0.8

586

0.8

733

0.9

846

0.9

972

1.0

142

1.0

603

1.0

704

1.0

957

1.1

110

1.1

241

1.2

522

1.2

589

1.2

778

1.3

203

1.4

203

1.5

369

1.5

967

1.6

238

1.6

958

1.7

419

1.8

404

1.9

893

2.0

366

2.0

781

2.0

961

2.1

236

2.1

397

2.1

498

2.2

230

2.8

232

3.0

364

3.0

913

3.3

601

3.3

650

3.3

790

3.3

836

3.5

883

3.6

146

4.0

698

4.0

783

4.0

914

4.0

966

4.1

101

4.1

531

4.1

735

4.1

842

5.5

367

5.5

431

5.5

648

5.5

712

5.5

779

5.8

683

5.8

799

Figure S20. 1H NMR spectrum (500 MHz, Pyridine-d5) of compounds 7 and 8.

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

HO

HO

CO2HH

7

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

HO

HO

CO2HH

HO

8

Page 125: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

115

AC2.002.001.1r.esp

184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

15.6

30

91

6.5

40

9

17.3

24

51

7.4

14

8

18.7

90

62

3.8

93

22

4.0

44

9

24.4

56

52

4.6

11

8

26.1

64

62

6.7

06

3

26.8

79

6

28.1

58

0

28.5

94

9

28.9

05

52

8.9

70

52

9.0

39

1

29.1

07

7

29.7

46

93

3.4

15

83

5.4

85

03

8.2

80

03

8.4

64

23

9.6

30

6

42.1

36

74

4.5

92

3

45.8

41

84

7.3

07

9

47.6

07

6

47.6

79

94

8.0

62

6

48.1

99

9

54.3

82

25

5.7

43

65

5.8

12

2

68.3

86

2

72.4

81

3

81.0

14

4

83.6

36

1

123

.56

10

127

.73

55

139

.73

90

144

.67

18

180

.41

86

180

.65

69

Figure S21. DEPTQ NMR spectrum (125 MHz, Pyridine-d5) of compounds 7 and 8.

Page 126: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

116

AC2.100.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

1

2

3

4

5

6

7

8

F1 C

hem

ica

l S

hift

(pp

m)

Figure S22. 1H-1H-COSY spectrum of compounds 7 and 8.

Page 127: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

117

AC2.200.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift (p

pm

)

Figure S23. HSQC spectrum of compounds 7 and 8.

Page 128: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

118

AC2.300.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

180

F1 C

he

mic

al S

hift (p

pm

)

Figure S24. HMBC spectrum of compounds 7 and 8.

Page 129: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

119

Compound 9

Table S9. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound 9,

including results of HSQC and HMBC experiments. Chemical shifts are given in ppm

and coupling constants in Hz

9 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

4 39.1 - 3H-23; 3H-

24

38.9

8 39.5 - 3H-26; H-9 3H-27 39.8

10 37.2 - 3H-25 2H-2 37.1

13 144.6 - H-18 3H-27; 2H-11 143.4

14 41.9 - 3H-27 3H-26 41.6

17 46.4 - H-18 46.6

20 30.7 - 3H-29; 3H-

30

30.6

28 180.1 - 181.0

CH

3 78.1 3.45 (m) 2H-2 3H-23;3H24 78.7

5 55.6 0.85 (m) 3H-23; 3H-25 55.2

9 48.1 1.65 (m) 3H-25; 3H-26 47.6

12 122.9 5.60 (m) 2H-11 H-18 122.1

18 41.9 3.30 (m) 41.3

CH2

1 38.7 1.61 (m); 1.02

(m)

3H-25 38.5

2 27.8 1.95 (m); 1.05

(m)

27.4

6 18.5 1.65 (m); 1.40

(m)

18.3

7 33.0 1.65 (m); 1.35

(m)

32.6

11 23.0 1.95 (m) 23.1

15 28.1 2.19 (m); 1.99

(m)

3H-27 27.7

16 23.4 2.20 (m); 2.00

(m)

23.4

19 46.2 1.85 (m), 1.30

(m)

3H-29; 3H-30 45.8

21 34.0 1.45 (m), 1.25

(m)

3H-29; 3H-30 33.8

22 33.0 2.00 (m), 1.78

(m)

32.3

CH3

23 28.8 1.12 (s) 3H-24; H-3 28.1

24 16.2 1.03 (s) 15.6

25 15.1 0.87 (s) 15.3

26 17.3 1.01 (s) H-9 16.8

Page 130: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

120

27 25.9 1.18 (s) 26.0

29 33.0 .094 (s) 33.1

30 23.6 0.99 (s) 3H-29 23.6

Me-O-28 3.58 (s) -

*Mahato & Kundo, 1994.

Page 131: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

121

AC 8.003.001.1r.esp

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0.8

846

0.9

413

0.9

999

1.0

179

1.1

094

1.2

333

1.2

745

1.2

958

1.5

244

1.5

506

1.6

787

1.8

066

1.8

334

1.9

466

1.9

945

2.2

044

3.2

814

3.2

921

3.4

257

3.4

382

3.4

492

3.4

584

3.5

908

Figure S25. 1H NMR spectrum (500 MHz, Pyridine-d5) of compound 9.

12

3 4

2324

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

HO

CO2CH3H

9

Page 132: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

122

AC 8.002.001.1r.esp

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

Chemical Shift (ppm)

15.3

09

51

6.3

13

41

7.2

16

2

18.5

66

72

3.4

70

7

23.5

32

1

23.5

93

5

25.9

33

5

27.8

29

32

8.0

89

3

28.5

48

0

30.7

29

13

2.9

71

6

33.0

33

0

33.9

86

43

7.1

49

73

8.7

17

03

9.1

50

33

9.5

29

5

41.7

90

1

41.9

49

04

6.2

60

74

6.4

66

5

47.8

96

5

55.5

91

9

65.5

62

3

77.8

87

1

122

.34

41

125

.43

16

144

.60

32

180

.01

42

Figure S26. 13C NMR spectrum (125 MHz, Pyridine-d5) of compound 9.

Page 133: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

123

AC 8.100.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

1

2

3

4

5

6

7

8

F1 C

hem

ica

l S

hift

(pp

m)

Figure S27. 1H-1H-COSY spectrum of compound 9.

Page 134: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

124

AC 8.200.001.2rr.esp

10 9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

200

F1 C

hem

ica

l S

hift (p

pm

)

Figure S28. 1H-1H-COSY spectrum of compound 9.

Page 135: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

125

Compound 10

Table S10. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound

10, including results of HSQC and HMBC experiments. Chemical shifts are given in

ppm and coupling constants in Hz

10 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

2 136.7 - H-14b 138.2

3 145.2 H-14b H-5 144.8

7 129.7 - H-5; H-9 130.8

8 120.8 - H-6; H-12 122.1

13 141.7 - H-9; H-11 135.8

16 113.5 - H-17 114.8

22 171.8 - H-17 174.7

CH

5 134.57 8.22 (d, 5.6) H-6 136.7

6 113.52 8.10 (d, 5.6) H-5 114.9

9 121.54 8.11 (d, 8.1)

10 119.80 7.31 (t, 8.1) H-10 H-11 122.7

11 128.90 7.62 (t, 8.1) H-12 121.2

12 111.89 7.70(d, 8.1) H-9 130.3

15 34.02 3.57 (m) H-10 113.4

17 150.70 7.50 (s) H-17; H-21 36.0

19 133.75 5.87 (dd, 17.1, 9.5) H-21 151.2

20 44.67 2.61 (m) 2H-18; H-20 134.6

21 95.79 5.67 (d, 6.8) 2H-18 46.4

CH2 95.8 2.61 (m) H-20 H-17; H-1’A 97.6

14 34.5 3.70 (m)

3.23 (m)

36.6

18 117.6 4.95-4.80 (m) H-20 118.8

Glucose

1’ 98.9 4.76 (d, 8.4) H-2’A H-21 100.4

2’ 73.2 3.21 (dd) 74.6

3’ 76.5 3.45 (m) 78.4

4’ 70.2 3.30 (m) 71.7

5’ 77.1 3.35 (m) 78.1

6’ 61.5 3.94 (dd, 12.1, 1.9)

3.70 (m)

63.2

*Lin et al. 2011.

Page 136: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

126

AC 1323.003.001.1r.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

1.3

076

2.6

091

2.6

229

3.1

904

3.2

068

3.2

791

3.2

981

3.3

295

3.3

676

3.3

899

3.4

082

3.6

834

3.6

8803

.71

94

3.8

4633.8

887

3.9

125

3.9

305

3.9

342

3.9

546

4.7

421

4.7

570

4.7

738

5.6

629

5.6

763

5.8

572

5.8

914

6.7

023

6.7

203

6.9

739

6.9

916

7.2

9577.3

110

7.3

256

7.5

020

7.6

185

7.6

914

7.7

076

8.0

902

8.1

015

8.2

1508

.22

66

Figure S29. 1H NMR spectrum (500 MHz, CD3OD) of compound 10.

10

1

NN

CO2H

O

OO

HO

OHOH

OH

H

22

1615

2019

1714

32

7

6

58

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

Page 137: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

127

AC 1323.002.001.1r.esp

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

34.5

42

5

44.6

64

5

61.1

60

361.4

85

3

70.0

43

77

0.2

35

17

3.2

46

87

6.5

43

87

6.6

55

77

7.0

71

0

95.7

87

6

98.8

93

2

102

.25

88

111

.88

61

113

.52

20

115

.19

76

117

.61

71

117

.98

18

119

.80

54

120

.82

74

121

.54

24

128

.90

19

129

.73

61

134

.56

78

134

.70

50

141

.71

43

150

.69

88

171

.83

49

Figure S30. 13C NMR spectrum (125 MHz, CD3OD) of compound 10.

Page 138: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

128

AC 1323.100.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

1

2

3

4

5

6

7

8

F1 C

hem

ica

l S

hift

(pp

m)

Figure S31. 1H-1H-COSY spectrum of compound 10.

Page 139: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

129

AC 1323.200.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

F1 C

he

mic

al S

hift (p

pm

)

Figure S32. HSQC spectrum of compound 10.

Page 140: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

130

AC 1323.300.001.2rr.esp

9 8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

200

F1 C

he

mic

al S

hift (p

pm

)

Figure S33. HMBC spectrum of compound 10.

Page 141: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

131

Compound 11

Table S11. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 11, including

results of HSQC and HMBC 2D experiments. Chemical shifts in ppm and coupling

constants in Hz

11 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

2 129.6 -- 130.4

7 105.9 -- 105.3

8 126.1 -- H-10 127.5

13 136.8 -- H-9; H-11 138.2

16 111.0 H-17 109.3

22 175.0 -- H-17 175.4

CH

3 50.9 4.47 (d, 11.4) 52.5

9 117.7 7.47 (d, 7.8) H-11 119.1

10 119.1 7.05 (t, 7.8) H-12 120.6

11 121.9 7.15 (dd, 7.8, 7.3) H-9 123.4

12 110.5 7.33 (d, 7.3) H-10 112.3

15 32.6 3.01 (m) 33.8

17 150.5 7.59 (s) 151.2

19 134.8 5.87 (m) 136.2

20 44.3 2.72 (m) 2H-18 45.6

21 95.2 5.84 (d, 9.3) H-17; H-1’ 96.7

CH2

5 41.6 3.35 (m) 43.0

6 18.2 3.10-2.90 (m) 19.6

14 33.7 2.39 (m)

2.14 (m)

35.1

18 118.0 5.83 (d, 17.4)

5.22 (d, 10.7)

119.1

Glucose

1’ 100.0 4.76 (d, 7.9) H-2’ H-21 100.3

2’ 73.3 3.21 (m) H-3’ 74.6

3’ 76.6 3.42 (m) H-4’ 77.9

4’ 70.4 3.29 (m) H-3’ 72.0

5’ 77.3 3.35 (m) H-4’ 78.1

6’ 61.7 3.94 (dd, 12.3, 2.0)

3.70 (m)

H-4’ 52.9

Berger et al. 2015.

Page 142: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

132

AC 1321.003.001.1r.esp

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

Methanol

0.9

177

0.9

3720.9

519

0.9

595

0.9

668

0.9

741

1.2

734

1.3

125

1.4

211

1.4

354

1.5

605

1.5

709

2.1

100

2.3

913

2.6

012

2.6

159

3.0

021

3.0

271

3.1

882

3.2

703

3.2

794

3.2

880

3.2

978

3.3

673

3.4

085

3.4

256

3.7

081

3.7

194

3.7

655

3.7

707

3.8

582

3.9

327

4.0

260

4.0

776

4.4

824

4.7

567

4.7

726

5.2

077

5.2

293

5.3

144

5.3

492

5.4

121

5.6

565

5.6

702

5.8

340

5.8

526

5.8

691

5.8

895

5.9

072

7.0

556

7.0

709

7.1

475

7.3

034

7.3

204

7.3

372

7.4

803

7.4

922

7.5

947

7.6

872

7.7

030

8.0

719

8.0

829

8.2

034

8.2

156

Figure S34. 1H NMR spectrum (500 MHz, CD3OD) of compound 11.

1

NN

CO2H

O

OO

HO

OHOH

OH

H

22

1615

2019

1714

32

7

6

5

8

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

Page 143: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

133

AC 1321.002.001.1r.esp

184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

18.2

02

0

32.6

17

7

33.7

11

9

41.6

31

2

44.3

07

04

4.7

15

1

50.9

29

9

61.4

88

9

70.2

35

1

73.2

50

4

76.5

47

47

7.0

63

87

7.3

31

07

7.8

94

4

92.2

23

49

5.1

99

09

5.7

73

2

98.8

93

2

105

.88

44

110

.80

64

111

.88

98

112

.00

53

113

.48

59

117

.54

84

117

.67

48

119

.13

37

119

.75

49

120

.83

46

121

.50

99

121

.94

68

126

.13

58

128

.82

97

129

.11

13

129

.63

86

133

.85

28134

.62

92

134

.71

22

134

.83

14

136

.79

59

141

.65

65

143

.70

04

150

.51

10

152

.03

13

175

.09

94

Figure S35. 13C NMR spectrum (125 MHz, CD3OD) of compound 11.

Page 144: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

134

AC 1321.100.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

F1 C

hem

ica

l S

hift (p

pm

)

Figure S36. 1H-1H-COSY spectrum of compound 11.

Page 145: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

135

AC 1321.200.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

F1 C

hem

ica

l S

hift

(pp

m)

Figure S37. HSQC spectrum of compound 11.

Page 146: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

136

AC 1321.300.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift (p

pm

)

Figure S38. HMBC spectrum of compound 11.

Page 147: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

137

Compounds 12-14

Figure S39. GC/MS chromatogram (a) and LRMS of compounds 12 (b), 13 (c), and 14

(d).

(b)

(c)

(d)

(a)

Page 148: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

138

Compound 15

Table S12. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 15, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

15 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

3 140.3 - 3H-20 2H-1; 2H-4 140.3

CH

2 123.1 5.40 (td, 7.0, 1.3) 2H-1 3H-20 123.0

7 32.7 1.39 (m) 3H-19 32.7

11 32.8 32.7

15 28.0 1.54 (m) 3H-17 27.9

CH2

1 59.4 4.17 (d, 6.9) 59.4

4 39.9 2.01 (m) 3H-20 39.8

5 25.1 1.48 (m) 25.2

6 36.6 36.6

8 37.3 1.08 (m) 37.4

9 24.5 1.27 (m) 24.4

10 37.4 1.28 (m) 37.4

12 24.5 1.37 (m) 39.3

13 39.4 1.16 (m) 24.4

14 39.4 1.16 (m) 3H-17 39.3

CH3

16 22.7 0.86 (d, 6.5) 22.7

17 22.6 0.87 (d, 6.5) 22.6

18 19.7 0.88 (d, 6.5) 19.7

19 19.7 0.92 (s) 19.7

20 16.1 1.70 (s) 16.1

*Miranda et al. 2012.

Page 149: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

139

AC12 2.001.001.1r.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

TMS

0.0

154

0.0

285

0.8

6020

.87

33

0.8

815

0.8

953

1.0

914

1.1

637

1.2

663

1.2

772

1.2

855

1.3

016

1.3

322

1.3

608

1.5

860

1.6

925

1.9

945

2.0

000

2.0

128

2.0

311

2.1

257

3.9

4294.1

702

4.1

839

5.4

201

5.4

342

5.4

455

5.4

479

7.2

834

8.2

191

Figure S40. 1H NMR spectrum (500 MHz, CDCl3) of compound 15.

OH

15

1

23 4

5

67

8

9

10 11

1216

17

18

13

141520

19

Page 150: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

140

AC12 2.002.001.1r.esp

152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

16.1

83

41

9.7

22

31

9.7

54

8

22.6

29

32

2.7

23

2

24.4

74

62

4.7

99

62

5.1

39

0

27.9

84

6

29.7

03

5

32.6

97

23

2.7

98

3

36.6

65

83

7.2

94

23

7.3

62

83

7.4

35

03

9.3

74

23

9.8

76

2

59.4

48

6

63.2

07

8

88.8

43

4

112

.80

70

123

.06

99

140

.35

65

Figure S41. 13C NMR spectrum (125 MHz, CDCl3) of compound 15.

Page 151: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

141

AC12 2.100.001.2rr.esp

7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

F1 C

hem

ica

l S

hift

(pp

m)

Figure S42. 1H-1H-COSY spectrum of compound 15.

Page 152: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

142

AC12 2.200.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

F1 C

hem

ica

l S

hift

(pp

m)

Figure S43. HSQC spectrum of compound 15.

Page 153: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

143

AC12 2.300.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

F1 C

hem

ica

l S

hift

(pp

m)

Figure S44. HMBC spectrum of compound 15.

Page 154: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

144

Compounds 16 and 17

Table S13. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 16 and 17,

including results of HSQC and HMBC experiments. Chemical shifts in ppm and

coupling constants in Hz

Literature Literature*

C C H C C H C

5 140,7 - 141,0 140,7 - 141,0

10 36,7 - 37,0 36,7 - 37,0

13 42,3 - 42,4 42,1 - 42,4

CH

3 78,4 3,98 (m) 78,2 78,4 3,98 (m) 78,2

6 121,7 5,34 (d, 2,9) 122,0 121,7 5,34 (d, 2,9) 122,0

8 31,8 32,1 31,8 32,1

9 50,1 50,4 50,1 50,4

14 56,7 56,9 56,7 57,0

17 57,6 56,3 56,7 56,2

20 36,7 36,5 36,6 36,5

22 - 138,6 5,21 (dd, 15,1, 8,9) 138,3

23 - 129,2 5,05 (m) 129,5

24 46,6 46,1 51,2 51,5

25 30,8 29,6 31,9 32,7

CH2

2 30,0 30,3 30,0 30,3

4 39,1 2,72 (dd, 13.3, 2.7);

2,47 (m)

39,4 39,1 2,72 (dd, 13.3, 2.7);

2,47 (m)

39,4

7 31,9 32,2 31,9 32,2

11 21,1 21,4 21,3 21,5

12 39,7 40,0 39,6 39,9

15 24,2 24,6 24,3 24,7

16 29,1 28,6 29,2 29,4

22 34,5 34,3 - -

23 26,2 26,5 - -

28 23,9 23,5 25,5 25,7

CH3 -

18 12,3 0,65 (s) 12,0 11,9 0,67 (s) 12,0

19 19,4 0,92 (s) 19,3 19,7 0.93 (s) 19,3

21 19,2 0,98 (d, 6.6) 19,1 21,3 1,07 (d, 6,6) 21,5

26 19,3 0,88 (d, 1.5) 19,5 21,1 0,88 (d, 1.5) 21,4

27 19,6 0,87 (d, 2.4) 20,0 19,8 0,87 (d, 2.4) 20,0

29 12,7 0,86 (m) 12,2 19,9 0,86 (m) 12,6

Glucose

1’ 102,4 5,05 (m) 102,6 102,4 5,05 (m) 102,6

2’ 78,3 4,27 (m) 75,4 78,3 4,27 (m) 75,4

3’ 75,8 4,05 (t, 8,2) 78,6 75,8 4,05 (t, 8,2) 78,6

4’ 72,2 4,27 (m) 71,7 72,2 4,27 (m) 71,7

5’ 79,1 4,27 (m) 78,5 79,1 4,27 (m) 78,5

6’ 63,3 4,41 (dd, 11.7, 2,4;

4,54 (dd, 11,7, 2,4)

62,9 63,3 4,41 (dd, 11.7, 2,4);

4,54 (dd, 11,7, 2,4)

62,9

Kojima et al. 1990.

Page 155: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

145

EMMPN 23(8).003.001.1r.esp

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

0.6

5000

.66

55

0.8

016

0.8

157

0.8

459

0.8

596

0.9

243

0.9

273

0.9

844

1.0

738

1.0

921

1.2

419

1.2

519

1.3

685

1.3

804

1.5

039

1.5

296

1.5

741

1.7

267

1.7

505

1.9

442

1.9

494

2.1

160

2.1

401

2.4

687

2.4

952

2.7

085

2.7

140

2.7

350

2.7

405

3.9

676

3.9

731

3.9

795

4.0

393

4.0

561

4.0

719

4.2

666

4.2

825

4.2

977

4.4

097

4.4

204

4.5

494

4.5

680

4.5

729

5.1

834

5.2

0115

.33

66

5.3

433

7.1

955

7.5

638

8.7

042

Figure S45. 1H NMR spectrum (500 MHz, Py-d5) of compounds 16 and 17.

1

2

3

4 6

7

8

9

10

11

12

13

14

19

18

21

17

16

15

20

23

24

25

27

5

22 R2

Glu16

1

2

3

4 6

7

8

9

10

11

12

13

14

19

18

21

17

16

15

20

23

24

25

27

5

22 R2

Glu17

Page 156: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

146

EMMPN 23(8).002.001.1r.esp

152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

11.7

60

21

1.9

26

31

2.3

09

11

8.7

94

81

8.9

68

11

9.2

06

41

9.7

62

52

1.0

84

22

1.2

57

6

29.2

52

72

9.8

23

23

0.0

39

93

1.8

38

23

1.9

53

83

6.7

06

13

7.2

62

23

9.1

18

34

0.5

70

04

2.1

30

04

2.2

67

34

5.8

27

85

0.1

32

35

1.2

08

55

5.8

52

45

6.0

33

05

6.6

18

05

6.7

11

9

62.6

12

5

71.4

81

5

75.1

21

57

7.9

09

37

8.2

56

07

8.3

86

0

102

.35

68

121

.70

54

129

.24

55

138

.61

28

140

.70

01

Figure S46. 13C NMR spectrum (125 MHz, Py-d5) of compounds 16 and 17.

Page 157: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

147

Compounds 18 and 19

Table S14. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 18, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

18 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

5 155.9 - H-6 2H-4 156.2

7 150.6 - H-6 H-7’’ 151.2

8 104.6 - H-7’’ H-6 105.2

9 152.1 - H-7’’ 152.5

10 103.8 - 2H-4 H-6 104.5

1’ 130.5 - H-2 H-5’ 131.2

3’ 144.6 - H-5’ 144.1a

4’ 144.4 - H-2’ 144.7b

1’’ 133.9 - H-7’’ H-5’’; 2H-8’’ 134.5

3’’ 144.9 - H-5 145.0b

4’’ 143.8 - H-6’’ 145.4b

9’’ 169.4 - 2H-8’’ H-7’’ 168.9

CH

2 78.3 4.90 H-2’; H-4; H-6’ 79.0

3 65.2 4.27 (m) 2H-4 65.8

6 94.9 6.23 (s) 95.8

2’ 113.7 6.99 (d, 1.8) H-2; H-6’ 114.4a

5’ 114.5 6.77 (d, 8.1) 144.1b

6’ 117.8 6.80 (dd, 1.8, 8.1) H-2; H-2’ 118.4

2’’ 113.6 6.55 (d, 2.1) H-6’’; H-7’’ 115.4a

5’’ 115.5 6.62 (d, 8.2) 115.8a

6’’ 117.8 6.46 (dd, 2.1, 8.2) H-2’’; H-7’’ 118.4

7’’ 33.9 4.56 (d, 5.6) 2H-8’’ H-2’’; H-6’’ 34.5

CH2

4 28.1 3.05-2.95 (m) 28.9

8’’ 37.2 3.07 (dd, 15.7, 7.0)

2.90 (m)

38.0

*Nonaka & Nishioka, 1982. **Acetone-d6 + D2O. Letters a and b indicate signals that

may be interchanged.

Page 158: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

148

Table S15. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 19, including

results of HSQC and HMBC 2D experiments. Chemical shifts in ppm and coupling

constants in Hz

19 Literature*

HSQC HMBC

C C H 2JCH 3JCH C**

5 155.85 - H-6 2H-4 156.2

7 150.67 - H-6 H-7’’ 151.2

8 104.78 H-7’’ H-6 105.4

9 152.02 - H-7’’ 152.6

10 103.86 - 2H-4 H-6 104.7

1’ 130.30 - H-2 H-5’ 131.0

3’ 144.51 - H-5’ 144.3b

4’ 144.35 - H-2’ 144.8b

1’’ 133.85 - H-7’’ H-5’’; 2H-8’’ 134.4

3’’ 144.90 - H-5’’ 144.9b

4’’ 143.71 H-2’’; H-6’’ 145.5b

9’’ 169.37 - 2H-8’’ H-7’’ 168.9

CH

2 78.80 4.96 H-2’; H-4; H-6’ 79.4

3 65.61 4.22 (m) 2H-4 66.0

6 95.00 6.22 (s) 96.0

2’ 113.60 6.85 (d, 1.8) H-2; H-6’ 114.5a

5’ 114.59 6.70 (d, 8.1) 114.8a

6’ 117.91 6.63 (dd, 1.8, 8.1) H-2; H-2’ 118.7c

2’’ 113.94 6.65 (d, 2.1) H-6’’; H-7’’ 115.3a

5’’ 115.09 6.71 (d, 8.2) 115.9a

6’’ 117.9 6.56 (dd, 2.1, 8.2) H-2’’; H-7’’ 118.5c

7’’ 33.70 4.56 (d, 5.6) 2H-8’’ H-2’’; H-6’’ 34.2

CH2

4 27.89 2.90-2.85 (m) 28.8

8’’ 36.94 3.02 (dd, 15.7, 6.9)

2.92(m)

37.6

*Nonaka & Nishioka, 1982. **Acetone-d6 + D2O. Letters a-c indicate signals that may

be interchanged.

Page 159: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

149

MPNA 15-29.003.001.1r.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

Methanol

0.1

223

0.8

481

0.9

179

1.0

348

1.1

794

1.2

493

1.2

539

1.2

667

1.2

941

1.3

057

1.3

640

1.5

297

1.6

056

1.6

188

1.9

300

1.9

327

2.0

758

2.2

454

2.2

808

2.2

958

2.3

104

2.8

602

2.8

632

2.8

681

2.8

910

2.8

947

2.9

035

2.9

069

2.9

398

3.0

664

3.7

910

3.8

182

3.8

264

3.8

499

3.8

606

3.8

637

3.9

210

3.9

250

4.2

212

4.2

615

4.2

676

4.4

677

4.5

687

6.2

187

6.2

211

6.2

257

6.2

285

6.4

701

6.4

744

6.5

461

6.5

500

6.6

181

6.6

419

6.6

946

6.7

041

6.7

819

6.7

904

6.8

509

6.9

891

7.0

193

Figure S47. 1H NMR spectrum (500 MHz, CD3OD) of compounds 18 and 19.

18

12

3

456

7

89

10

1'

2'

3'

4'

5'

6'

6'''

5'''

4'''

3'''

2'''

1'''9'' 7''

8''

O

OH

OH

OH

OH

O

O

OH

OH

19

12

3

456

7

89

10

1'

2'

3'

4'

5'

6'

6'''

5'''

4'''

3'''

2'''

1'''9'' 7''

8''

O

OH

OH

OH

OH

O

O

OH

OH

Page 160: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

150

MPNA 15-29.002.001.1r.esp

168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

24.5

50

42

4.6

58

82

7.8

87

12

8.0

67

72

8.6

70

7

33.6

10

8

33.7

66

13

3.9

71

9

36.9

40

33

7.1

64

2

47.1

02

1

47.2

71

84

7.4

41

54

7.6

11

24

7.7

81

04

7.9

54

3

48.1

24

0

65.1

68

76

5.6

05

6

78.3

24

17

8.8

29

7

94.8

59

69

5.0

04

0

103

.80

44

103

.86

22

104

.64

22

104

.76

50

113

.60

51

113

.94

09

114

.51

87

114

.59

45

115

.09

29

115

.15

42

117

.79

04

117

.91

32

117

.99

62

130

.29

94

130

.53

78

133

.87

81

133

.99

72

143

.79

07

144

.35

40

144

.41

18

144

.56

71

144

.89

93

144

.95

35

150

.66

99

152

.02

05

152

.11

44

155

.85

55

155

.92

06

169

.36

85

Figure S48. 1H NMR spectrum (125 MHz, CD3OD) of compounds 18 and 19.

Page 161: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

151

MPNA 15-29.200.001.2rr.esp

7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

F1 C

he

mic

al S

hift (p

pm

)

Figure S49. HSQC spectrum of compounds 18 and 19.

Page 162: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

152

MPNA 15-29.300.001.2rr.esp

7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift

(pp

m)

Figure S50. HMBC spectrum of compounds 18 and 19.

Page 163: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

153

Compounds 20

Table S16. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 20, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

20 Literature*

HSQC HMBC

C C H 2JCH 3JCH C**

3 107.97 - 2H-1’;

H-2

2H-2’; H-5 110.8

4 126.65 - 2H-1’; H-2; H-

6; H-8

127.0

9 136.78 - H-2; H-5; H-7 136.5

CH

2 122.95 7.25 (s) 2H-1’ 123.8

5 118.77 7.64 (d, 8,0 Hz) H-7 118.9

6 117.53 7.09 (t, 7,5 Hz) H-8 118.7

7 121.44 7.15 (t, 7,5 Hz) H-5 121.7

8 111.20 7.41 (d, 8,0 Hz) H-6 111.9

CH2

1’ 18.95 3.27 (m) 2H-2’ 19.0

2’ 66.47 3.62 (m) 2H-1’ NMe3 65.5

CH3 -

N-M3 52.27 3.23 (s) 52.5

*Martins et al. 2009. **DMSO-d6.

Page 164: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

154

MPN 29.003.001.1r.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

3.2

592

3.2

735

3.2

921

3.6

018

3.6

192

3.6

332

7.0

717

7.0

854

7.1

501

7.2

474

7.3

972

7.4

131

7.6

269

7.6

425

Figure S51. 1H NMR spectrum (500 MHz, CD3OD) of compound 20.

N

H

N+

12

34

56

7

89

1'

2'

20

Page 165: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

155

MPN 29A.002.001.1r.esp

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

18.9

53

6

52.2

70

1

66.4

98

1

107

.96

86

111

.19

69

117

.53

09

118

.76

59

121

.43

82

122

.94

76

126

.64

55

136

.77

84

Figure S52. 13C NMR spectrum (125 MHz, CDCl3) of compound 20.

Page 166: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

156

MPN 29A.100.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

F1 C

hem

ica

l S

hift

(pp

m)

Figure S53. 1H-1H-COSY spectrum of compound 20.

Page 167: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

157

MPN 29.200.001.2rr.esp

11 10 9 8 7 6 5 4 3 2 1 0 -1 -2

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

200

F1 C

hem

ica

l S

hift

(pp

m)

Figure S54. HSQC spectrum of compound 20.

Page 168: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

158

MPN 29 A.300.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

F1 C

hem

ica

l S

hift

(pp

m)

Figure S55. HMBC spectrum of compound 20.

Page 169: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

159

Compounds 21 and 22

Table S17. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 21, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

21 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

2 135.1 -- H-6; 2H-14 135.5

3 143.5 -- 2H-14 H-5 142.9

7 128.9 -- H-5 128.4

8 121.1 -- H-6; H-12 121.5

13 141.1 -- H-9; H-11 141.2

16 109.5 - H-15; H-17 H-14b 110.8

22 167.9 -- H-17; CO2-

Me

167.3

CH

5 136.1 8.23 (d, 5.4) H-6 136.4

6 112.9 7.98 (d, 5.4) H-5 112.6

9 121.3 8.17 (d, 7.9) H-11 121.2

10 119.4 7.27 (dd, 7.9, 1.1) H-12 119.1

11 128.2 7.57 (m) H-10; H-12 H-9 127.8

12 111.5 7.60 (brd, 8.0) H-10 111.3

15 32.9 3.61 (m) 2H-14 H-17; H-21 34.9

17 152.8 7.55 (d, 0.9) H-21 152.2

19 134.0 5.58 (ddd, 16.5, 10.6, 8.9) H-18b; H-20 134.4

20 44.11 2.62 (m) H-15 2H-14; 2H-

18

44.2

21 96.04 5.75 (d, 6.7) H-20 H-15; H-17;

H-1’

96.4

CH2

14 33.80 3.60 (m); 3.35 (m) H-15 H-20 35.8

18 118.09 5.05 (dd, 10.6, 1.1)

4.94 (brs, 16.5)

H-20 117.9

CH3

CO2-Me 50.2 3.38 (s) 49.9

Glucose

1’ 96.78 4.77 (d, 7.9) H-2’ H-21 99.7

2’ 73.22 3.25(dd, 7.9, 9.2) H-3’ 73.0

3’ 76.56 3.41 (t, 9.2) 76.4

4’ 70.21 3.30 (m) 70.8

5’ 77.15 3.32 (m) 74.4

6’ 61.44 3.93, 3.87 (m) 62.9

*Berger et al. 2015.

Page 170: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

160

Table S18. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 22, including

results of HSQC and HMBC 2D experiments. Chemical shifts in ppm and coupling

constants in Hz

22 Literature*

HSQC HMBC C C H 2JCH

3JCH C 2 103.78 - 2H-1 108.7

CH 3 77.00 4.16 (d, 8.1) H-4 2H-1’ 83.2 4 75.90 3.94 (dd, 8.1, 7.2) H-3 78.4 5 81.96 3.77 (dd, 7.2, 3.2) H-4;

2H-6 83.8

CH2 1 60.54 3.67 (d, 11.7)

3.54 (d, 11.7) 61.6

6 63.70 3.74 (d, 9.4) 3.60 (m)

H-4 62.6

1’ 60.78 3.71 (m), 3.51 (m) 2H-2’ 2H-3’ 61.9 2’ 32.05 1.55 (m) 2H-3’ 3H-4’ 33.4 3’ 18.96 1.40 (m) 2H-2’;

3H-4’ 2H-1’ 20.4

CH3 4 12.96 0.95 (t, 7.2) 2H-3 2H-2’ 14.2

*Uddin et al. 2013.

Page 171: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

161

FB 70 71.003.001.1r.esp

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

Methanol

0.1

195

0.8

859

0.8

908

0.9

058

0.9

204

0.9

363

0.9

512

0.9

659

1.2

341

1.2

466

1.3

088

1.3

900

1.5

306

1.5

446

1.5

477

1.5

614

1.5

733

3.2

288

3.2

471

3.2

629

3.2

855

3.3

011

3.3

813

3.5

299

3.5

589

3.6

699

3.6

934

3.7

532

3.7

636

4.1

184

4.1

346

4.7

604

4.7

762

5.5

097

5.7

461

5.7

595

7.2

753

7.5

520

7.5

993

7.9

712

7.9

819

8.1

695

8.1

854

8.2

250

8.2

360

Figure S56. 1H NMR spectrum (500 MHz, CD3OD) of compounds 21 and 22.

21

1

NN

CO2CH3

O

OO

HO

OHOH

OH

H

22

1615

2019

1714

32

7

6

58

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

O

OH

HO

OH

OHO

H H

1

2

34

5

6

1'

2'

3'

4'

22

Page 172: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

162

FB 70 71.002.001.1r.esp

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

12.9

22

5

18.9

60

4

32.0

58

0

44.1

12

0

50.2

51

0

60.5

42

86

0.7

84

76

1.4

42

06

3.5

97

8

70.2

13

4

73.2

25

2

75.9

04

67

7.0

02

47

7.1

54

1

81.9

60

5

96.0

40

4

98.7

84

9

103

.78

63

109

.53

17

111

.47

45

112

.93

70

118

.08

65

119

.44

07

121

.07

29

121

.27

52

128

.24

47

133

.96

11

152

.75

72

167

.88

43

Figure S57. 13C NMR spectrum (125 MHz, CD3OD) of compounds 21 and 22.

Page 173: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

163

FB 70 71.100.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

1

2

3

4

5

6

7

8

F1 C

hem

ica

l S

hift (p

pm

)

Figure S58. 1H-1H-COSY spectrum of compounds 21 and 22.

Page 174: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

164

FB 70 71.200.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

F1 C

hem

ica

l S

hift

(pp

m)

.

Figure S59. HSQC spectrum of compounds 21 and 22.

Page 175: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

165

FB 70 71.300.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

F1 C

hem

ica

l S

hift

(pp

m)

Figure S60. HMBC spectrum of compounds 21 and 22.

Page 176: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

166

Compound 23

Table S19. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of 23, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

23 Literature*

HSQC HMBC C C H 2JCH

3JCH C 1 41.03 - 2H-2; 3H-12; 3H-13 42,5 3 199.82 - 2H-2 201,3 5 165.87 - 3H-11 H-8 167,4 6 78.61 - H-7 2H-2; H-8;

3H-11; 3H-12; 3H-13

80,0

CH 4 125.78 5.89 (s) 3H-11 127,2 7 130.14 5.87 (m) H-8 H-9 131,8 8 133.88 5.88 (m) H-7; H-9 3H-1-0 135,2 9 75.89 4.45 (m) 3H-10 H-1’; H-7 77,0

CH2 2 49.29 2.52 (d, 16.9

2.17 (d, 16.9) 3H-12; 3H-13 50,9

CH3 10 19.79 1.31 (d, 6.3) 21,2 11 18.16 1.94 (s) H-4 19,8 12 23.29 1.06 (s) 2H-2 24,7 13 22.03 1.05 (s) 2H-2 23,5

Glucose 1’ 101.33 4.36 (d, 7.7) H-2’ 102,7 2’ 73.84 3.19 (dd, 9.9, 7.7) H-1’; H-3’ 75,3 3’ 76.70 3.35 (m) H-2’; H-4’ H-5’ 75,1 4’ 70.24 4,27 (t, 9.6) H-3’; H-5’ H-6’a 71,6 5’ 76.63 3.25 (m) H-6’b 78,0 6’ 61.42 3.86 (dd,13.5, 2.0)

3.64 (dd, 13.5, 5.4) H-5’ 62,7

*Otsuka et al. 1995.

Page 177: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

167

FB 77 90 - 15 27.003.001.1r.esp

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

Methanol

0.1

190

0.9

190

0.9

361

0.9

507

1.0

511

1.0

569

1.1

140

1.3

025

1.3

153

1.3

355

1.3

410

1.5

530

1.9

386

1.9

411

2.1

522

2.1

858

2.2

489

2.5

220

2.5

558

3.1

737

3.1

895

3.1

920

3.2

078

3.2

588

3.2

747

3.3

573

3.3

750

3.6

518

3.6

627

3.7

799

3.8

559

3.8

592

3.8

791

4.0

621

4.3

541

4.3

696

4.4

398

4.4

520

4.4

630

4.6

970

4.7

129

5.2

865

5.3

069

5.3

176

5.3

493

5.5

696

5.5

733

5.8

756

5.8

841

5.8

912

Figure S61. 1H NMR spectrum (500 MHz, CD3OD) of compound 23.

10

O

O

HOO

HO

OHOH

OH

2

651

3

4

11

7

8 9

13

4'

3'

12

1'2'

6'

5'

23

Page 178: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

168

FB 77 90 - 15 27.002.001.1r.esp

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

Chemical Shift (ppm)

19.7

90

92

2.0

33

42

3.2

90

1

24.5

21

5

27.0

38

5

41.0

31

7

42.4

25

6

49.2

94

0

61.4

20

3

70.2

42

37

3.8

42

77

5.8

90

27

6.6

34

1

96.5

89

39

8.3

08

2

101

.33

80

119

.42

99

125

.77

83

130

.13

69

133

.88

17

152

.55

50

165

.87

65

199

.82

13

Figure S62. 13C NMR spectrum (125 MHz, CD3OD) of compound 23.

Page 179: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

169

FB 77 90 - 15 27.200.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

F1 C

hem

ica

l S

hift (p

pm

)

Figure S63. HSQC spectrum of compound 23.

Page 180: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

170

FB 77 90 - 15 27.300.001.2rr.esp

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

F2 Chemical Shif t (ppm)

0

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift

(pp

m)

Figure S64. HMBC spectrum of compound 23.

Page 181: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

171

Compound 24

Table S20. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of 24, including

result 2D experiments (HSQC and HMBC). Chemical shifts in ppm and coupling

constants in Hz

24 Literature*

HSQC HMBC C C H 2JCH

3JCH C 2 133.37 - H-3 H-6b; 2H-14 134.9 7 108.96 - 2H-6 H-9 110.4 8 127.31 - H-10; H-12 128.8 13 136.37 - H-9; H-11 137.8 16 107.84 - H-17 2H-14; H-20 109.3 22 165.70 - H-3; 2H-5; H-17 167.2 CH 3 53.72 5.09 (d, 4.6) H-14b 2H-5 55.2 9 117.28 7.40 (d, 7.7) H-11 118.8 10 118.78 7.01 (ddd, 7.9, 7.7, 0.9) H-12 120.3 11 121.09 7.10 (ddd, 7.7, 8.1, 1.0) H-9 122.6 12 110.86 7.34 (d, 8.1) H-10 112.4 15 23.54 2.48 (ddd, 14.1, 4.4, 2.3) 2H-14; H-20 H-3; H-17; H-21 25.0 17 147.77 7.39 (d, 2.3) H-21 149.3 19 132.97 5.67 (dt, 17.1, 10.1) 2H-18; H-20 134.4 20 43.36 2.98 (dd, 9.1, 8.8) H-15; H-19 H-14b; 2H-18 44.8 21 96.67 5.43 (d, 1.8) H-1’; H-17 98.2

CH2 5 43.39 4.97 (dd, 12.8, 5.5)

3.12 td, 12.8, 4.6) 44.9

6 20.70 2.99 (t, 5.5) 2.95 (m)

22.2

14 25.93 2.81 (m) 2.06 (td, 13.9, 6.0)

27.4

18 119.13 5.38 (dd, 17.1, 1.6) 5.34 (dd, 10.1, 1.9)

H-20 120.8

Glucose 1’ 99.11 4.59 (d, 7.9) H-2’ H-21 100.6 2’ 72.92 2.71 (m) H-3’ 74.3 3’ 76.56 3.27 (t, 9.1) H-2’; H-4’ 78.2 4’ 69.95 3.20 (t, 9.1) H-5’ H-6’a 71.4 5’ 76.83 3.28 (m) H-6’b 78.0 6’ 61.20 3.87 (dd, 11.8, 2.1)

3.65 (dd, 11.8, 5.2) H-4’ 62.7

*Zhang et al. 2001

Page 182: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

172

AR4.003.001.1r.esp

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

Methanol

1.3

089

2.0

555

2.0

671

2.0

833

2.4

686

2.4

753

2.6

895

2.7

105

2.7

206

2.9

635

2.9

812

3.2

054

3.2

237

3.2

588

3.2

768

3.2

957

3.3

680

3.6

432

3.6

554

3.8

647

3.8

684

3.8

882

3.8

922

4.0

051

4.5

881

4.6

040

5.0

958

5.3

328

5.3

533

5.3

722

5.4

064

5.4

286

5.6

575

5.6

770

5.6

916

5.7

118

6.9

9997

.01

55

7.1

006

7.3

392

7.3

553

7.3

947

7.4

115

Figure S65. 1H NMR spectrum (500 MHz, CD3OD) of compound 24.

NN

O

H

O

O

H

H

H

O

HO

OHOH

OH

8

9

10

111

7

14

15

16

17

19

18

1213

21

20

4

5

32

6

2'1'

3'

4'5'

6'

24

Page 183: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

173

AR4.002.001.1r.esp

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

20.7

29

8

23.5

39

3

25.9

33

5

43.3

57

3

43.4

00

6

53.7

28

5

61.1

92

8

69.9

53

4

72.9

14

67

6.5

51

07

6.8

29

1

96.6

68

8

99.1

02

7

107

.83

81

108

.90

33

110

.85

70

117

.27

40

118

.74

73

119

.13

01

121

.08

74

127

.30

58

132

.96

08

133

.36

89

136

.36

98

147

.77

74

165

.71

04

Figure S66. 13C NMR spectrum (125 MHz, CD3OD) of compound 24.

Page 184: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

174

AR4.100.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

F1 C

hem

ica

l S

hift

(ppm

)

Figure S67. 1H-1H-COSY spectrum of compound 24.

Page 185: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

175

AR4.200.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

F1 C

hem

ica

l S

hift

(ppm

)

Figure S68. HSQC spectrum of compound 24.

Page 186: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

176

AR4.300.001.2rr.esp

7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

F1 C

hem

ica

l S

hift (p

pm

)

Figure S69. HMBC spectrum of compound 24.

Page 187: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

177

Compound 25

Table S21. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of 26, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

25 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

1 161.0 - 1H-3 160.8

4 111.6 - 1H-2 112.1

6 143.3 - 3H-10/1H-8 146.0

7 150.2 - 151.9

9 149.9 - 1H-8 1H-3 151.2

CH

2 113.6 6.24 (d, 9.4) 113.3

3 143.3 7.62 (dd, 9.5, 1.8) 144.7

5 107.7 6.84 (s) 1H-3 109.9

8 103.3 6.87 (s) 103.7

CH2

10 56.5 3.92 (s) 56.5

*Darmawan et al. 2012.

Page 188: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

178

CCDS 1011.001.001.1r.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

-0.1

36

6-0

.03

01

-0.0

25

8-0

.02

34

-0.0

16

7-0

.01

24

0.0

007

0.0

056

0.0

123

0.0

590

0.0

999

0.1

041

0.8

281

0.8

385

0.8

501

0.8

641

0.8

779

0.9

069

1.2

397

1.2

699

1.3

163

1.5

979

2.0

037

2.0

351

2.0

412

2.2

895

2.3

057

2.3

130

2.5

751

3.3

864

3.3

894

3.9

224

3.9

294

5.2

941

6.2

290

6.2

476

6.8

462

6.8

687

7.2

815

7.2

858

7.6

089

7.6

123

7.6

278

7.6

315

Figure S70. 1H NMR spectrum (500 MHz, CDCl3) of compound 25.

19

8

6

7OO

OCH3

OH

54

2

310

25

Page 189: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

179

CCDS 1011.002.001.1r.esp

168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

TMS

56

.411

6

10

3.2

15

8

10

7.4

80

5

11

1.6

76

71

13.4

57

0

14

3.2

67

1

14

9.9

40

51

50.5

00

2

Figure S71. 1H NMR spectrum (125 MHz, CDCl3) of compound 25.

Page 190: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

180

CCDS 1011.200.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift (p

pm

)

Figure S72. HSQC spectrum of compound 25.

Page 191: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

181

CCDS 1011.300.001.2rr.esp

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

F2 Chemical Shif t (ppm)

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

F1 C

hem

ica

l S

hift

(ppm

)

Figure S73. HMBC spectrum of compound 25.

Page 192: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

182

Compound 26

Table S22. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data for 26, including

results of HSQC and HMBC experiments. Chemical shifts in ppm and coupling

constants in Hz

26 Literature*

HSQC HMBC C C H 2JCH

3JCH C 4 43.7 - 2H-24 43.2 8 40.8 - 3H-26 40.4 10 37.6 - 3H-25 37.2 13 139.7 - H-18 140.0 14 42.6 - 3H-27 42.1 17 48.8 - H-18 48.4 19 72.5 - H-18 2H-21; 3H-30 54.7 28 180.4 - H-18 180.0 CH 3 80.8 3.61 (m) 2H-24 80.3 5 56.1 0.96 (m) 56.5 9 48.4 1.80 (m) 47.9 12 126.7 5.59 (m) 1H-18 127.9 18 54.4 3.04 (brs) 54.7 20 42.9 1.49 (m) 3H-30 42.4

CH2 1 38.2 2.15 (m); 2.04 (m) 38.8 2 28.2 1.26 (m) 28.5 6 19.7 1.65 (m); 1.35 (m) 19.3 7 34.4 1.58 (m); 1.35 (m) 34.0 11 27.8 1.97 (m) 24.3 15 29.8 1.26 (m) 29.1 16 26.9 1.89 (m) 26.5 21 27.4 1.52 (m); 0.93 (m) 27.0 22 39.3 1.32 (m) 38.6 24 65.1 4.48 (d, 11.0); 3.65 (m) 64.6

CH3 23 23.3 1.53 (s) 2H-24 23.7 25 17.6 0.82 (s) 17.2 26 16.6 1.02 (s) 16.8 27 24.4 1,71 (s) 24.7 29 26.6 1.43 (s) 27.2 30 16.5 1.11 (d, 6.5) 16.1

*Nakatani et al. 1989.

.

Page 193: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

183

PNFM5 2327.003.001.1r.esp

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

0.8

433

0.8

634

0.9

967

1.0

559

1.1

133

1.2

048

1.3

003

1.4

294

1.4

388

1.5

300

1.5

416

1.6

756

1.7

079

1.8

269

1.8

495

1.9

483

2.0

350

2.0

609

2.0

789

2.1

289

2.1

579

2.3

016

2.6

067

3.0

421

3.1

223

3.5

891

3.6

425

3.6

645

3.7

768

3.7

871

3.9

879

4.4

581

4.4

645

4.4

864

5.4

704

5.4

777

5.5

906

5.5

973

5.6

717

7.1

929

7.5

609

8.7

041

Figure S74. 1H NMR spectrum (500 MHz, Pyridine-d5) of compound 26.

26

12

3 4

23

56

7

89

10

11

1213

14

15

16

17

18

1920 21

22

HO

CO2HH

HO

OH

30

29

28

Page 194: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

184

PNFM5 2327.002.001.1r.esp

184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

15.7

80

51

6.5

38

91

6.8

27

8

17.2

75

6

18.9

87

2

21.1

68

42

3.3

56

7

23.6

09

52

4.0

14

0

24.4

04

0

26.1

37

32

6.6

93

4

26.8

81

2

28.1

66

82

9.0

55

13

0.8

24

63

3.6

41

33

6.8

62

53

8.2

56

43

8.5

16

4

39.1

59

13

9.2

53

0

40.1

12

54

1.8

17

0

42.1

34

7

42.9

00

3

47.6

02

0

48.0

64

3

53.3

00

45

4.3

83

85

6.2

11

0

64.3

36

1

72.4

61

2

80.0

23

0

127

.69

02

139

.70

81

180

.46

36

Figure S75. 13C NMR spectrum (125 MHz, Pyridine-d5) of compound 26.

Page 195: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

185

PNFM5 2327.100.001.2rr.esp

12 11 10 9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

1

2

3

4

5

6

7

8

9

10

11

12

F1 C

he

mic

al S

hift (p

pm

)

Figure S76. 1H-1H-COSY spectrum of compound 26.

Page 196: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

186

PNFM5 2327.200.001.2rr.esp

9 8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

F1 C

he

mic

al S

hift (p

pm

)

Figure S77. HSQC spectrum of compound 26.

Page 197: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

187

PNFM5 2327.300.001.2rr.esp

9 8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

F1 C

hem

ica

l S

hift (p

pm

)

Figure S78. HMBC spectrum of compound 26.

Page 198: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

188

Compound 27

Table S23. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound

27, including results of HSQC and HMBC experiments. Chemical shifts are given in

ppm and coupling constants in Hz

27 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

2 128.8 - H-3 2H-14 133.2

7 105.7 - H-9 107.7

8 126.0 - 127.9

13 136.8 - H-12 H-9 137.9

16 107.6 - H-17 109.9

22 170.0 - H-17;Me-O-22 170.6

CH

3 51.6 3.81 (s) 52.4

9 117.7 7.48 (d, 7.9) 118.8

10 119.7 7.08 (t, 7.6) 120.1

11 122.1 7.16 (d, 7.7) 122.7

12 110.9 7.34 (d, 8.0) 112.0

15 31.0 3.10 (m) 2H-14 H-17;1H-19 32.5

17 155,5 7.83 (s) 165.1

19 134,0 5.86 (m) H-20 H-21 135.7

20 44.0 2.77 (m) 45.6

21 95.9 5.86 (m) H-17;1H-19 97.5

CH2

5 41.3 3.75 (m); 3.48 (m) 42.9

6 18.1 3.10 (m) 1H-5 21.0

14 33.4 2.37 (m) 35.9

18 118,4 2.25 (m) 119.5

CH3

Me-O-22 51.2 3.82 (s) 52.4

Glucose

1’ 99,0 4.82 (d, 8.2) H-2 H-3 100.3

2’ 77,4 3.39 (m) H-3 78.6

3’ 76,6 3.42 (m) H-4 78.0

4’ 73,2 3.23 (m) 74.6

5’ 70,3 3.25 (m) 2H-6 71.7

6’ 61,6 4.0 (dd, 11.8, 1.9);

3.66 (dd, 11.8, 7.1)

H-5 62.9

*Patthy-Lukáts et al. 1997.

Page 199: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

189

AC14.003.001.1r.esp

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

1.0

221

1.1

057

1.3

055

1.3

397

2.0

689

2.2

501

2.2

733

2.3

645

2.3

883

2.7

678

2.7

782

3.1

266

3.1

336

3.2

349

3.2

441

3.2

523

3.2

627

3.3

286

3.4

354

3.4

537

3.6

737

3.8

198

3.9

839

4.0

053

4.6

796

4.7

021

4.8

181

4.8

336

5.2

885

5.3

099

5.3

651

5.3

999

5.8

423

5.8

575

5.8

633

5.8

707

5.8

884

5.8

978

5.9

134

7.0

477

7.0

630

7.1

548

7.1

695

7.3

400

7.3

562

7.4

767

7.4

923

7.8

230

Figure S79. 1H NMR spectrum (500 MHz, CD3OD) of compound 27.

1

NN

CO2CH3

O

OO

HO

OHOH

OH

H

22

1615

2019

1714

32

7

6

5

8

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

27

Page 200: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

190

AC14.002.001.1r.esp

184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

18.1

51

5

31.0

07

2

33.4

15

8

41.3

09

8

44.0

10

9

51.2

26

05

1.7

24

3

61.5

82

8

70.3

39

8

73.2

72

17

6.5

83

57

7.3

38

2

95.9

61

0

99.0

01

6

105

.75

80

107

.57

08

110

.91

47

117

.71

82

118

.48

01

119

.21

68

122

.09

85

126

.03

10

128

.77

19

133

.98

64

136

.80

31

155

.46

19

169

.84

88

Figure S80. 13C NMR spectrum (125 MHz, CD3OD) of compound 27.

Page 201: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

191

AC14.100.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

1

2

3

4

5

6

7

8

F1 C

he

mic

al S

hift (p

pm

)

Figure S81. 1H-1H-COSY spectrum of compound 27.

Page 202: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

192

AC14.200.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

F1 C

hem

ica

l S

hift

(ppm

)

Figure S82. HSQC spectrum of compound 27.

Page 203: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

193

AC14.300.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

180

F1 C

he

mic

al S

hift (p

pm

)

Figure S83. HMBC spectrum of compound 27.

Page 204: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

194

Compound 28

Table S24. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectral data of compound

28, including results of HSQC and HMBC experiments. Chemical shifts are given in

ppm and coupling constants in Hz

28 Literature*

HSQC HMBC

C C H 2JCH 3JCH C

2 129.0 - H-3 2H-6 133.2

7 106.9 - 2H-6 HN-1; H-9 109.0

8 126.1 - HN-1; H-10; H-12 128.0

13 137.1 - H-9; H-11 138.4

16 107.2 - H-17 2H-14 109.9

22 170.4 - H-17; MeO-22 170.9

23 172.2 - H-5 176.5

CH

3 51.7 4.62 (d, 11.7) 2H-14 H-5 53.2

5 58.3 3.94 (dd, 12.0, 5.0) 2H-6 60.1

9 117.7 7.48 (d, 7.0) H-11 118.8

10 119.2 7.05 (t, 7.0) H-12 120.1

11 122.0 7.14 (t, 7.0) H-9 122.6

12 110.9 7.33 (d, 7.0) H-11 H-10 112.1

15 31.6 3.11 (m) 2H-14; H-

20

H-17; H-19; H-21 32.4

17 155.8 7.84 (s) H-21 156.1

19 133.8 5.87 (ddd, 17.4, 10.7, 7.5) H-18; H-20 H-21 135.2

20 43.8 2.79 (m) H-19; H-21 H-18 45.7

21 96.0 5.94 (d, 9.2) H-20 H-15; H-17; H-1’ 97.6

CH2

6 22.7 3.45 (m), 3.05 (m) H-5 25.2

14 33.3 2.46 (m), 2.25 (m) H-3 35.6

18 118.4 5.39 (d, 17.7);

5.27 (d, 10.7)

H-20 119.6

CH3

Me-O-22 51.4 3.85 (s)

Glucose

1’ 99.0 4.85 (d, 8.0) H-2’ H-21 100.5

2’ 73.2 3.27 (dd, 9.1, 8.0) H-3’ 74.7

3’ 77.4 3.43 (t, 9.1) H-2’; H-4’ 78.0

4’ 70.4 3.28 (t, 9.1) H-3’; H-5’ 71.9

5’ 76.5 3.38 (m) H-6’b 78.6

6’ 61.7 4.04 (dd, 11.8, 1.8)

3.70 (dd, 11.8, 7.0)

H-5’ H-4’ 63.1

Ferrari et al. 1986.

Page 205: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

195

AC 11.003.001.1r.esp

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

Methanol

1.2

6701.3

043

2.2

501

2.4

578

2.7

821

2.7

910

3.0

445

3.0

820

3.2

560

3.2

743

3.2

804

3.2

993

3.3

878

3.4

357

3.4

537

3.4

723

3.7

057

3.8

167

3.8

790

4.0

275

4.0

312

4.0

510

4.0

547

5.2

675

5.2

888

5.3

776

5.4

124

5.8

465

5.8

529

5.8

673

5.9

307

5.9

490

7.0

3857

.05

32

7.1

429

7.1

578

7.3

256

7.3

421

7.4

736

7.4

892

7.8

379

Figure S84. 1H NMR spectrum (500 MHz, CD3OD) of compound 28.

1

NN

CO2CH3

O

OO

HO

OHOH

OH

H

CO2H

22

1615

2019

1714

32

7

6

5

8

9

10

11

1213

18

21

2'1'

3'

4'5'

6'

28

Page 206: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

196

AC 11.002.001.1r.esp

176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

22.6

36

5

31.2

52

7

33.2

28

0

43.9

17

0

51.7

09

9

58.0

94

4

61.7

05

6

70.3

76

0

73.2

68

57

6.5

76

37

7.4

10

5

96.0

22

4

99.0

70

2

106

.93

89

107

.22

78

110

.88

95

117

.79

76

118

.45

48

119

.22

40

122

.01

91

126

.08

88

129

.04

64

133

.80

22

137

.11

37

155

.87

36

170

.42

66

172

.20

32

Figure S85. 13C NMR spectrum (125 MHz, CD3OD) of compound 28.

Page 207: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

197

AC 11.100.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

F1 C

hem

ica

l S

hift (p

pm

)

Figure S86. 1H-1H-COSY spectrum of compound 28.

Page 208: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

198

AC 11.200.001.2rr.esp

8 7 6 5 4 3 2 1 0

F2 Chemical Shif t (ppm)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

F1 C

hem

ica

l S

hift (p

pm

)

Figure S87. HSQC spectrum of compound 28.

Page 209: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

199

AC 11.300.001.2rr.esp

8 7 6 5 4 3 2 1

F2 Chemical Shif t (ppm)

20

40

60

80

100

120

140

160

180

F1 C

hem

ica

l S

hift

(pp

m)

Figure S88. HMBC spectrum of compound 28.

Page 210: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

200

MTT assay

Figure S89. Evaluation of cell viability of U937 leukemic cell lines by MTT assay (n =

3), after 48 h of incubation with compounds 20, 23, and 24. The concentration 0 is the

negative control test (cells and culture medium). The concentration of DMSO was 0.2

%.

Figure S90. Evaluation of cell viability of THP-1 leukemic cell lines by MTT assay (n =

3), after 48 h of incubation with compounds 20, 23, and 24. The concentration 0 is the

negative control test (cells and culture medium). The concentration of DMSO was 0.2

%.

23

24

20

23

24

20

Page 211: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

201

4. CONCLUSÕES

Com o desenvolvimento desta pesquisa foi possível, além de compreender a

química do gênero Psychotria, contribuir com mais informações que poderão ser úteis

no ponto de vista quimiotaxonômico. Neste trabalho, descrevemos os dados

espectrais de um novo iridoide (ácido 9-epi-geniposídico), além de outros dez

metabólitos isolados de P. suterella. Da espécie P. nuda outros dezessete metabólitos

foram isolados. Através de uma busca na literatura foi possível constatar que, além

do composto inédito, os ácidos geniposídico, 3-O-acetiloleanólico, pomólico,

espinólico, maslínico, tormêntico e lyalosídico, metil oleleanato, cinchonainas Ia e Ib,

roseosídeo e o alcaloide raro N,N,N-trimetiltriptamônio estão sendo, provavelmente,

relatados pela primeira vez no gênero.

Além do estudo químico das espécies mencionadas, este estudo também

consistiu na avaliação de atividades inseticida, antifúngica e citotóxica de extratos,

frações e compostos isolados. As amostras testadas não promoveram, de forma

considerável, a morte das larvas do mosquito A. aegypti, que é o vetor de doenças

como a dengue e febre amarela. Os extratos e frações testadas nos ensaios para

avaliação de atividade antifúngica não inibiram, consideravelmente, o crescimento

dos fungos fitopatogênicos Fusarium oxysporum, Curvularia lunata, Colletotrichum

musae, Rhizoctonia solani, and Sclerotium rolfsii, que causam prejuízos ao

agronegócio. Em relação ao ensaio de atividade citotóxica, o alcaloide estrictosamida

apresentou os melhores resultados frente às duas linhagens de células cancerígenas

THP-1 e U937, com valores de EC50 de 120 ± 1 e 21.9 ± 1 g/mL, respectivamente.

Este resultado aponta para a possibilidade de testar outros alcaloides e outras

linhagens de células cancerígenas em pesquisas futuras.

5. REFERÊNCIAS BIBLIOGRÁFICAS

Achenbach, H., Lottes, M., Waibel, R., Karikas, G.A., Correa, M.D., Gupta, M.P. (1995)

Alkaloids and other compounds from Psychotria correae. Phytochemistry. 38:1537–

1545.

Adjibade, Y., Kuballa, B., Cabalion, P., Jung, M.L., Beck, J.P., Anton, R. (1989)

Cytotoxicity on human leukemic and rat hepatoma cell lines of alkaloid extracts of

Psychotria forsteriana. Planta Med. 55:567–568.

Page 212: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

202

Adjibade, Y., Weniger, B., Quirion, J.C., Kuballa, B., Cabalion, P., Anton, R. (1992)

Dimeric alkaloids from Psychotria forsteriana. Phytochemistry. 31:317–319.

Amador, T.A., Verotta, L., Nunes, D.S., Elisabetsky, E. (2000) Antinociceptive profile

of hodgkinsine. Planta Med. 66:770–772.

Barbhuiya, H.A., Dutta B.K., Das, A.K., Baishya, A.K. (2014) The family Rubiaceae in

southern Assam with special reference to endemic and rediscovered plant taxa. J

Threat Taxa. 6:5649–5659.

Benevides, P.J.C., Young, M.C.M., Bolzani, V.D.S. (2004) Biological Activities of

Constituents from Psychotria spectabilis. Pharm Biol. 42:565–569.

Berger, A., Fasshuber, H., Schinnerl, J., Brecker, L., Greger, H. (2012) Various types

of tryptamine-iridoid alkaloids from Palicourea acuminata (=Psychotria acuminata,

Rubiaceae). Phytochem Lett. 5:558–562.

Bertani, D.F. (2006). Ecologia de populaçoes de Psychotria suterella Mull. Arg.

(Rubiaceae) em uma paisagem fragmentada de mata atlântica. Tese (Mestrado em

Biologia Vegetal)-Campinas-SP, Universidade Estadual de Campinas-UNICAMP,

126p.

Carvalho Junior, A.R (2016) Psychotria Genus: Chemical Constituents, Biological

Activities, and Synthetic Studies. In: Atta-ur-Rahman Studies in Natural Products

Chemistry. p. 231–261.

Carvalho Junior, A.R., Vieira, I.J.C., Carvalho, M.G., Braz-Filho, R., Lima, M.A.S.,

Ferreira, R.O., Maria, E.J., Oliveira, D.B. (2017) C-NMR Spectral Data of Alkaloids

Isolated from Psychotria Species (Rubiaceae). Molecules. 22:1–22.

Faria, E.O. (2009) Estudo fitoquímico das folhas da espécie Psychotria prunifolia (

Kunth ) Steyerm ( Rubiaceae ). Tese (Mestrado em Química)-Goiânia-GO,

Universidade Federal de Goiás-UFG, 126p.

Faria, E.O., Kato, L., De Oliveira, C.M.A., Carvalho, B.G., Silva, C.C., Sales, L.S.,

Schuquel, I.T.A., Silveira-Lacerda, E.P., Delprete, P.G. (2010) Quaternary β-carboline

alkaloids from Psychotria prunifolia (Kunth) Steyerm. Phytochem Lett. 3:113–116.

Farias, F.M., Konrath, E.L., Zuanazzi, J.A.S., Henriques, A.T. (2008) Strictosamide

from Psychotria nuda (Cham. et Schltdl) Wawra (Rubiaceae). Biochem Syst Ecol.

36:919–920.

Ferreira, B.G.A., Zuffellato-Ribas, K.C., Wendling, I., Kohler, H.S., Reissmann, C.B.

(2014) Psychotria nuda (Cham. & Schltdl.) Wawra: Rooting of Stock Plants in Different

Phenophases and Enviroments. Ciência Florest. 24:367–378.

Page 213: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

203

Firmo, W.C.A., Menezes, V.J.M., Passos, C.E.C., Dias, C.N., Alves, L.P.L., Dias,

I.C.L., Neto, M.S., Varga, I.V.D. (2011) Contexto Histórico e Concepçao Científica

sobre Plantas Medicinais. Cad Pesqui. 18:90–95.

Hart, N.K., Johns, S.R., Lamberton, J.A., Summons, R.E. (1974) Psychotridine a

C55H62N10 alkaloid from Psychotria beccarioides ( Rubiaceae ). Aust J Chem. 27:639–

646.

Henriques, A.T., Lopes, S.O., Paranhos, J.T., Gregianini, T.S., Von Poser, G.L., Fett-

Neto, A.G., Schripsema, J. (2004) N,beta-D-Glucopyranosyl vincosamide, a light

regulated indole alkaloid from the shoots of Psychotria leiocarpa. Phytochemistry.;

65:449–54.

Kato, L., De Oliveira. C.M.A., Faria, E.O., Ribeiro, L.C., Carvalho, B.G., Da Silva, C.C.,

Schuquel, I.T.A., Santin, S.M.O., Nakamura, C.V., Britta, E.A., Miranda, N., Iglesias,

A.H., Delprete, P.G. (2012) Antiprotozoal alkaloids from Psychotria prunifolia. J Braz

Chem Soc. 23:355–360.

Kerber, V.A., Passos, C.S., Verli, H., Quirion, J.P., Henriques, A.T. (2008)

Psychollatine , a glucosidic monoterpene indole alkaloid from Psychotria umbellata. J

Nat Prod. 71:697–700.

Li, X., Zhang, Y., Cai, X., Feng, T., Liu, Y., Li, Y., Ren, J., Zhu, H.-J., Luo, X.-D. (2011)

Psychotripine : a new trimeric pyrroloindoline derivative from Psychotria pilifera. Org

Lett. 13:5896–5899.

Libot, F., Miet, C., Kunesch, N., Poisson, J.E. (1987) Rubiacees d’oceanie: alcaloides

de. J Nat Prod. 50:468–473.

Lima, L.B. (2011). Triagem da atividade antioxidante e anticolinesterásica de extratos

naturais: seleçao e estudo químico biomonitorado de Streptomyces sp. e de

Psychotria carthagenensis. Tese (Metrado em CIências)-Ribeirão Preto-SP,

Universidade de São Paulo-USP, 129p.

Liu, Y., Wang, J.-S., Wang, X.-B., Kong, L.-Y. (2014) Absolute configuration study of

a new dimeric indole alkaloid from leaves and twigs of Psychotria henryi. J Asian Nat

Prod Res. 16:29–33.

Lopes, L.E., Buzato, S. (2005) Biologia Reprodutiva de Psychotria suterella Muell. Arg.

( Rubiaceae ) e a abordagem de escalas ecológicas para a fenologia de floração e

frutificação. Rev Bras Botânica. 28:785–795.

Lopes, S., Von Poser, G.L., Kerber, V.A., Farias, F.M., Konrath, E.L., Moreno, P.,

Sobral, M.E., Zuanazzi, J.A.S., Henriques, A.T.( 2004) Taxonomic significance of

Page 214: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

204

alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). Biochem Syst

Ecol].32:1187–1195.

Mahmud, Z., Musa, M., Ismail, N., Lajis, N.H. (1993) Cytotoxic and Bacteriocidal

activities of Psychotriu rostrata. Int J Pharmacog. 31:142–146.

Miguel, E.D.C., Moraes, D.G., Cunha, M.D. (2009) Stipular colleters in Psychotria nuda

( Cham . & Schltdl .) Wawra ( Rubiaceae ): micromorphology , anatomy and cristals

microanalysis. Acta Bot Brasilica. 23:1034–1039.

Moraes, T.M.S., De Araujo, M.H., Bernardes, N.R., De Oliveira, D.B., Lasunskaia,

E.B., Muzitano, M.F., Da Cunha, M. (2011) Antimycobacterial activity and alkaloid

prospection of Psychotria species ( Rubiaceae ) from the Brazilian atlantic rainforest.

Planta Med. 77:964–970.

Muhammad, I., Dunbar, D.C., Khan, S.I., Tekwani, B.L., Bedir, E., Takamatsu, S.,

Ferreira, D., Walker, L.A. (2003) Antiparasitic alkaloids from Psychotria klugii. J Nat

Prod. 66:962–967.

Newman, D.J., Cragg, G.M. (2016) Natural products as sources of new drugs from

1981 to 2014. J Nat Prod. 79:629–661.

Oliveira, A.M., Lemos, R.P.L., Conserva, L.M. (2013) β-Carboline alkaloids from

Psychotria barbiflora DC. (Rubiaceae). Biochem Syst Ecol. 50:339–341.

Paul, J.H.A., Maxwell, A.R., Reynolds, W.F. (2003) Novel bis ( monoterpenoid ) indole

alkaloids from Psychotria bahiensis. J Nat Prod. 66:752–754.

Pimenta, A.T.A., Braz-Filho, R., Delprete, P.G., de Souza, E.B., Silveira, E.R., Lima,

M.A.S.(2010) Structure elucidation and NMR assignments of two unusual

monoterpene indole alkaloids from Psychotria stachyoides. Magn Reson Chem.

48:734–737

Pimentel, V., Vieira, V., Mitidieri, T., Pieroni, J.P. (2015) Biodiversidade brasileira como

fonte da inovação farmacêutica : uma nova esperança ? Rev do BNDES. 43:41–89.

Porto, D.D., Henriques, A.T., Fett-Neto, A.G. (2009) Bioactive alkaloids from south

american psychotria and related species. Open Bioact Compd J]. 2:29–36.

Rasolonjanahary, R., Sévenet, T., Voegelein, F.G., Kordon, C. (1995) Psycholeine, a

natural alkaloid extracted from Psychotria oleoides, acts as a weak antagonist of

somatostatin. Eur J Pharmacol. 285:19–23.

Roth, A., Kuballa, B., Bounthanh, C., Cabalion, P., Sévenet, T., Beck, J.P., Anton, R.

(1986). Cytotoxic activity of polyindoline alkaloids of Psychotria forsteriana ( Rubiaceae

). Planta Med. 6:450–453.

Page 215: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

205

Rydin, C., Kainulainen, K., Razafimandimbison, S.G,, Smedmark, J.E.E., Bremer, B.

(2009). Deep divergences in the coffee family and the systematic position of

Acranthera. Plant Syst Evol. 278:101–123.

Van De Santos, L., Fett-Neto, A.G., Kerber, V.A., Elisabetsky, E., Quirion, J.-C.,

Henriques, A.T. (2001) Indole monoterpene alkaloids from leaves of Psychotria

suterella Müll. Arg. (Rubiaceae). Biochem Syst Ecol. 29:1185–1187.

Takayama, H., Mori, I., Kitajima, M., Aimi, N., Lajis, N.H. (2004). New type of trimeric

and pentameric indole alkaloids from Psychotria rostrata. Org Lett. 6:2945–2948.

Tomaz, A.C.A., Nogueira, R.B.S.S., Pinto, D.S., Agra, M.F., De Souza, M.F.V., Da-

Cunha, E.V.L.(2008) Chemica constotuents from Richardia grandiflora (Cham. &

Schltdl.) Steud. (Rubiaceae). Brazilian J Pharmacogn. 18:47–52.

Verotta, L., Peterlongo, F., Elisabetsky, E., Amador, T.A., Nunes, D. (1999). High-

performance liquid chromatography–diode array detection–tandem mass

spectrometry analyses of the alkaloid extracts of Amazon Psychotria species. J

Chromatogr A. 841:165–176.

Verotta, L,. Pilati, T., Tato, M., Elisabetsky, E., Amador, T.A. (1998) Pyrrolidinoindoline

alkaloids from Psychotria colorata. J Nat Prod. 61:392–396.

Zhou, H., He, H., Wang, Y., Hao, X. (2010) A new dimeric alkaloid from the Leaf of

Psychotria calocarpa. Helv Chim Acta. 93:1650–1652.

6. ANEXOS

6.1 Metodologia do Ensaio para Avaliação de Atividade Inseticida

Os extratos e frações das espécies P. nuda e P. suterella, obtidos como

mencionados na seção 3.3.1.1 (páginas 82-83), foram solubilizados em DMSO / H2O

ou DMSO puro. Quinze larvas de terceiro instar (Aedes aegypti) foram adicionadas

aos potes contendo água destilada e adicionadas às soluções de teste à temperatura

ambiente, 27 ° C. Os testes foram realizados em triplicado e em duas repetições. O

controle negativo foi a água pura, DMSO puro e uma solução DMSO / H2O (2,5%).

Para o controle positivo foi utilizado o composto Imidacloprid, com concentrações

entre 0,01 μg / mL e 1,0 μg / mL. A avaliação da mortalidade foi feita 24 horas após a

exposição das larvas às soluções. Todas as amostras testadas não apresentaram

atividade larvicida numa escala considerável.

6.2 Metodologia do Ensaio para Avaliação de Atividade Antifúngica

Page 216: ESTUDO QUÍMICO DAS ESPÉCIES Psychotria nuda Cham

206

Os bioensaios foram conduzidos por adição ao meio de cultura PDA (Sigma-

Aldrich®), às soluções aquosas de extratos e frações das duas plantas testadas,

utilizando-se volumes apropriados para obter uma concentração de 3500 μg mL-1,

igualmente para cada microrganismo. Com o meio já vertido em placas de Petri, foram

inoculados discos de micélio-ágar de 5 mm de diâmetro feitos de culturas puras de

fungos na superfície de cada cultura com seus respectivos tratamentos.

Posteriormente, as placas foram seladas com película de plástico e incubadas em

uma câmara de crescimento (25 ± 1 ° C) e expostas a um fotoperíodo de 12 horas.

Para estimar a eficiência dos tratamentos, o diâmetro de cada uma das colônias foi

medido durante o crescimento micelial e comparado ao controle. O crescimento radial

foi medido com paquímetro, em dois eixos ortogonais um ao outro calculando uma

média para cada placa. As amostras testadas não apresentaram resultados

satisfatórios.