116
European Solar Thermal Electricity Association DECEMBER 2012 SOLAR THERMAL ELECTRICITY STRATEGIC RESEARCH AGENDA 2020-2025

ESTELA Strategic Research Agenda 2020-2025

  • Upload
    estela

  • View
    223

  • Download
    1

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: ESTELA Strategic Research Agenda 2020-2025

European Solar ThermalElectricity Association

december

2012

SOLAr THermAL eLecTrIcITY

STrATegIc reSeArcH AgendA 2020-2025

European Solar ThermalElectricity Association

European Solar Thermal Electricity Association

Rue d’Arlon, 63-67B - 1040 - Brussels

Tel. : +32 (0)2 400 10 90 Fax : +32 (0)2 400 10 91

[email protected]

www.estelasolar.eu

Printed on Satimat green, silk coated paper, FSC® certified, produced from 60% FSC® certified

recycled fibre and 40% FSC® certified virgin fibre, ensuring a reduced impact on the environment. De

sign:

ww

w.a

cg-b

xl.be

SOLA

r T

Her

mA

L eL

ecTr

IcIT

Y -

STrA

TegI

c re

SeAr

cH A

gend

A 20

20-2

025

dece

mbe

r 20

12ST

rATe

gIc

reSe

ArcH

Age

ndA

2020

-202

5eS

TeLA

Page 2: ESTELA Strategic Research Agenda 2020-2025

Copyright © 2012 by Association Européenne pour la promotion de l’Electricité Solaire Thermique, a.s.b.l.

ESTELARue d’Arlon, 63-651040 – Bruxelles, Belgique

All rights reserved. This book or any portion thereofmay not be reproduced or used in any manner whatsoeverwithout the express written permission of the publisherexcept for the use of brief quotations in a book review.

Printed in Belgium

First Printing, December 2012

Page 3: ESTELA Strategic Research Agenda 2020-2025

december 2012

European Solar ThermalElectricity Association

SOLAr THermAL eLecTrIcITY

STrATegIc reSeArcH AgendA 2020-2025

Page 4: ESTELA Strategic Research Agenda 2020-2025

4 STrATegIc reSeArcH AgendA 2020-2025

Inde

x

Acknowledgments 6

Preface 7

Glossary 8 IntroductiontoESTELA 10TheScientificandTechnicalCommittee 11 ExecutiveSummary 131 History 19

2 TheBrilliantFutureofSolarThermalElectricityPlants 23

2.1 Dispatchabilityandothertechnicalfeatures. . . . . . . . . . . . . . . . . . . . . . . . .24 2.2 Macroeconomicimpactonlocaleconomies. . . . . . . . . . . . . . . . . . . . . . . .24 2.3 Competitiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

3 IndustryOverviewandRelatedEconomicAspects 27

3.1 Nationalandregionalmarkets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.2 Employment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.3 Economics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 3.4 Standardisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

4 PolicyOverview 39

4.1 ContributiontoEU’srenewableenergypolicy. . . . . . . . . . . . . . . . . . . . . . .40 4.2 Energytransmissioninfrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 4.3 Europeancontextandframeworks2014-2020. . . . . . . . . . . . . . . . . . . . . .41 4.4 Researchoverview:participationoftheSTEsectorintheEUinstruments. . . . . .42

5 State-of-the-ArtofSTETechnologies 45

6 STEMainChallengesonInnovation 53

6.1 STEEuropeanIndustrialInitiative 54 6.2 Upcomingchallenges 56

7 StrategicResearchAgenda 59

7.1Objective1:Increaseefficiencyandreducegeneration,operationandmaintenancecosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

7.1.1 Cross-cuttingIssues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 7.1.1.1 Mirrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 7.1.1.2 Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 7.1.1.3 Heattransferfluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 7.1.1.4 Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 7.1.1.5 Controlandoperationtools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

7.1.2 ParabolicTroughCollectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 7.1.2.1 Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 7.1.2.2 Heattransferfluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 7.1.2.3 Systemcomponentswithenhancedproperties. . . . . . . . . . . . . . . . . . . . . . .68 7.1.2.4 Systemsize,componentmanufacturingandotherimprovements. . . . . . . . . . .69 7.1.2.5 Controlandoperationstrategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

IndeX

Page 5: ESTELA Strategic Research Agenda 2020-2025

5december 2012

Inde

x

7.1.3 CentralReceivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 7.1.3.1 Heliostatfield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 7.1.3.2 Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 7.1.3.3 Heattransferfluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 7.1.3.4 Newconversioncyclesandsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 7.1.4 LinearFresnelReflectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 7.1.4.1 Mirrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 7.1.4.2 Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 7.1.4.3 Heattransferfluids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 7.1.4.4 Controlandoperationstrategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 7.1.4.5 Fielddesignandconfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 7.1.5 ParabolicDishes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.1.5.1 Stirlingengine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.1.5.2 Gasturbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 7.1.5.3 Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 7.1.5.4 Dispatchability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 7.1.5.5 Systemcomponentswithenhancedmaterialproperties. . . . . . . . . . . . . . . . .83 7.1.5.6 Controlsandoperationissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

7.2Objective2:Improvedispatchability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 7.2.1 Hybridisationandintegrationsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . .86 7.2.1.1 Integrationwithlargesteamplants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 7.2.1.2 Integrationwithgasturbineandcombinedcycleplants. . . . . . . . . . . . . . . . .87 7.2.1.3 Integrationwithbiomassplants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 7.2.1.4 Hybridisationforthedirectsystemsusingthesamemoltensaltmixture

asHTFandHSM(heatstoragemedium) . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.2.2 Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 7.2.2.1 Storagedesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 7.2.2.2 Storageoptimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 7.2.2.3 Newstorageconcepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.2.2.4 Storageasenergyintegrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.2.3 Forecastingtools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 7.2.3.1 Operationstrategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 7.2.3.2 Solarresourceassessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

7.3Objective3:Improveenvironmentalprofile. . . . . . . . . . . . . . . . . . . . . . . . . . . .97 7.3.1 Heattransferfluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 7.3.1.1 Heattransferfluidsvsenvironmentimpact. . . . . . . . . . . . . . . . . . . . . . . . . .97 7.3.1.2 Heattransferfluidcharacteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 7.3.1.3 Leakageconsequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 7.3.2 Reductionofwaterconsumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 7.3.2.1 Improvedcoolingsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 7.3.2.2 Desalination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 7.3.2.3 Solutionsfordesertlocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Conclusion 104

Bibliography 105

IndexFiguresandTables 106

ANNEXI:KeyPerformanceIndicators 108

ANNEXII:PastandpresentEU-fundedprojects 110

ANNEXIII:Heattransferfluidsvs.environmentalcomponents 111

Notes 112

Page 6: ESTELA Strategic Research Agenda 2020-2025

hePresidentandtheSecretaryGeneraloftheEuropeanSolarThermalElectricityAssociationwouldliketotakethisopportunitytoexpressourdeepappreciationtotheauthorsandothercollaboratorsfortheirexcellentworkanddedicationprovidedbyallofthem.Withouttheirsupportthishugeprojectwouldnothavebeenaccomplished.

Weexpressourdeepestgratitude to the followingpeople for theirdevoted time,valuablecontributionandanalyticalandtechnicalsupporttothispublication:ManuelBlanco,ManuelCollaresPereira,FabrizioFabrizi,GillesFlamant,GuglielmoLiberati,HansMueller-Steinhagen,RobertPitz-Paal,WernerPlatzer,ManuelSilvaandEduardoZarza.AllofthemarethemembersofESTELA’sScientificandTechnicalCommitteethathavetakenonboardthetasksofelaboratingthefirstresearchagendaforsolarthermalelectricity.

WewouldliketothankourstaffandinternofESTELA,FernandoAdán,ElenaDufour,StefanEckhoff,MicaelaFernández,JanisLeung,JoséMartínez-Fresneda,for theirexcellentcollaborationtoboththeauthorsandtheAssociationinmakingthisprojectasuccessfulone.

Inaddition,aspecialthanktoJoséMartinwhohasbeenour“PierredeRosette”forhisengagementinmakingacomprehensivedocument.

FinallywewouldliketothankthesuccessivemembersoftheExecutiveCommitteeofthelasttwoyears-NikolausBenz,EduardoGarcía,MichaelGeyer,HennerGladen,CayetanoHernández,LeonardoMerlo,JoséAlfonsoNebrera,JoséManuelNieto,MarcoSimiano,ShmuelFledel-andtheMembersofESTELAforsupportingtheinitiativethatweproposedaboutoneyearandahalfago.WehopewewillhavetheirsupportforthenexteditionoftheStrategicResearchAgenda.

Dr.LuisCrepo MariàngelsPérezLatorrePresidentofESTELA Secretary-General

AcknOwLedgmenTS

6 STrATegIc reSeArcH AgendA 2020-2025

Ack

now

ledg

men

ts

Page 7: ESTELA Strategic Research Agenda 2020-2025

december 2012 7

enewableenergy isakeycomponentof thefutureenergysupplyasacknowledgedintheEU2050EnergyRoadmap.TheEUhaspursuedasustainedsupportfortheintroductionofrenewable

energiesintheenergymixbecauseoftheirimportancefor reducing thecarbon footprintof theeconomy, forimproving thesecurityof theenergysupplyand forpromoting theregionaleconomicandsocialdevelop-ment.Moreandbetterresearchanddevelopmentcanhelpovercometwomajorobstaclestothewideruptakeofsomepromisingrenewables,whicharetheirhighercostsandintermittency.

ConcentratingSolarPower(CSP)hasthepotentialtosupplysubstantialquantitiesofrenewableenergyinEuropeandabroad.Europe'sleadingpositionworldwideonmanykeytechnologicalcomponentsofCSPandthereadinessoftheEuropeanstakeholderstoworktogetherinviewofspeedingupthecommercialisationofthistechnologyledtothelaunchoftheSolarEuropeIndustrialInitiativeundertheStrategicEnergyTechnologyPlan.

DGResearchand Innovationwelcomes thisStrategicResearchAgenda,whichprovidesavisionforthedevel-opmentofthesectorintheyearstocomeandhighlightsprioritiesandareasforcooperation.ThisdocumentwillbeofusetothesectortocontributetothediscussionontheforthcomingFrameworkProgrammeforResearchandInnovation -Horizon2020.Mywish is for thesectortocontinueconsolidatingitspositionthroughindustrialandresearchcollaborations,notablyatEuropeanlevel.

Robert-JanSmitsDirector-GeneralforResearch&InnovationEuropeanCommission

Pre

face

PreFAce

Page 8: ESTELA Strategic Research Agenda 2020-2025

8 STrATegIc reSeArcH AgendA 2020-2025

glo

ssa

ry

AENOR SpanishAssociationforNormalisationandCertification

AEN/CTN SpanishAssociationforNormalisation/TechnicalCommitteeforNormalisation

AHS AuxiliaryHeatingSystem

ARENA AustralianRenewableEnergyAgency

ASME AmericanSocietyofMechanicalEngineers

CAES CompressedAirEnergyStorage

CAPEX CapitalExpenditure

CENER NationalRenewableEnergyCentreofSpain

CIEMAT CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas

CLFR CompactLinearFresnelReflector

CNRS FrenchNationalCentreforScientificResearch

CR CentralReceiver

CSP ConcentratedSolarPower

DNI DirectNormalIrradiation

DKE GermanCommissionforElectrical,Electronic&InformationTechnologies

DSG DirectSteamGeneration

EC EuropeanCommission

ECMWF EuropeanCentreforMedium-RangeWeatherForecasts

EERA EuropeanEnergyResearchAlliance

EIB EuropeanInvestmentBank

EII EuropeanIndustrialInitiative

ENEA ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment

EPC EngineeringProcurementConstruction

ERANET EuropeanResearchAreaNetwork

ESFRI EuropeanStrategyForumonResearchInfrastructure

ESTELA EuropeanSolarThermalElectricityAssociation

EU-Solaris EuropeanSolarResearchInfrastructureforCSP

EU EuropeanUnion

FiT Feed-in-Tariff

FP7 SeventhFrameworkProgramme

GDP GrossDomesticProduct

GUISMO GuidelinesCSPPerformanceModelling

GWh Gigawatthour

HCE HeatCollectionElement

HDH Humidification-Dehumidification

HSM HeatStorageMedium

HTF HeatTransferFluid

HVDC HighVoltageDirectCurrent

ISCC IntegratedSolarCombined-Cycle

IEC/TC InternationalElectro-technicalCommission/TechnicalCommittee

gLOSSArY

Page 9: ESTELA Strategic Research Agenda 2020-2025

9december 2012

KPI KeyPerformanceIndicator

kWp Kilowattpeak

LCOE LevelisedCostofElectricity

LF LinearFresnelReflector

LWC LevelisedWaterCost

MBE MeanBiasError

MD MembraneDistillation

MED Multi-EffectDistillation

MENA MiddleEastandNorthAfrica

MoU MemorandumofUnderstanding

MSH MoltenSaltHeater

MS MoltenSalt

MSP MediterraneanSolarPlan

MTBF MeanTimeBetweenFailure

MWe Megawattofelectricity

MWth MegawattofThermalEnergy

NER300 NewEntrantReserve300

NREAP NationalRenewableEnergyActionPlan

NWP NumericalWeatherPrediction

OHL OverHeadLines

O&M OperationandMaintenance

OPEX OperatingExpenditure

OPTS OptimisationofaThermalEnergyStorageSystemwithIntegratedSteamGenerator

ORC OrganicRankineCycle

PCM PhaseChangeMaterial

PD ParabolicDish

PPA PowerPurchaseAgreement

PT ParabolicTrough

PV Photovoltaic

R&D ResearchandDevelopment

REFIT RenewableEnergyFeed-In-Tariff

RES RenewableEnergySources

RMSE RootMeanSquareError

RO ReverseOsmosis

SEGS SolarEnergyGeneratingSystems

SETIS InformationSystemfortheEuropeanStrategicEnergyTechnologyPlan

SET-Plan StrategicEnergyTechnologyPlan

SEII SolarEuropeanIndustrialInitiative

SFERA SolarFacilitiesfortheEuropeanResearchArea

SolarPACES SolarPowerAndChemicalEnergySystems

STE SolarThermalElectricity

TES ThermalEnergyStorage

wt% PercentinWeight

glo

ssa

ry

Page 10: ESTELA Strategic Research Agenda 2020-2025

10

The

euro

pean

Sol

ar T

herm

al e

lect

rici

ty A

ssoc

iati

on (

eSTe

LA)

STrATegIc reSeArcH AgendA 2020-2025

STELAisanassociationcreatedbytheEuropeanindustrytosupporttheemergingEuropeansolarthermalelectricityindustryforthegenerationofgreenpowerinEuropeandotherregions,particularlytheMediter-raneanandNorthAfricanregion.

ESTELAinvolvesandisopentoallmainactorsinEurope:promoters,developers,manufacturers,utilities,engi-neeringcompaniesandresearchinstitutions.

OneofthemainactivitiesofESTELAanditsmembersistocollaboratewithinstitutionsintheEuropeanUnion(EU)todevelopsolarthermalelectricitygenerationanditssupportingindustryacrossEurope.

Anothercoreactivityinclosecollaborationwithacademiaistoproduceandcoordinatestudiesonscientific,technical,economic,legalorpolicyissuestofurtherdevelopsolarthermalelectricitytechnologies.

Finally,ESTELAconsidersofparamountimportancetoraiseawarenessbydisseminatinginformationaboutsolarthermalelectricityandtheEuropeanAssociationbyorganisingmeetings,workshops,conferencesandothereventstopromotesolarthermalelectricity.

TheemergingindustryofsolarthermalelectricityhasstrongEuropeanroots.Itisgrowingtoagreatextentduetothetechnicalandeconomicsuccessofthefirstprojectsandtothestablegreenpricingorsupportmechanismstobridgetheinitialgapintheelectricitycosts–mechanismssuchasfeed-intariffs(FiT).FuturegrowthwilldependonasuccessfulcostsreductionandastrongeffortinR&Dtorealisethegreatexistingpotentialfortechnicalimprovement.Inthelong-term,itisenvisionedthatnewmarketsandmarketopportunitieswillappear:aparticularlyexcitingpossibilityisthegenerationofsolarthermalpowerintheMediterraneanregionanditstransmissiontootherpartsofEurope.

ESTELAmemberswillensurethesolarthermalelectricityindustrycontributiontotheachievementofrenewableenergyobjectivesby2020,providedthatthenecessarymeasuresaretakenbothinthemarketandinresearchtosupporttheeffortsoftheindustry.

ESTELAmembersbelievethattheEU,intheshortandmedium-term,shouldinstalldemand-pullinstrumentsandpromotesupportmechanismssuchasfeed-in-lawsasthemostpowerfulinstrumentstofurthersolarthermalelectricitygenerationgoals.Inthelongterm,theEuropeantransmissiongridshouldbeopenedtobringsolarelectricityfromNorthAfricaandregionalagreementsshouldbeimplementedtosecurethisreliablepowerimport.

Theworld’s“SunBelt”,thatextendsfromaboutlatitudes35Northto35Southandborderareas,receivesseveralthousandtimestheenergyneededtomeettheworld’senergydemand.Thisresourceisnotbeingcurrentlyexploited.Atthesametime,dramaticchangesaretobeimplementedinthecurrentenergysystemstomitigatetheirnegativeimpactontheenvironmentandontheworld’sclimate.AlargepartoftheenormousenergyresourceavailableintheSunBeltcouldbeharnessedthroughsolarthermaltechnologies,conveyedandusedinasustainableway.

THe eurOPeAn SOLAr THermAL eLecTrIcITY ASSOcIATIOn (eSTeLA)

The objectives of ESTELA are:

n To promote high and mid temperature solar tech-nologies for the production of thermal electricity to move towards sustainable energy systems;

n To promote thermal electricity in Europe at policy and administrative levels (local, regional, national and European);

n To support EU’s action in favour of European industry development and to contribute to reach the Union’s energy objectives and its main renewable energy targets;

n To support research and innovation, including vocational training, and favouring equal op-portunities for all;

n To promote excellence in the planning, design, construction and operation of thermal electric-ity plants;

n To promote thermal electricity internationally, mainly in the Mediterranean area and in de-veloping countries;

n To cooperate at the international level to combat climate change;

n To represent the solar thermal electricity sector in Europe and the world.

Page 11: ESTELA Strategic Research Agenda 2020-2025

11

The

Scie

ntifi

c an

d Te

chni

cal c

omm

itte

e

december 2012

inceitscreationin2007,ESTELAhasdevelopeditsscientificandtechnicalactivitiesinsupportofresearchandinnovation.Ithasestablishedguidingprioritiesfortheshortandlong-termeffortstofosterthemarketpenetra-tionofsolarthermalpowerplantsandtoconsolidatethegloballeadershippositionoftheEuropeanindustry.

Tocreateaninnovationstrategy,ESTELAhastakenadvantageofhavingamongitsmembersthemainresearchinstitutionsactiveinthisfieldinEurope.

InSeptember2011,ESTELAsteppedupitseffortsbycreatingtheScientificandTechnicalCommitteetohelptheAssociationbuildaStrategicResearchAgendafor2020andbeyond.Thisistherightmomenttostrengthentheseeffortsfortwomainreasons.First,theeconomicandfinancialcrisiscallsformoreinnovationandforamid-andlong-termvision.Second,ESTELA’smissionistocontributetotheEU’sdebateontheprogrammestosupportresearch,demonstrationandinnovationintheframeworkofthefinancialperspectivesfortheperiod2014-2020.

TheScientificandTechnicalCommitteehastenmembers,eightofthemfrominstitutionswhicharemembersofESTELA,andtwofromuniversities:

n Dr.GuglielmoLiberati(Coordinator):ESTELA,Italyn Dr.ManuelBlanco:CENER,Spainn Prof.ManuelCollaresPereira:ÉvoraUniversity,Portugaln Dr.FabrizioFabrizi:ENEA,Italyn Dr.GillesFlamant:CNRS,Francen Prof.HansMüller-Steinhagen:DresdenUniversity,Germanyn Prof.RobertPitz-Paal:DLRSolarResearchInstitute,Germanyn Dr.WernerPlatzer:FraunhoferISE,Germanyn Dr.ManuelSilvaPérez:SevilleUniversity,Spainn Dr.EduardoZarzaMoya:PlataformaSolardeAlmería,Spain

ThesemembersconstitutewhatcanjustifiablybeconsideredaTeamofExcellence,becausetheyrepresentsomeofthebestscientificknowledgeinthesectorinEuropeandbeyond.

THe ScIenTIFIc And TecHnIcAL cOmmITTee

Page 12: ESTELA Strategic Research Agenda 2020-2025

12 STrATegIc reSeArcH AgendA 2020-2025

he totalamountofelectricitygeneratedbySolarThermalElectricity (STE)plantsaround theworld isgrowingsteadily.Morethan1GWhavebeenconnectedtothegridinSouthernEuropeinthepastfewyears,andthisfigureisexpectedtogrowtomorethan2GWbytheendof2012.Operatingexperiencehasledtoreductionsincostsandrisk,andplantsgeneratinganother1GWarenowunder

constructioninNorthAmerica,Africa,AsiaandAustralia.TheEuropeanindustryhasastrongpresenceinmanyofthoseprojects,andtheRenewableEnergySources(RES)DirectiveopensthewayforevenmoreopportunitiesinSouthernEuropeandintheMiddleEastandNorthAfrica(MENA)region.

Generatingtheelectricitythattheworldneedswithoutreleasingadditionalgasesisnowtechnicallypossible,andthecharacteristicsofSTEplantsmakethemanessentialpartofaneffectiverenewableportfolio.Dispatchabilityisamajoradvantageoftheseplants,andthischaracteristicmaymakeitpossibleforautilitytoaccommodateanevenlargeramountofotherintermittenttechnologies.

STEtechnologieshaveahugepotentialandresearchanddevelopment(R&D)isessentialtoimprovethecompe-tivenessofthecurrentdesigns.Animportantpushmustbegiventospecifictechnologydevelopmentactivitiesandtosupportinnovativedemonstrationplantsofcommercialsizeinordertocontributetolowergenerationcostsandtoenhancethebankabilityoftheprojects.

Theregulatoryconditionsfor implementingSTEplants, includingtheRESDirectiveandtheFeed-in-Tariff (FiT)systemsinsomeEuropeancountries,particularlySpain,havebeenthedrivingforceforthedeploymentofthefirstgenerationofSTEplants.Duetotheexpectedcostreductionsthroughtechnologicaladvancementandmassproduction,thetechnologywillprobablynolongerdependonsuchsupportinafewyears,whenitwillbecomecompetitivewithelectricitygenerationusingfossilfuels.

ThisStrategicResearchAgendahasbeenelaboratedbytheEuropeanSolarThermalElectricityIndustryAssocia-tioninordertoalignR&Deffortswiththesupportofthepublicadministrations,includingtheEuropeanUnion.

WehavedecidedtobeinclusiveandtheStrategicResearchAgendacoversthefourbroadcategoriesthatuptonowhavebeenproposedforthethermalconversionofsolarenergybythescientists.Tovaryingdegrees,theyhavebeenthesubjectofconsiderableinterestanddevelopmentandarealreadymakingsmallbutmeaningfulcontributionstosatisfyingelectricityneedsinmanyregionsoftheworld.Itispossiblethatadvancesinotherfields(materialsandcontrols,tonametwo)maycreatetheconditionswhereotherthermalconversiontechnolo-gieswillbeconceived.Thereisnowaytoknowwhat,ifany,approachmaysomedayrevolutionisethefield,but,thekindofresearchanddevelopmentsuggestedinthisreportisthebestwaytofosterinnovationandopenpossibilitiesastheclockticksfortheinhabitantsofourplanettofindasustainablepath.

WehopethisStrategicResearchAgendawillcontributetoacoherentdevelopmentofthesectorandtoamoreefficientallocationofR&Dresourceswiththefinalgoalofreachingcompetitivenessassoonaspossible.

Page 13: ESTELA Strategic Research Agenda 2020-2025

exec

utiv

e su

mm

ary

heStrategicResearchAgendaisthefirst-of-its-kindfortheSolarThermalElectricity(STE)technology.DraftedbyhighlyqualifiedexpertresearchersinEuropecomposingESTELA’sScientificandTechnicalCommittee,itsetsasolidbasisforpresentandfutureresearchuntil2025.

Uncertaintydetersmarketpenetrationforanytechnology.ThediversityofviabletechnicalapproachesforsolarthermalenergyconversionisoneofthegreatadvantagesofSTE,becausedifferentoptionshavethepotentialtoaddressdifferentneedsandmarketnichesmosteffectively.Diversityalsoposeschallenges,becausethereissomeuncertaintyassociatedwitheachoption.Uncertaintyderivesfrommanysources,fromweathertothechangingpoliticalandeconomicenvironment.Anothersourcearisesfromtechnologyitself,andfromtheexpectationoffuturetechnologicaladvances.Fortunately,supportforresearchanddevelopmentisaneffectivetooltolowerthisuncertainty,andgovernmentsandconsortiacanwieldthistoolmosteffectively.

Itisthegoalofthisdocumenttoassistdecisionmakersbyprovidingareviewofthecurrenteconomic,financialandtechnologicaltrendsoftheSTEsectoraswellastheexistingpolicyandlegalframeworkindifferentcountrieswithintheEU.Thesearedescribedinchapters1to6.Thedetailedresearchtopicsandrelatedtargetsforeachtechnologyconstitutechapter7.ThetopicsarebasedonthreemainobjectivesdefinedbytheSTEindustry.

eXecuTIVe SummArY

1- General overview 2- Technical aspects STE-SEII SET-Plan

n Historyn Industryoverviewandrelated

economicaspectsn Policyoverviewn State-of-the-artofSTEtechnologiesn STEmainchallengesoninnovation

n Cross-cuttingissuesn ParabolicTroughcollectorsn CentralReceivern LinearFresnelreflectorsn ParabolicDishes

Objective 1: Increase efficiency and reduce costs

n Hybridisationandintegrationsystems

n Storagen Optimisedispatchability

Objective 2: Improve dispatchability

n Environmentprofile Objective 3: Improve environmental profile

Economic and political trendsGlobalwarmingandeconomicgrowtharemajorcurrent issuesworldwide.STE technologiescancontributesignificantlytomitigatetheimpactofelectricityproductionontheglobaltemperatureincreaseandtoreachamuchmorebalancedsituationregardingavailabilityofaffordablepowerinindustrialisedanddevelopingcountriesthanitisthecasetoday.

Acarbon-freegenerationsystemcanonlybeachievedwith renewableanddispatchable technologies,andSTEplantsarethealternativewiththelargestpotentialamongstallrenewableenergysystems.Atthesametime,STEplantsaddthelargestadditionallocalvalue,evenforthefirstplantinarow.ThisfactwillbeakeydriverforpolicydecisionsinfavourofSTEplantsinmanycountries.

ThatiswhySTEisanadvantageoustechnologywhichhelpstopavethewayoutoftheeconomiccrisisintheSouthernEuropeancountries.BecauseoftheleadingpositionoftheEuropeanindustry,thisrepresentsahistoricopportunitytocreatepartnershipsandcreatebusinessthroughouttheworld,andparticularlyintheneighbouringMENAregion.

Bymid-2012,thetotalelectricpowergeneratedbySTEplantsintheworldhasreached2GW;plantsgenerating3GWarecurrentlyunderconstruction.ThemajorityoftheseplantsaresitedinSpainandintheUnitedStates.Interestgrowsintherestoftheworld,asnewprojectsarebeinglaunchedinNorthAfrica,India,ChinaandSouthAfrica.Plantsgenerating10GWcanbeexpectedtobeinplaceworldwideby2015.

13december 2012

Page 14: ESTELA Strategic Research Agenda 2020-2025

14 STrATegIc reSeArcH AgendA 2020-2025

exec

utiv

e su

mm

ary

InEurope,thecompulsorytargetsestablishedonJune30,2010throughtheNationalRenewableEnergyActionPlans(NREAP)for2020includetheuseofsolarthermalelectricityforthesunniestEuropeancountries.

Country Cyprus France Greece Italy Portugal Spain TotalNREAPtargetsfor2020 75MW 540MW 250MW 600MW 500MW 5,079MW 7,044MW

Regardingnationalsubsidies,thesituationinEuropeiscurrentlyuncertainduetotheeconomiccrisis,andnewmeasuresarebeingtakenatthenationalleveltoleverageinvestmentinitiativesforrenewableprojects.Atthemoment,forsolarthermalelectricity,theFeed-in-Tariffisaround0.30c€/kWh,dependingonthecountryandtheplantparameters.

TheSTEindustrycreatesmanyjobs.InSpain,inparticular,thenumberofjobsrelatedtoSTEhasmorethandoubledbetween2008and2010.ThissuggestsaverypromisingfutureforjobscreationfromtheplannedSTEprojects.

Thelevelisedcostofelectricity(LCOE)isthemaineconomicparametertocomparedifferentrenewabletechnologies.Thisfiguredependsontheratiobetweenallcostsandelectricitygeneration,anditreliesonthedirectnormalirradiation(DNI)foragivenarea(InSpain,theDNIreachesupto2,100kWh/m2).AlowerLCOEisexpectedinthenextfewyearsbecauseofforthcomingtechnologicalimprovements.

TheEuropeanresearchpolicycontextissetbytheCommonFrameworkProgrammeforResearchandInnovationfortheperiod2014-2020,knownas‘Horizon2020’.TheProgrammeplacesagreatemphasisonrenewableenergiesandfirst-of-a-kinddemonstrationplants.ItalsoincludestheStrategicEnergyTechnologyPlan(SET-Plan)anditsindustrialinitiatives,aninstrumentespeciallyfocusedonthedevelopmentoflowcarbontechnologies.Inparallel,theexpansionofthegridandtheimplementationoftheinter-continental‘electricityhighways’areunderway.

Standardisation:StandardsforSTEtechnologyarecrucialforacceleratingcostreduction.Manyeffortshavebeenmadetowardsstandardisation,butmuchimprovementisstillneeded.TheEN12975standardforsolarconcentratorsisnowapartoftheISO9806standard,currentlyunderrevision.Workinggroupshavebeencreatedinthelastyears,particularlyintheframeofSolarPACES,andfurtherguidelinesareexpectedtobereleasedin2012and2013.

Standardsmustevolvetowardsacommonframeworkandeffortsneedtobeintensifiedinthefollowingfields:qualification,certification,testingprocedures,componentsandsystemsdurabilitytesting,commissioningproce-dures,model-basedresultsandsolarfieldmodeling.

Objective 1: Increase efficiency and reduce generation, operation and maintenance costsThedifferenttargetstoreachthefirstobjective(‘Improveefficiencyandreducecosts’)arelistedforeachtechnologyintheschemesonnextpage.However,cross-cuttingissuesexistbetweenthedifferenttechnologiesandneedtobetakenintoconsideration.Thetransversalresearchtopicstobeinvestigatedare:

MirrorsLight reflectives surfaces

Antisoiling coatingsHigh reflective

HEAT TrAnsfEr fluidsLow melting temperature mixtures

Pressurised gasesDirect steam generation with high

pressure absorber tubesHigh working temperatures

OTHERSSelective coating receivers

with better optical propertiesNew storage concept

Improve control, prediction and operation tools

Page 15: ESTELA Strategic Research Agenda 2020-2025

15december 2012

Schemes listing the different investigation topics for each typical technology plant

exec

utiv

e su

mm

ary

PARABOLIC TROUGH COLLECTORSResearch topics to be investigated to reach objective 1 for parabolic trough collectors

COLLECTORS-Scale-upeffect-Bettercollectordesignandmanufacture-Bettersolarfieldcontrol-Autonomousdriveunitsandlocalcontrols(wireless)

RECEIVERTUBES-Betteroptimalstabilityoftheselectivecoatings-Designswithvacuum,withoutweldsorwithoutlowerH2permeation

-Cheaperinterconnectingelements

HEATTRANSFERFLUID-Useofcompressedgases(CO2,N2,air…)

-Directsteamgeneration-Moltensalt+auxiliaryheating

CENTRAL RECEIVERSResearch topics to be investigated to reach objective 1 for central receivers

NEWCONVERSIONCYCLESANDSYSTEMS-Braytoncycles-Combinedcyclesandsupercriticalsteamcycles

-Hybridisationwithbiomass-Secondaryconcentrators

HEATTRANSFERFLUID-Moltensaltforsupercriticalsteamcycles

-AirandCO2asprimaryfluids-Directsuperheatedsteam-Particlereceiversystems

HELIOSTATFIELD-Multiplesmalltowersconfiguration-Reliablewirelessheliostatcontrolsystems

-Optimisedheliostatfield-Improvedrivemechanisms-Autonomousdriveunitsandlocalcontrols(wireless)

RECEIVER-Advancedhightemperaturereceiver(directabsorption)-Newengineeredmaterials(ceramictubes)

LINEAR FRESNEL REFLECTORSResearch topics to be investigated to reach objective 1 for linear Fresnel reflectors

HEATTRANSFERFLUID-Super-heateddirectsteamgeneration-Moltensaltsonly-PressurisedCO2orairinnon-evacuatedreceivers

RECEIVERS-Evacuatedtubularreceivers-Newgenerationofnon-evacuatedtubularreceivers

MIRRORS-Secondstageconcentration-Thinfilmsoncurvedsupportsurfaces

CONTROLANDDESIGN-Bettertrackingoptions-HybridisationoftowerandFresneltechnologies

Page 16: ESTELA Strategic Research Agenda 2020-2025

16 STrATegIc reSeArcH AgendA 2020-2025

Objective 2: Improve dispatchabilityDispatchabilityisoneofthecharacteristicsthatmakesSTEafavoredoptionamongotherrenewableresources,and“Improvingdispatchability”isevenmoreisamostobjectiveforSTEdevelopment.Indeed,systemswiththeflexibilitytofeedthegridondemandarethekeyforsolarthermalelectricitytoreachitspotential.Althoughmanyplantsarealreadybuiltwithastoragesystem,moreeffortsneedtobedone.

Integration systems:The integration of solar heat in large steam plantscanbeachievedthroughthewaterpreheatinglineorthroughtheboilersteam/watercircuit.Inthefirstcase,anappropriateboilerdesignisrequiredtodealwithtemperaturedifferences.Iftheintegrationisdonewiththeboiler,animprovementofitsdesignandcontrolsystemisneeded.

The integration of solar heat with gas turbine or combined cycle plants isalsoanoption.Withagasturbine,the temperatureof theaircanbeincreasedinhigh temperaturesolarcollectors, leadingtohighconversionefficiencies.Theabilitytohandletransientphasesrequiresanimprovementofthedesignofthecontrolsystem.

The integration of solar heat with biomass, moreappropriateforsmallsizedfacilities,isagoodcombinationforanall-renewablefuelledplant.Althoughthecombustionofbiomassisnoteasy,itispossibletouseorganicfluidthermodynamiccycles(ORC),whichsimplifyoperationwhileincreasingtheoverallefficiency.

Storage:DependingontheHTF(HeatTransferFluid),differentdesignscanbesetup:

If the HTF is thermal oil,asinglestoragetankwithgoodtemperaturestratificationinsteadofatwotankconfigu-rationcangreatlysimplifystorage.Asingletankcanalsobeoptimisedbyasolidseparationbetweentheheatexchangerandthestoragematerial.

If the HTF is molten salts, noexchangerisneededbetweenthesolarfieldandthestoragecircuit.Newsaltmixtureswithlowerfreezingpointandwhichavoidcorrosionproblemsaretheresearchanddevelopmentgoalsforthistopic.

If the HTF is steam,noexchangerisneededbeforethepowerblock.Solid/liquidphasechangematerialsappliedforsaturatedsteamaretobeinvestigated.

If the HTF is gas,veryhightemperatureapplicationsarefeasible.Thechallengesarehowtodesigneffectiveheattransfersystemsandtofindsuitablestoragematerials.

Ingeneral,improvedstrategiesforcharginganddischargingthermalheatarenecessarytomaximisestoragecapacity.Conceptsforthermo-chemicalenergystoragesystemsarealsotobeinvestigated.

exec

utiv

e su

mm

ary

PARABOLIC DISHESResearch topics to be investigated to reach objective 1 for parabolic dishes

GASTURBINES-Hybridisationwithnaturalgasorbiogas

-CombinationofdishturbinewithCAESsystems

RECEIVERS-Refluxreceiversagainstthelowerthermalinertia

SYSTEMCOMPONENTS-Synergieswithcarmanufacturingindustry-Improvedtrackingsystem

DISPATCHABILITY-Electromechanicalandthermalstorage-Alternativeenergysource(biomass)inthereceiver

STIRLINGENGINE-KinematicengineoLesscomponentfailuresoLessH2leakageoMassproduction-FreepistonengineoBettercontrolanddesignoflinear

generator

Page 17: ESTELA Strategic Research Agenda 2020-2025

17december 2012

HTF VERSUS TECHNICAL, ENVIRONMENTAL AND ECONOMIC CHARACTERISTICS

Improve forecasting:Goodforecastsareessentialforreliableestimatesofthecostsofaplantinagivensite.Manysolutionscanbeenvisioned,suchaselaboratingaveryshorttermforecastforvariableskyconditions,developinganelectricityforecastingsystemsoftwaretoregulateandmanageelectricityproduction,improvinggroundbasedDNImeasure-ments,usingmeteorologicalsatelliteresults,andimprovingnumericalweatherpredictionmodelsforDNIforecasting,analysingitsinter-annualvariabilityandthetimeandspacecorrelationbetweensolarandwindenergysources.

Objective 3: Improve environmental profileHeat transfer fluidsareofconcernbecauseoftheirpotentialimpactontheenvironment:thepollutionfromsyntheticoilisoneofthemostworrying.Theenvironmentalandeconomicparametersofdifferentfluidshavebeenstudied.

Desalination isavery interestingapplicationofsolar thermalenergy.Despite thedrawbacks related to therequirementsforsiting,desalinationpresentssignificanttechnicalandeconomicadvantages.Thereareseveraltechnicalsolutions,suchasmulti-effectdistillation,reverseosmosis,humidification-dehumidificationprocessandmembranedistillation.Thedesalinationsystemcanalsobe thecoolerpartof theconventionalpowerblock.Thus,theoptimisationoftheintegratedorcombinedcoolingprocessneedstobeconsideredasaresearchtopic.

Conclusion:Thenumerousinvestigationsunderwayafterthecreationofresearchprojectsconsortiaatdifferentlevels(local,national, international)haveopenedthewayfor theSTEsector toachievegreat technological improvementsandlowergenerationcosts.Despitethepresentcircumstancesaffectingnationallegislativeframeworksandthechangingsupportschemes,manyeffortsarebeingmadeattheEuropeanleveltostabiliseandharmonisethemarketandtoachievecompetitiveness.

ThesetofKeyPerformanceIndicators(KPI)elaboratedbyESTELA’sScientificandTechnicalCommittee(ANNEXI)liststhemostimportantparameterstobetakenintoconsiderationfortheassessmentofthetechnologyimprove-mentsanddeterminestheprogresstobeachievedby2015andforthetimeframebetween2020and2025.Thelevelisedcostofelectricity(LCOE)isthemaincompetitivenessindicatorandtheestimatedimpactonthiscostfromdifferentexpectedimprovementsisreportedseveraltimesinthedocument,andinparticularinthetableswithineachchapter.

exec

utiv

e su

mm

ary

Soil pollution

Water pollution

Air pollution

Toxicity to human presence

Cost

Freezing temperature

Cost of handlingequipment and system

Upper thermal limit8

10

2

0

4

6

n Thermaloiln Na,K(MS)n Li,Na,K(MS)n Ca,Na,K(MS)n HitechMSwithnitriten CO2

n H2On Na,KMS+nanopn CO2+nanopn H2O+nanop

Page 18: ESTELA Strategic Research Agenda 2020-2025

18 STrATegIc reSeArcH AgendA 2020-2025

Page 19: ESTELA Strategic Research Agenda 2020-2025

19december 2012

HISTOrY

Page 20: ESTELA Strategic Research Agenda 2020-2025

20 STrATegIc reSeArcH AgendA 2020-2025

Hist

ory

1

oncentratedsolarpowerplantsthatusedirectsolarradiationtofeedathermodynamicconversioncyclefortheproductionofelectricitywereintroducedintheearly1980’s.

Thefirstdemonstrationplantsusedmainlyacentralreceiverconfiguration(SolarONE,SSPS-CRS1,CESA1Themis,Eurelios,Nio,Crimea)withahighnumberofheliostatsdirectingthesolarradiation

tothetopofatower.Ataboutthesametime,SSPS-DCS2provedthefeasibilityofproducingelectricitywithaparabolictroughconcept.IssuesonthereceiverdesignandthehighcostoftheheliostatsatthattimeresultedinthechoiceofparabolictroughsystemsforthefirstcommercialscaleplantsinCaliforniain1984.Thistechnologyusedanovelvacuumtypeabsorbertubethatallowedreasonableperformancebutwithaconsiderablylowerconcentrationratiothanthetowerconcept.

From1986until1991,nineplantsofthistypewerebuiltveryclosetooneanotherrapidlyreachingalmost400MWeofinstalledpower.ThoseSEGSplants,locatedinCalifornia,arestilloperatingandgeneratingrevenues,beingthebasisoftheconfidenceofbankswhenfinancingtherecentdeploymentofmorethan2GWinSpain.

Foralongperiodnoothersolarpowerplanthasbeenbuilt.Thiswasmainlyduetotheavailabilityofcheapfossilfuelsandtheconcurrentdevelopmentofthecombinedcycletechnology,whichallowedlowinvestmentcostsandveryhighconversionefficiencies.

AnincreasedinterestonenvironmentalissuesbeganwiththeKyotoprotocolwhichraisedagaintheattentionontheproductionofelectricitywithnoCO2emissions.ThisinternationalcommitmenttriggeredanewriseofR&D,bothinthePVandtheSTEsector.ASpanishlaw,issuedin2004andimprovedin2007,providedareason-ableFiTlevelwhichallowedthefinancingandquickdeploymentofSTEplantsandsuddenlyahighnumberofprojectstookoffwithapipelinesummingupto2,500MWe.Thankstothehighconfidenceforinvestingjustifiedbyitsaccumulatedoperatinglifetime,theparabolictroughtechnologywasthemostsuitableoptionforthissetofplants.Thisledtothedevelopmentoftwo“standard”50MWeparabolictroughsolarplantdesigns,withandwithoutthermalstorage(50MWeisthemaximumplantsizeallowedbytheSpanishlaw).

However,thecentralreceivertechnologyalsoreceivedsomeattention,achievinghigherplantefficienciesathighertemperatures.ThefirstcommercialplantoftheSTSdawnintheworldwasthePS10-towerconceptwithsaturatedsteam-inFebruary2007.Afterwards,thefirstcommercialmoltensaltcentralreceiverplantwasconstructedinSpainin2011with20MWenominalpowerand15hoursofstoragecapacity,whichallowedtheplanttooperate24hoursroundtheclockduringthesummermonths.FollowingSpain,othercountriessetupincentivesforSTE.IntheUnitedStates,thefirstnewplantofthisperiodwascompletedby2007(64MWparabolictroughtypeinNevada).ThenewAmericanlarge(>100MW)projectsunderconstructionarebalancedbetweencentralreceiverandparabolictroughtechnologies.Theprojects‘Ivanpah’and‘Tonopah’arebasedonthetowerconceptandusesuperheatedsteamormoltensaltrespectivelyasprimaryfluidwhile‘Solana’and‘Genesis’usetheparabolictroughconcept.FurtherinitiativesaregoingonincountrieslikeMorocco,ArabEmirates,India,AustraliaandSouthAfrica.PlansfordeployingSTEarealsobeingconsideredinmanyothercountriesintheSun-Belt.

MeanwhileotherpromisingSTEtechnologieswithdistinctfeatures,suchaslinearFresnelreflectorsandparabolicdishes,havebeenstudiedanddemonstratedbymeansofseveralpilotanddemonstrationplants.

1-SmallSolarPowerSystems-CentralReceiverSystem2-SmallSolarPowerSystems-DistributedCollectorSystem

Page 21: ESTELA Strategic Research Agenda 2020-2025

21december 2012

Hist

ory

1

FourtechnologiesarerelevantintheSTEsector,andeachoneofthemhasreachedadifferentstateofdevelop-ment,duemostlytothehistoricalpathwayoutlinedabove:

n ParabolicTrough(PT)n CentralReceiver(CR)n LinearFresnelreflector(LF)n ParabolicDish(PD)

Thedegreeofmaturityanddevelopmentcanbeexpressedintermsof“generations”.

STEcommercialplants,currentlyinoperationorunderadvancedconstructionare“firstgenerationplants”.

The“secondgeneration”ofSTEplantsshouldachievehigherefficiencieswithhigherfluidtemperatures(500°Candabove)andincorporatedesignimprovementstoimprovedispatchabilitybymeansofadvancedstorageandhybridisationtechniques.

The“thirdgeneration”ofplantsisexpectedtobefullycompetitivebydrawingonlessonslearnedandapplyingthebestdesignconceptsandtheuseofveryhightemperaturesandhigherefficiencyconversioncycles.

Page 22: ESTELA Strategic Research Agenda 2020-2025

22 STrATegIc reSeArcH AgendA 2020-2025

Hist

ory

3-Until20154-Until20205-Until2025andbeyond

Thetimewhensuchacostparityisreached,thatis,thepointatwhichelectricityproductioncostsfromsolar-thermalpowerplantsareequaltothecostsforgeneratingpowerfromconventionalplants,dependsonboththespeedofcostreductionandthetrendoffossilfuelprices.Differentscenariosassumethatcostparityforsolar-thermalpowergenerationcanrealisticallybereachedbetween2017and2020.However,insomeregionsoftheplanet,thepeakloadsupplycanalreadybeprovidedbysolar-thermalpowerplantsinacompetitiveway,asindividualcontractsareconcludedwithutilitiesforregionsandtimesofthedaydependingontheneed.

ForthepurposeoftheStrategicResearchAgendaallSTEtechnologiesaretakenintoaccountas,atthisearlystage,thefourtechnologiesshowhighpotentialforcostreductionandefficiencyincrease.

StatusTechnology Generation Present Short term 3 Mid term 4 Long term 5

PT123

CR123

LF123

PD123

nUnderdevelopmentnMature

TABLE1:Technologies maturity for short, mid and long term period

1

Page 23: ESTELA Strategic Research Agenda 2020-2025

THe brILLIAnT FuTure OF SOLAr THermAL eLecTrIcITY PLAnTS

23december 2012

Page 24: ESTELA Strategic Research Agenda 2020-2025

lobalwarmingandeconomicgrowtharethemajorcurrentissuesintheworldbesidesotheronesofpoliticalnature.Fortunately,STEtechnologiescancontributesignificantlytoaddressthesetwoissues,helping tomitigate the impactofelectricitygenerationongreenhouseemissionswhileprovidingapathwayforthesustainableandbalancedgrowthofthesupplyofaffordableelectricityinboth

industrialisedanddevelopingcountries.

Acarbon-freegenerationsystemcanonlybeachievedwithrenewabledispatchabletechnologies,andresourceandtechnologyconsiderationspointtoSTEplantsasthealternativewiththegreatestpotentialtomeettheworld’sgrowingenergyneeds.Theyarealsothealternativewiththelargestfractionofvalueprovidedbylocalsources,evenfortheveryfirstplantbuilt.“Localvalueadded”considerationsmaywellbeakeyfactorinpolicydecisionsinmanycountries.

ThethreemainargumentsforalargedeploymentofSTEplantsare6:

2.1DispatchabilityandothertechnicalfeaturesSolarthermalelectricityplantshaveproventheirreliabilitysincethe80s.Morerecently–since2008–STEplantswithlargethermalstoragesystemshavebeenincommercialoperation,charginganddischargingthosesystemseveryday.

STEplantscanbedesignedandoperatedtobefullydispatchable.Becauseofstorageandthepossibilityofhybridisation,theycaneffectivelyfollowthedemandcurvewithhighcapacityfactorsdeliveringelectricityreliablyandaccordingtoplan.

Duetothelargemechanicalinertiaofitsgenerationequipment–turbine+alternator–STEplantswillhelpinmaintainingthenominalfrequencyofthegridincaseofunexpectedincidences.STEplantswithstoragecanparticipateinancillaryservices.Forexample,ifthereisapotentialforexcessgeneration,thegenerationequip-mentmaybedisconnectedandthecollectedthermalenergystored.

Firmnessanddispatchabilityarethemainadvantagesoverotherintermittentformsofrenewableenergy,suchasPVorwind.Thesetechnologiesrequireadditionalinvestmentsinconventionalpowerplantstobackupgenerationtofollowdemand:inadditiontotheextrainvestmentrequiredandtheimplicationsforresourcesecurity,theywillnotprovideaCO2freegenerationsystem.

2.2MacroeconomicimpactonlocaleconomiesDecisionsconcerningtheelectricalgenerationmixhaveasubstantialinfluenceonacountry’seconomy.FossilfuelimportshaveanegativeimpactondomesticGDP.Asanexample,around80%ofthecostoftheelectricityfromacombinedcycleplantwillgooutofacountrywhichdoesnothavenaturalgasandwhichimportsmostpartoftheplantcomponents.

Amongallrenewableenergies,solarthermalelectricity(STE)standsoutforitshighmacroeconomicimpactontheeconomyofacountryaddingtoitsGDPthroughhighinvestments,fiscalcontributions,fuelimportsreductionandjobcreation,duringboththeconstructionandtheoperationoftheplant.

IntermsoftheFeed-inTariffs(FiTs)thatSTEplantsstillneednow,thepoolpriceinthepowermarketsisreducedaslesssupplyisrequiredfromthemoreexpensiveconventionalplantsthatdeterminethepriceforthewholesystem.Additionally, renewableenergiesprovidestableandknowncosts thatmakeplanning for the futurepossible:uncertaintiesregardingthepriceevolutionoffossilfuelshamperinvestmentdecisions.

6-ESTELAhaspublishedapositionpaperthatpresentsthemainreasonsthatwillboostthedeploymentofSTEplantsallaroundtheworld’sSunBelt.

The

bri

llian

t fu

ture

of

Sola

r Th

erm

al e

lect

rici

ty p

lant

s

2

24 STrATegIc reSeArcH AgendA 2020-2025

Page 25: ESTELA Strategic Research Agenda 2020-2025

25december 2012

The

bri

llian

t fu

ture

of

Sola

r Th

erm

al e

lect

rici

ty p

lant

s2

AnotherpositiveaspectofSTEplantsistheireconomicimpactinjobcreationandinthedevelopmentoflocalmarketsduringplantconstructionandafterwards.Itisestimatedthat,iftheconstructionofSTEplantsisplannedatarhythmofafewhundredMWperyear,theattractedinvestmentsforthelocalfabricationofequipmentwillraisethelocalcontentcertainlyuptoa70%inafewyears.InSpain,approximately400MWhavebeeninstalledperyearsince2008,andin2011alocalcontentof80%hadbeenreached7.The50MWplantswiththermalstorageinstalledinSpainneed2,250“oneyearequivalentjobs”fromtheirdesigntofinalconstruction.Oncerunning,theplantsrequire50personsfortheiroperationandmaintenance.

Taxesfromcompanyprofitsandfromtheaddedin-countryvalue,aswellasthepersonaltaxesfromworkers,willcompensateforthesupporttothedeploymentofSTEplants,andeliminateunemploymentsubsidies.

Inthistimeofeconomiccrisis,incentivesforrenewableenergiesmustnotbeviewedasaloadtotheelectricitysystembutratherasacatalystforeconomicgrowth,industrialdevelopmentandjobcreation;thatsupportalsoopensthewaytosustainability.SupporttothedeploymentofrenewableenergygenerationtechnologiesintheformofadequateandprogressivelydecreasingFiTwillmobiliseprivateinvestmentsinproductiveassets.

7-ForfurtherinformationonSpain’sSTEdataandfigures,pleaserefertotheMacroeconomicStudyoftheSTEsectorin2010elaboratedbyDeloitte:http://www.protermosolar.com/prensa/2011_10_25/Protermo_Solar_21x21_INGLESC.pdf

Page 26: ESTELA Strategic Research Agenda 2020-2025

26 STrATegIc reSeArcH AgendA 2020-2025

The

bri

llian

t fu

ture

of

Sola

r Th

erm

al e

lect

rici

ty p

lant

s

2.3CompetitivenessLastbutnotleast,thecostofSTEplantswillsoondecreasesignificantly:theywillbecomefullycompetitivewithotherconventionalplantsinthenearfuture.

Thesupportthatisnowrequiredwillbelessandlessnecessaryanditwillbenolongerrequiredinafewyears.

Since2007,attractivecostreductionresultshavebeenachievedwithalearningcurveofonly2GWofinstalledcapacity.Asreference,wemaynotethatthecurrentcostofPVprofitedfromalearningcurveof70GW;forWind,fromtheexperienceofaround250GW.

ThecostoftheelectricityproducedbySTEhascomedownfrom28c€/kWhfortheprojectsapprovedinSpainin2009to14c€/kWhforthelatestprojectawardedinMoroccoin2012.

Newplantconcepts,largersizes,improvedcomponentperformanceandscalefactorswillsignificantlycontributetolowerthecosts.Therefore,itisreasonabletosaythatifby2020the30GWthresholdisachieved,STEpowerplantscouldbefeedingdispatchableandpredictableelectricitytothegridat10-12c€/kWh,dependingontheavailableirradiation.Inotherwords,thistechnologywillbecometotallycompetitivewithconventionalpowergenerationinthenearfuture.

Againsttheprospectsofrisingandunpredictablepricesforfossilfuelsandwiththeawarenessoftheweaknessesofnon-dispatchablerenewabletechnologies,thepredictableanddecreasingcostsofSTEwillopenthewaytoasafetransitiontowardsasustainablemodelofelectricitygeneration.

Europehasenoughrenewableenergyresourcestobecomeenergyindependentandtodrasticallycutitsgreen-housegasemissionsinthenearfuture.AEuropeanenergysystemmainlybasedinSolarandWindwithacertaincontributionofHydroandBiomassalongwiththeSupergridisbothfeasibleanddesirable.

Inthenearfuture,dispatchability,jobcreation,theneedtolimitgreenhouseemissionsandthepotentialforcostreductionwillensurethatSTEwillaccountforanimportantshareoftheelectricitygenerationworldwide.ThisiswhySTErepresentssuchagreatopportunitytohelppavethewayoutoftheeconomiccrisisintheSouthernEuropeancountries.ThisisahistoricopportunitytostrengthentheEuropeanbusinesspresenceinthewholeworld;giventhepresentleadingpositionoftheEuropeanindustry,itisalsoanunprecedentedopportunitytocollaboratewithpartnersintheneighboringMENAregionforthebenefitofall.

2

Page 27: ESTELA Strategic Research Agenda 2020-2025

27SePTember 2012 27december 2012

InduSTrY OVerVIew And reLATed ecOnOmIc ASPecTS

Page 28: ESTELA Strategic Research Agenda 2020-2025

28 STrATegIc reSeArcH AgendA 2020-2025

n Operationn Construction/Awardedn Promotionn Estimatedby2020

NorthAmerica

SouthEurope

MENA

SouthAfricaSouthAmerica

India

Australia

China

510

MW

2.5

MW

2.5

MW

1,73

1 M

W

175

MW

9.3

MW

1,31

2 M

W

10 M

W

200

MW

694

MW

290

MW

500

MW

5,00

0 M

W

2,00

0 M

W

3,00

0 M

W 1,00

0 M

W

600

MW

290

MW

150

MW

2,00

0 M

W

2,00

0 M

W

1,00

0 M

W 2,00

0 M

W

160

MW

40 M

W

Source:ESTELAandProtermosolar,October2012

7,00

0 M

W

4,00

0 M

W

10,0

00 M

W

5,00

0 M

W

3,00

0 M

W

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

3

uropeanindustryandtechnologicalcentrescoverthewholevaluechainofSTEplants.Advancedresearchisperformedinhighlyqualifiedlaboratoriesandresearchinstitutions.Europeanpromotersaredevelopingprojectsallaroundtheworld.Europeanmanufacturingcompaniesprovidesolarspecificcomponents,powerblocksandallthenecessarybalanceofplantequipment.PrivateEuropeanfinancinginstitutionsandfunds,along

withtheEuropeanInvestmentBank,havesupportedthefastSTEplantdeploymentinSpain.Technicalandlegalconsultants,O&MserviceprovidersandEuropeanelectricalutilitiescompletetherestofaddedvalueinthissector.

Fromthebasisofthetotaloutputfromplantswhicharealreadyinoperation,significantincreasescanbeexpectedinmajorregionsandcountriesinthenextfewyears.Cumulatively,itisexpectedthatSTEplantswillbegeneratingapproximately10GWofelectricityby2015.For2020,thiscanbecomplementedwithinformationonthecapacityfromnewplantswhichareeitherpartofpresentofficialplansorwhoseimplementationcanbederivedfromreasonableexpectationsbasedoncurrentdevelopment(Figure1).Moreinformationonnationalandregionalmarketsisoutlinedbelow.

FIGURE1:STE estimate installed capacity8(PlannedSTEplantsrefertoeitherofficialplansorreasonableexpectationsaccordingtocurrentdevelopment)

8-Source:Protermosolar

Page 29: ESTELA Strategic Research Agenda 2020-2025

29december 2012

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

3.1Nationalandregionalmarkets

Spain

TheSpecialRegimeforelectricitygenerationfromrenewablesourceswasestablishedinSpainin1998.Never-theless,STEplantsneededtowaituntil2004withtheroyaldecreelawR.D.L436tohavetheappropriateFiTtoallowthepromotionofprojects.TheFiTwassubstantiallyimprovedin2007.WiththeR.D.L661whichreallyboostedthepromotionofnewplants,thebanksfoundmorefavourableconditionstofinancetheprojects.

ThefirstSTEcommercialplantintheworld–afterthelongperiodsincethelastonewascommissionedin1991inCalifornia–wasthePS10inSeville.This11MWplantusedatowerconceptwithsaturatedsteamandsmallpressurisedsteambufferstorage.

Sincethen,thetotalcommissionedpowerreached61MWin2008(includingthefirstEuropeanPTpowerplant,Andasol1),331MWin2009,532MWin2010,999MWin2011and1,925MWin2012.

AccordingtotheroyaldecreelawR.D.L6/2009,60plants–includingtheplantsalreadyinoperation–wereregisteredunderthecurrentFiTframework.Alltheseplants,totalling2,475MWmustbecommissionedbeforetheendof2013inordertoreceivetheformerFiT.Thecurrenttarifffortheseprojects(for2012),whichvarieswiththeannualconsumerpriceratio,is29.89c€/kWh.

Asaresultoftheeasierfinancingconditions,whichtendedtorewardmaturetechnologiesandplantsofacertainscale,94%ofthepowerisgeneratedinplantsbasedonPT,whiletheotherthreeSTEtechnologiesshareonlyaminorpart.

Inadditiontoallregisteredplants,siteandprojectdevelopmentwascarriedoutformorethan10,000MW,insiteswherelandsuitability,accesstothegrid,environmentalconditions,wateravailability,etc.aresuitabletodevelopSTEplants.

TheRenewableEnergyNationalActionPlan(RENAP),submittedbytheSpanishGovernmenttotheEUCommis-sionin2010,foresawatotalinstalledcapacityof5,079MWby2020.InthenewRenewableEnergyPlan,thisfigurewasreducedto4,800MW.

Inaddition,another50MWmoltensalttowerplant,tobeplacedonlineafter2013,hasbeenincludedundertheSTEInnovativeProjectprogramme.Another50MWhybridtowerplant,basedonahybridtowerconcept,hasbeenawardedforfundingundertheNER300scheme.

Earlyin2012,theSpanishGovernmentissuedalaw(R.D.L1/2012)stoppingtheapprovalofanewsetofprojectsuntilacompletereviewofthesituationregardinginstalledpowerontheSpanishelectricalsystemisdone,andanewpathtoreachthe2020targetsisdefined.

PowerplantsResearchfacilities

InteractiveWorldMapofSTEplantsandresearchfacilitiesonESTELA’shomepage:www.estelasolar.eu

3

Page 30: ESTELA Strategic Research Agenda 2020-2025

30 STrATegIc reSeArcH AgendA 2020-2025

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

Italy

AccordingtotheRENAPestablishedinMarch2011,STEplantsareexpectedtoreach600MWby2020,generatingsome1,700GWh,or0.5%oftheelectricityconsumption.

AnewDecree for the renewableenergymixhasbeenreleased in July2012by theMinisterofEconomicDevelopmentincoordinationwiththeMinisterofEnvironment.TheFiTwillbeinforcestartingfromJanuary2013.

TheDecreeregulatesanewincentiveschemeforlargescaleSTEplantsaccordingtotheFiTschedulegivenbelow:

System in which the solar fraction is higher than 85 % 0.32e/kWh-EnergySaleSystem in which the solar fraction is between 50 % and 85 % 0.30e/kWh-EnergySaleSystem in which the solar fraction is below 50 % 0.27e/kWh-EnergySale

ItispossibletoholdtheFiTwithadditionalpublicfinancialcontribution.Inordertobenefitfromtheincentive,twoconditionsmustbemet:anon-pollutingheattransfersystemmustbeused(unlessthesystemissitedinindustrialareas)andinstallationsmustshowtheminimumaccumulationcapacityestablishedbytheDecree.

Incentivesareavailableforuptoamaximumof2.5millionm2ofmirrorsurfaceandagraceperiodof36monthsisgrantedafterthatmaximumoftotalinstalledmirrorsurfaceisreached,toallowconnectingSTEplanttothegridaccessingtotheFiT(thisgraceperiodisstillunderdiscussion).

For small scale STE plants,thenewdecreeregulatesthefollowingupdatedincentivescheme:

System in which the solar fraction is higher than 85 % 0.36e/kWh-EnergySaleSystem in which the solar fraction is between 50 % and 85 % 0.32e/kWh-EnergySaleSystem in which the solar fraction is below 50 % 0.30e/kWh-EnergySale

TheseincentivesapplytoSTEplantswithlessthan2,500m2ofinstalledsolarcollectors.

For all type of STE plants(bothlargeandsmallscale),theincentives,calculatedattheratesgivenabove,areinadditiontotherevenuesfromthesaleofelectricitygeneratedandfedintothenationalgrid.TheFiTwillbereducedby5%forthepowerplantsconnectedtothegridin2016andby10%forthoseconnectedin2017.Theincentiveswillbepaidfor25years.

ThefirstSTEplantusingmoltensaltasHTFisalreadyinoperationinItaly.Itisa5MWplant.Itfeaturesthermalstorageandisbasedonacombinedcycle.ApotentialmarketofhundredsofMWsisexpectedinItalyby2017.

France

AccordingtotheFrenchNREAPapprovedinJune2010,STEplantsareestimatedtoreach540MWofcapacityby2020,generatingsome972GWhperyear),or0.2%oftheelectricityconsumptioninFrance.

A12MWplant,AlbaNova1,wasapprovedbytheFrenchgovernmentinJuly2012.TheplantwillbebuiltinCorsicaandwillcombinelinearFresnelreflectors,directsteamgenerationandthermalstorage.The‘CaissedesDépôtsetConsignations’,theFrenchsovereignwealthfund,isfinanciallysupportingtheproject.Another9MWFresnelconceptinthePyreneesregionhasbeenapprovedaswell.

TheFiTsareingeneralfairlysatisfactoryforthedifferentrenewabletechnologies,exceptforSTE,becauseofthelowDNIlevelsinthecountry.

3

Page 31: ESTELA Strategic Research Agenda 2020-2025

31december 2012

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

Portugal

Portugalhasaveryhighpotentialfortheimplementationofsolarenergytechnologies,giventhehighsolaravail-abilityinthecountry(oneofthehighestinEurope)andtheirverygoodpublicacceptance.

Since2000,thePortuguesegovernmentkeptregulatedtariffsforendconsumersbelowtherealcostofthegener-atedelectricity.A‘tariffdebt’wasthenaccumulatedandfinancedannuallywithaguaranteebythegovernment.However,theshareofthattariffdebtattributabletorenewableenergy(mainlyforwindenergy)hasbeenshown9tobesmall(lessthan15%).FollowingmajorupdatesinFiTschemes,theIberianElectricityMarketMIBELenteredinoperationin2007.Tendersforsolartechnologyplantsbeganin2009,eventhoughsomeconsortiaattemptedatapplyingforSTElicensesasearlyas2007.

The2008crisisledtoariseofinterestrates,aggravatingtheburdenthattheaccumulatedtariffdebtrepresentedtothenationaleconomy.Afterpeakingin2009,theoveralltariffdebtbecameprogressivelysmallerstartingin2010.ThefallofthegovernmentinMay2011wasfollowedbythefinancialbailoutofthecountry.AnMoUwasagreedwiththeEU,andthisalsorequiredareviewofsupportschemesforRES.

In2010theGovernmentissuedlicensesto10STEdemonstrationprojects(twoprojectsof4MWeeachforPT,CRandLFtechnologiesandfourprojectsofupto1.5MWeforPDtechnologies).In2012,becauseoftheuncertaintiessurrounding theenergypolicy for renewableenergies,and inparticular forSTE,noneof theseprojectshadbeenstarted.Infact,someofthelicenseswerelost,afteradeadlinewasestablishedbyDGGE11forconfirmationoftheintentiontoproceed.InMay2012,thegovernmentannouncedregulatorychangesintherulesaffectingtheRES,takingadvantageoftheuncertaintiesinlegislationtochangetheFiTconditions.

InanycasethePortuguesetargetestablishedbytheNREAPforSTEfor2020hasbeenloweredfrom500MWto50MW12.

TheFiTassignmentofnewgridconnectionlicensesforREShasbeensuspendeduntil2014/2015.Inthemean-time,thegovernmentstillsupportsthedevelopmentofongoing,licensedandalreadyassignedprojectsforRES.Mostoftheseprojectsarewindprojects.

Greece

AccordingtotheGreekNREAPapprovedinJune2010,STEplantsareexpectedtoreach250MWby2020,generatingsome714GWh,or1%oftherenewableelectricityconsumption.

GreeceprovidesaFiTof26.5c€/kWh,whichrisesto28.5c€/kWhifatleast2hoursstorageisincorporated.ThisFiTispayablefor20years.

TheNREAPwillbethebasisforaMinisterialDecreethatwillallocate2020installedcapacitytargetstothedifferentRESsectors.Achangeinthesupportmechanismisnotforeseen:itisexpectedthatitwillremainafixedFiT.

Thelawonthe“AccelerationofRESDevelopment”streamlinesadministrativeproceduresandaddresseeslocalbarrierstoRESdeployment.Furthermore,thenewgovernmenthasmergedseveraladministrationsintotheMEECC(MinistryofEnvironmentEnergyandClimateChange)thatnowfunctionsasaone-stop-shopforRESlicensing.WiththePhysicalPlanninglaw(2008),theMEECCgivesprioritytoRESprojectsoverotherlandusesanddeterminesrestrictedaswellaspriorityareasfordevelopment.

OnelargescaledishStirlingpowerplant(75.3MW)anda50MW-centralreceiverpowerplantwithsuperheatedsteamhavebeenawardedinGreecewithinthefirstcalloftheNER300scheme.

9-Source:APREN(PortugueseRenewableEnergyAssociation).StudyfromRolandBerger,201110-Source:ERSE(PortugueseRegulatoryEntityofEnergeticServices)11-Source:DGEG(PortugueseGeneralDirectionofEnergyandGeology)12-Source:DGEG(PortugueseGeneralDirectionofEnergyandGeology)

3

Page 32: ESTELA Strategic Research Agenda 2020-2025

32 STrATegIc reSeArcH AgendA 2020-2025

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

Cyprus

AccordingtotheCyprusNREAP,approvedinJune2010,STEplantsareexpectedtoreach75MWby2020,generatingsome224GWh,or3%oftheelectricityconsumptioninthecountry.

Thereisanindicationthatfutureamendmentstotherenewableenergylaw(thelawaffectingtheFiT)mayre-establishinvestmentsecurityforthemajorpartoftherenewableenergyindustry.

CyprushasbeenawardedbythefirstcalloftheNER300withalargescaledishStirlingpowerplant(50.76MW).

SEAPEK(CyprusAssociationofRenewableEnergyEnterprises)believesthatCypruscanachievemuchmorethanthebindingtargetof13%ofgeneratedenergyfromrenewablesourcesby2020,asforeseenintheRESDirec-tive.However,thiswouldrequiresomegovernmental,financialandadministrativeeffort.

NorthAfrica

ThelaunchofinitiativessuchastheMSP(MediterraneanSolarPlan),whichwasstronglysupportedbyESTELA,hasalreadyplacedSTEontopofutilities’,governments’anddecisionmakers’agendas.

TheMSPaimsatincreasingtheuseofsolarenergyandotherrenewableenergysourcesforpowergeneration.Thekeyelementof theproposalissettingupacommonlegal,regulatoryandinvestmentframeworktodevelop20GWofnewrenewablegenerationcapacityinthecountriesaroundtheMediterraneanSeaby2020.Tothisend,theMSPwillbuildontheenormouspotentialforrenewableelectricitygenerationavailableinthesecountries,mostlythroughthedevelopmentofSTEbutalsothroughotheravailableandmaturetechnologiessuchasPVandwindenergy.

TheMSPneedstoovercometheimportanttransmissionissueaswellasadministrativeandlegalbarriers.Thefigureofasolventoff-takerasrecommendedbyESTELAcouldbeanessentialpiecetolaunchthisambitiousplan.Asoftoday,therearethreeintegratedsolarcombined-cycle(ISCC)plantsinMorocco,AlgeriaandEgyptwithanequivalentelectricpowerofabout25MWeach.Thesolarcontributiontotheseplantsrepresentsconsiderablegassavings.

InMoroccothetenderprocessforthefirstSTEplantintheregion,a150MWPTtypewithstorage,underapurePPAcommercialschemehasbeencompletedinOctober2012andthecontracthasbeenawarded.

IndependentlyofthenationalplansincorporatedintheMSP,STEdeploymenthasbeenannouncedinmostofthenorthernAfricancountries.Theseplansrangefromsomehundredsto2,000MWpercountry.

MiddleEast

ThefirstplantinAbuDhabiofabout100MW,Shams1,isnearlycompletedanditisexpectedtobefollowedbyShams2and3.OtherArabEmiratesandSaudiArabiahavealsoincludedSTEintheirrespectiveplans,foratotalpowerof900MWby2013andafinalamountof25GWinthefuture.

Israelhasitsfirstplantsunderconstructionandplanstohave1,000MWofinstalledcapacityintheshortterm.Othercountriesintheregion(Jordan,Iran,Syria,etc.)arealsoconsideringtheconstructionofSTEplants.

UnitedStatesofAmerica

Therearealreadyover500MWofinstalledSTEcapacity,includingthe354MWSEGSplantswhichhavebeenincontinuousoperationfor25years.ThelargestISCCintheworldwith75MWhasbeenrecentlycompleted.

Therearehugeprojectsunderconstruction.Fourprojectswithatotalpowerof500MWaretowerplantsusingeithersuperheatedsteamormoltensaltasthereceiverfluid.ThreelargePTtypeprojectswilladdanother810MW.

TheseprojectsarebasedonsignedPPAswiththeutilitiesandtheytakeadvantageoftaxcreditsandwarranteedloans.

Newsupportmechanismsneedtobeestablishedinthenearfuturetorealisethelargecurrentpipelineofprojects.

3

Page 33: ESTELA Strategic Research Agenda 2020-2025

33december 2012

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

SouthAfrica

TheREFITprogram(underFiTschemes)foresees1,200MWforSTEin2030.Nevertheless,theprogramwillbereviewedperiodicallyandtheshareamongdifferenttechnologiescanbeinterchangedaccordingtotechnologydevelopmentsandpolicyconsiderations.

Thefirstthreeprojectshavebeenrecentlyawarded:thesearea100MWPT,a50MWPTanda50MWCRplantwithsuperheatedsteam.Inaddition,thepublicutilityispreparingfeasibilitystudiestolaunchatenderprocessforatotalof150MWintheshortterm.

Australia

Alongtermgoalof25%ofsolarpowerhasbeensetfor2050.

TheCleanEnergyInitiativewithintheSolarFlagshipsProgrammehasbeenlaunchedwithsolarprojectstotalling1,000MW.Thefirstcallfor400MW(PVandCSP)isclosed.ThenewagencyARENAhasmadeclearthatsolarthermalelectricitydevelopmentisverymuchinitsthinking,andhasstructureditsinitialstrategicprioritiesinawaythatshouldbefavorableforSTEprojects.Arecentstudyestimatesatleast2000MWSTEplantsby2020.

India

Thereisatremendousneedforadditionalelectricitygenerationinthiscountry.Anambitioussolaragendaisbeingplanned,aimedatgenerating20GWfrombothSTEandPVplantsby2022.

Awardsforthefirst500MWofSTEplantshavebeengiventolocalpromotersunderacombinedbidding/FiTscheme,andmostofthemhavealreadystartedconstruction.

China

Atthemoment,thereare250MWSTEplantsabouttostartconstruction.Thereisapipelineofprojectsunderdevelopmentwhichexceeds4,000MWalthoughthesupportconditionsarestillnotclearlydefined.Internationalsuccessreferencesmightacceleratetheseplans.

LatinAmerica

Thereisonlyoneprojectunderconstruction:anISCC15MWequivalentinMexico.

SeveralprojectsarebeingpromotedinChileunderdirectPPAschemeswithminingcompanies.

NosupportschemesarebeingconsidereduntilnowbythegovernmentsbuttherearespecificplaceswhereSTEisveryclosetocompetitiveness.MacroeconomicimpactsandenergydependencymaycontributetotheestablishmentofsupportmechanismsforSTEplants. 3

Page 34: ESTELA Strategic Research Agenda 2020-2025

34 STrATegIc reSeArcH AgendA 2020-2025

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

3.2Employment

ThegrowthoftheSTEindustryinSpainhashadamajorimpactintermsofthenumberofjobsithascreatedinrecentyears.Manyofthesejobsareduringconstruction;therestarefromoperationandmaintenanceactivities.Theyallhaveamultiplicativeeffectontherestoftheeconomy.Thenumberofequivalentjobsgeneratedduring2008-2010hasbeenquantifiedintermsofequivalentjobsperyear.Theinformationfortheestimateshavebeendrawnfromthefollowingsources:

n Forspecificplantconstruction,assemblyandcommissioningactivities,inquiriesweremadeoftheconstructioncompaniesandverifiedwithplantrecords.Coefficientsofemploymentperunitofaddedvaluespecifictoeachindustrywereusedtoquantifyemploymentgeneratedinthoseindustriesandintherestoftheeconomy.

n Forplantoperationandmaintenanceactivities,thecompanieswereaskednotonlyforinformationontheworkforcedirectlyemployedbythembutalsobythesubcontractorsinchargeofoperationandmaintenance.Theimpactonothereconomicindustries(powersupply,water,gas,insurance,etc.)wasaddedtothis,basedongenerallyacceptedemploymentmultipliers.Accordingtotheinformationcollected,theSTEindustryemployedatotalof23,844peoplein2010:23,398peopleduringconstructionand446peopleduringoperation.

FIGURE2:Total number of jobs created by the STE industry (2008-2010) in Spain 13

0

5,000

10,000

15,000

20,000

25,000

30,000

2008

2009

2010

11,724 jobs

18,600 jobs

23,844 jobs

TABLE2:Breakdown by industry activity of jobs created by the STE industry (2008-2010) in Spain 14

Jobs 2008 2009 2010Construction 11,713 18,492 23,398- Plan contracting construction and assembly 4,399 6,447 8,049- Components and equipment 4,515 7,442 9,542- Jobs in the rest of the economy 2,799 4,603 5,807Power production - O&M 13 123 446- Plant operation and maintenance 11 108 344- Jobs in the rest of the economy 2 15 102TOTALJOBS 11,724 18,600 23,844

13-Sources:Deloitte/Protermosolar.MacroeconomicimpactoftheSolarThermalElectricityIndustryinSpain,October201114-Sources:Deloitte/Protermosolar.MacroeconomicimpactoftheSolarThermalElectricityIndustryinSpain,October2011

3

Page 35: ESTELA Strategic Research Agenda 2020-2025

35december 2012

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

50 %

60 %

70 %

80 %

90 %

100 %

2012 2015 2020 2025

Economies of scale

Economies of scale

Implementation of major technological improvements

Validated provenimprovement measures

Conservative outlook

Cost and efficiency improvements

70-95 %

50-65 %

45-60 %

5-30 %

35-50 %40-55 %

Cost & efficiency improvements

100 %

1st large scale plants

18-22%points

Cost

28-37% points

10-15%points

Efficiency

21-33%points

Economies of scale

45-60%

LCOE 2025

-40-55%points

EstimatedtariffreductionsMaindriversfortariffreduction

FIGURE3:Expected LCOE reductions from 2012 to 2025 15

FIGURE4:STE project lifetime 16

Procurement Construction Operation and maintenanceEngineering

2-3 years

Heavy investment period

Projectisbuiltwithtechnologyavailable

2to3yearsbeforeproductionsstarts

Debt repayment period

Cashflow

Project start

Start of electricity production

Break-even

40 years

3.3Economics

GiventhedevelopmentforSTEtechnologiesdescribedinthisStrategicResearchAgenda,andconsideringspecifi-callypredictedchangesincostandscalethathaveanimpactonplants’CAPEXandefficiency,itispossibletoestimatetheirrelativeimpactontheLCOEforSTEprojectsinthefollowingyears(Figure3).

15-Source:A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

16-Source:A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

From2013onwards,significantcostreductionscanbeexpectedforSTEplants,drivenbythedeploymentoftechnologicalimprovementsandbytheeconomiesofscalerelatedtotheincreaseoftheplantsize.By2015,areductionrangingfrom5to30%canbeexpected,dependingonSTEtechnologyandthedispatchabilityoftheplant.

Between2015and2020,with the implementationof theremaining technical improvementsalreadyin thepipelineandwithfurtherplantsizeincreases,tariffsforSTEcanbereducedbyupto50%.Withtheexpectedcostdevelopmentandfurtherbreakthroughinnovationandscalegainby2025,tariffsareexpectedtobelessthan50%comparedwithcurrentones.SuchcostdevelopmentwouldenableSTEtechnologiestobecomeself-sustainedwithouttheneedforsupportschemesfornewlyinstalledplants.

3

Page 36: ESTELA Strategic Research Agenda 2020-2025

36 STrATegIc reSeArcH AgendA 2020-2025

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

AnotherfactorthatcanfurtherdrivedowntherequiredtariffforSTEprojectsisthesolarirradiationlevelofthedeploymentlocation.Thelargertheavailablesolarresourceis,thehighertheannualoutputwillbe,andthelowertherequiredtariffforthesameplant’sCAPEX.Figure3showshowtheDNIlevelofaspecificlocationcaninfluencetheminimumrequiredtariff.

FIGURE5:Impact of direct normal insolation (DNI) on levelised cost of electricity 17

6065707580859095

100105

% 110

2,00

02,

100

2,20

02,

300

2,40

02,

500

2,60

02,

700

2,80

02,

900

3,00

0

-18 -19 %

-24 -25 %

-33 -35 %

- 4,5 % per 100 kWh/m2a

- Italy- Greece- Southern Turkey

- Portugal- United Arab Emirates

1-ReferenceplantlocationhasaDNIof2,084kWh/m2aat100percent

- Arizona (U.S.)- Saudi Arabia

- California (U.S.)- Algeria- South Africa

- Tunisia - Morocco- Nevada (U.S.)- Australia

- Chile- Spain

%comparedtoreferenceplantinSpain1

DNIinkWh/m2a

17-Source:A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

18-Source:A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

Onaverage,tariffscandecreaseupto4.5%pereachadditional100kWh/m2aofDNI.ThismeansthatforhighDNIlocationssuchastheMENAregionorCalifornia(US)aSTEprojectrequiresless25%ofminimumtarifftobreakevenwhencomparedwiththesameprojectinSpain.(Fortheseestimates,onlythevariationofDNIwasconsidered.Countryspecificrisk,financingandlabourcostsvariationsalsoplayasignificantpartindefiningtheminimumrequiredtariff.)

ThesefactsdemonstratethatSTEtechnologyhasthepotentialtoimproveitscompetitivenessinthenearfutureandthattheindustryiscommittedtomaterialisethiswiththedevelopmentoftechnologicalimprovements,constructionoflargerplantsandwiththeSTEdeploymentinhighDNIregionssuchMENA.Alloftheseinitiativescontributetotheachievementoftheindustryvisionlaidoutearlier.

Also,accordingtothedefinedtechnologicalandcostroadmap18,STEtechnologycanachieveitspositioningwithintheenergysourcesportfoliomixwhichshallbediscussednext.ThereisawiderangeofSTEconceptsfrompurepeakpowertobase-loadincludingdesignswithaverynarrowdispatchprofilewithlargestorageandturbinestoprovideelectricitywhenthepriceishighest.Inaddition,significanteconomiescanbeachievedthroughhybridisationofpowerplantsoracombinationofsolarfieldswithexistingornewplants.ISCCplants,orschemestoboosttheperformanceofcoal-firedthermalpowerplantscanbeeffectiveoptions.

3.4StandardisationStandardsareveryimportantinanytechnologyfield,butespeciallyinyoungtechnologieslikeSTE.Infact,theimplementationofstandardsiscrucialforthecommercialsuccessofthetechnology.Aquickdeploymentofnewmarketsrequirescustomers’confidenceintheperformanceanddurabilityoftheproducts.Standardsplayalsoanimportantroleinacceleratingcostreduction,sincetheyallowforabettertransparencyofproductqualityandforthecomparabilityofdifferentproducts.Thisleadstomorecompetitionbasedonknowledgeaboutqualityandcost.

3

Page 37: ESTELA Strategic Research Agenda 2020-2025

37december 2012

AlthoughstandardsusedinothersectorscouldbepartiallyusedforSTEtechnologies,theuniquenessofthesetechnologiesdemandspecificstandardsthathavenotbeendevelopedyet.Developmentofthesespecificstandardsisthe“leitmotif”ofthestandardisationworkinitiatedduringthelastyears,onbothnationalandinternationallevels.Whilepresentsolarcollectorstandards,suchasEN12975,mightsetabackgroundforsolarconcentratortestingmethodologiesandsimulationmodels,theirearlydevelopmentwasforstationarycollectors,mostlyfactory-made.Theyreallyfallshortwhendealingwithmorecomplex(and/oraccuracydemanding)opticaleffectspresentinSTEtechnologies.TheimportanceofestablishingacommonframeworkforthetestingandcharacterisationofsolarconcentratorshasbeenalreadyrecognisedinthelatestrevisionsofEN12975,anditisalsothedriverforthenewISO9806,whichispresentlyundergoingtheinquirystage.

Existingstandardsrelatedtosolarcollectorsaremainlyintendedforfactory-madecollectorswhicharesmall(uptoafewm2insize),andthatareeitherflatorhaverelativelylowconcentrations.Ontheotherhand,STEtech-nologiesrequirelargesizeconcentrators,on-sitefieldassembled,withhighconcentrations,andwithavarietyof2Dor3Dgeometries,thuscreatinganewsetofproblemsanddemands.STEtechnologiesthereforedemandspecificstandardsthatarenotyetavailable.

SeveralworkinggroupshavebeensetuptodevelopspecificstandardsforSTEtechnologies,andafewnewstandardsarealreadyinanadvancedstageofdevelopment.ThemembersofSolarPACESestablishedworkinggroupsin2008withthechargetodevelopstandardsforPTcomponents,andafirstdraftguidelineformirrorreflect-ancemeasurementwaspublishedinMay2011.Anotherdraftguidelineformirrormoduleshapemeasurementisexpectedtobereleasedin2012,followedbyaguidelineforPTreceiverperformancemeasurementsin2013.

Otherworkinggroupsforstandardsdevelopmenthavebeensetupwithintheframeworkofdifferentstandardsorganizations:

n IEC/TC117“SolarThermalElectricplants”(threeworkinggroupsestablishedin2012).Mirrorcommitteesinseveralcountrieswillbeestablished;

n AENOR(Spain)sub-committeeAEN/CTN206/SC“Solarthermalpowersystems”,launchedin2010forstandardsonsystems,storageandkeycomponents;

n ASMEPTC52PerformanceTestCodeforConcentratingSolarPowerPlants(fourworkinggroupsestablishedin2011forPT,LF,powertower,storage);

n DKE(Germany):fundingofdevelopmentofguidelinesforstandardsforreflectors.

Therefore,thefirststepstodeveloptherequiredstandardsforSTEtechnologieshavebeenalreadytaken,butthisefforthastobesupportedandfurtherpromotedbecauseverylimitedfundingisstillavailableforstandardisationactivities.Thismustbeconsideredahigh-prioritytopicbecausetheavailabilityofproperstandardswillsignificantlyenhancethecommercialdevelopmentofSTEtechnologies.Standardisationactivitiesshouldcoverseveralfields,whicharesummarisedinthefollowingparagraphs.

a)Qualification/certificationandtestingprocedures:Adequateproceduresapplicabletodifferenttechnologiesarerequired.Theymustspecifymanufacturer-independentstandardsdefiningtheprocedurestotestandqualifynotonlycomponents(e.g.reflectors,receivertubes,solartrackingsystems,etc.),butalsocompletesolarconcentratingsystems(e.g.heliostats,PTcollectors,linearFresnelmodules,etc.)andcompletesystems(e.g.,solarfield,thermalstoragesystem,etc.)Thesearerequiredtomakeafairandneutralcomparisonoftechnicalfeaturespossible.Thesestandardsmustcovernotonlytheprocedurestomeasurethermal,opticalandgeometricalparameters,butalsoacleardefinitionofthoseparametersinordertoavoidpossiblemisunderstandingsconcerningtheirmeaning(e.g.,cleardefinitionsofabsorptivity,specularreflectance,hemisphericalreflectance,etc.).Thesestandardsshoulddefinetherequirementstobefulfilledbyadequatetestinginfrastructuresandtheyalsomustsettleanumberofcurrentopenquestions,suchas:

n Thedefinitionandimportanceof“nearnormalincidence”conditionsthroughoutthetestingperiod.Thesearedifficulttomatchwhentestingprimaries(theprimarysetofmirrorsresponsibleinthefirststageofradiationconcentration)oflinearconcentratorsystemssuchasLForevenfield-installedPTs;

n Thevalidityofabiaxialapproachtoreproducethetrueincidenceanglemodifierasthesimpleproductofthelongitudinalandthetransversalincidenceanglemodifiers;

n Theimportanceofcircumsolarradiationconditionsintheexperimentalresultsobtainedthroughoutthetestingperiod.

Anotherimportantitemwithinthescopeofthesestandardsisthedefinitionofmethodologiesandequipmentforopticalcharacterisationofsolarconcentrators,namelyinthedetectionandquantificationofmanufacturingerrors,reflectorsurfacedeviationsorconcentratormisalignments,etc.

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

3

Page 38: ESTELA Strategic Research Agenda 2020-2025

38 STrATegIc reSeArcH AgendA 2020-2025

Ind

ustr

y ov

ervi

ew a

nd r

elat

ed e

cono

mic

asp

ects

Concerningcertification,productcertificationschemesmustbedefinedalso,becausethisisawell-provenstrategytoraiseconsumerawarenessandbuildmarkettrust.Thiswillenablethegenerationofindependentproductassess-mentresultsandguaranteeproductreliabilitywithinawell-definedproductoperationframework.Asinthecaseofthedevelopmentoflowtemperaturesolarcollectors,theincreaseofavailabletechnologiesandproductsreachingthemarketwillbenefitfromthedevelopmentofacertificationscheme,relyingnotonlyonstandardisedtestingresults,butalsoonthecertificationofthemanufacturingprocessesusedinthefabricationofagivenproduct.Producingclear,reliableandcomparableresults,suchcertificationschemeis likely tocontributedecisively tothecreationofmorefavorablebankabilityconditions,reducingtheimportanceofthosebasedinoperationtimerecordswhicharenotavailableforsomeverypromisingtechnologies.

b)Components/systemdurabilitytesting:Systemlifetimeis,ofcourse,afundamentalparameterwhenassessingtheoverallenergyproductionandprofitabilityattainablewithagivenSTEsystem.Standardsmustconsidertheageingprocessstartingaftermanufacturingbycomponentassessment,andperformancedegradationoftheoverallsystemfromoneyeartothenext.Fromthistypeofinformationderivedfromacceptablestandards,itispossibletoextrapolatetheestimatesofsystemlifetime.Therefore,specifictestingofthestandardpropertiesofmaterialsand/orcomponentsusedinthemanufacturingofsolarconcentratorsmustbedefined,enablinganinference/estimateofsystemlifetime.Aspecialattentionshouldbedevotedtothedevelopmentofreflectorandabsorberdurabilitytestingprocedures,includingacceleratedagingproceduresfortheanalysisofthedecayofopticalproperties,theimpactofsandinreflectivitydecay(thisisveryimportantforaridzones),theeffectofprolongedexposuresathightemperature(especiallyimportantforCRsystems),etc.Resultsobtainedusingthesestandardswillpromotemarketconfidence,enhancingSTEtechnologiesbankability.

c)Commissioningprocedures:Thelackofstandardsdefiningtheprocedureforthecommissioningofsystems(e.g.,solarfield,thermalstoragesystem,etc.)andcompleteSTEplantshasbecomeevidentduringthestart-upprocessoftheSTEplantsputintooperationduringthelastyears.ThislackofstandardshasledtheEPCcompaniestodefinetheirownprocedures,whichareusuallydifferentfromtheproceduresdefinedbyothercompanies.ThissituationisasignificantbarriertotheeffortstoraiseawarenessandsignificantbarriertoSTEplantsbankability.DevelopmentofthistypeofstandardsinEuropeisalreadyunderwaywithintheframeworkoftheSpanishAEN/CTN206standardisationgroups,withoutanypublicfinancialsupport.DuetothecurrentsituationoftheSTEmarket,thisstandardisationactivityshouldbeincludedinthelistofhigh-prioritytopicstobesupported.

d)Model-basedresults:Duetothedifficultiestofulfillsometestconditionsexperimentally(e.g.,normalincidenceangleontolinearFresnelconcentrators)model-basedresultsmightbeusedinstead(e.g.,resultsobtainedwithraytracingmodels).Theuseofmodel-basedresultsintheprocessoftesting,qualificationand/orcertificationshouldberegulatedbyproperstandardstoassurecompatibilityofresultsobtainedbydifferententities.

e)Solarfieldmodeling:theestablishmentofacommonframeworkforsolarfieldandSTEplantsmodelingisveryimportanttoavoidthedifferencesfoundatpresentwhencomparingtheresultsdeliveredbytheavailablesimula-tionmodels.ThesedifferencesaresometimesverylargeandtheydonothelptoenhancethebankabilityofSTEtechnologies.Differentlevelsofqualitymustbedefinedtoclassifythesimulationmodelsaccordingtothewaytheyconsiderallrelevantparametersandoperatingconditionsaffectingthesolarfieldand/orSTEplantyield.Thisclassificationofsimulationmodelswouldavoidcomparisonofresultsdeliveredbymodelsofverydifferentquality.

DuetothecomplexityofaSTEplant,thenumberofparameters(receiverthermallosses,mirrorreflectivity,pipingthermalinertia,etc.)andoperatingconditions(ambienttemperature,effectofwindspeedanddirectionontheopticalandthermalefficiencyofsolarconcentrators,atmospheretransmissivity,etc.)affectingitsyearlyyieldishigh.Theycanbesimulatedwithdifferentaccuracylevels,leadingtothepossibilityofhavingsimulationmodelsofverydifferentquality.ThedevelopmentofacommonframeworkforsolarfieldandSTEmodelingis,thus,ofparamountimportanceforobtainingreliableandcomparablesolarfieldyieldresultswhicharesuitableforbothplantdesignandprojectfinance.Thisstandardisationactivitywaslaunchedin2010anditiscurrentlyunderwaywithintheSolarPACESprojectGUISMO.

3

Page 39: ESTELA Strategic Research Agenda 2020-2025

POLIcY OVerVIew

39december 2012

Page 40: ESTELA Strategic Research Agenda 2020-2025

4.1ContributiontoEU’srenewableenergypolicyDramaticchangesmustbemadetothepresentenergysystemstomitigatethenegativeimpactofgreenhouseemissionsonclimate.Europehassofaradoptedbindingtargetsforrenewableenergyconsumptionandcreatedacarbonemissionmarket,theEmissionTradingScheme.Ithasalsotakenseveralothermeasurestofosterandpromotesustainabledevelopment.

STEiscrucial inEurope’senergyfuture. It is themainrenewableenergygenerationtechnologythatdoesnotrequireadditionalbackupfromconventionalpowerplantstomeetdemand.Ithastheuniquecharacteristicofbeingpredictableandtotallydispatchable: itcancontribute tomeetingdemandatall times,dayandnight.Italsocontributes to thestability to thetransmissiongrid.Barringunforeseeableandunlikelybreakthroughsintechnologieswhichbytheirownnaturedonotsharethesecharacteristics,STEpresentsimportantadvantagesincomparisonwithotherrenewablesources.

SixcountrieshavereflectedSTEintheirNationalRenewableActionPlans(NREAPs):Cyprus,France,Greece,Italy,PortugalandSpain.Intotal,theseplanswouldhaveaddedatotalof7GWtothegeneratingcapacityby2020.However,changesinthefinancialcircumstancesintheContinentareforcingarevisionofthisprediction,loweringthetargetto2GW.TheseplansaretobeimplementedbyMemberStatesonthebasisoftheRenew-ableEnergyDirectiveof2009,whichsettheregulatoryframeworktoachievetheUnion’sbindingtargetof20%offinalenergysupplyfromrenewableenergiesby2020.

Overall,STEcontributesenormouslytomeetingcarbonemissiontargetswhilealleviatingthepricepressureonfinitefossilfuelsandensuringthesecurityoftheelectricitysupply.Thecontributiontosecurityandreliabilityhasthepotentialtobeespeciallysignificantformidloadswhicharemetcurrentlyonlybyconventionalenergysources.Finally,asSTEreliesonanunlimited‘fuel’supplywhich,unlikegasandoil,isindependentofmarketfluctuations,itensuresthepredictabilityofthecostofelectricityandenablesbetterlong-termpoliticaldecision-makingregardingtheenergysupply.

4.2EnergytransmissioninfrastructureTheenergyinfrastructureneedsaredrawingfocussedattentionfromEuropeanpolicymakers,becauseonlyanupdatedenergytransmissionsystemwillmakethefreecirculationofelectricitypossible.Presently,theEuropeanCommissionisworkingonanewregulatoryframeworkforinfrastructure.Inthelong-term,the‘ElectricityHighway’systemshallmakeitpossibletodeliverthroughoutthecontinenttheincreasingshareofelectricitygeneratedbyrenewableanddistributedplants.

ThenewInfrastructureregulationproposalfromtheEuropeanCommissionsetsdowntherulesfortheidentificationandtimelydevelopmentofprojectsofcommoninterest.Theseareunderstoodtomakeuptheenergytransmis-sioninfrastructurethatisessentialtoensuresecurityofsupplytotheEuropeanUnionandtheeffectivefunctionoftheinternalmarket.Alongwiththe‘ConnectingEuropeFacility’,thisnewregulatoryframeworkisembodiedinthenextMultiannualFinancialFramework2014-2020,whichidentifies12keyenergytransmissioncorridorsandsetsoutprovisionsonnewwaysforthefinancingoftheprojects.OneofthesecorridorsistheNorth-SouthCorridorinWesternEurope,whichwillhelptoeliminateenergybottlenecksbetweentheIberianPeninsulaandtherestofEurope.TheNorth-SouthCorridorwillalsomakeitpossibletoimportrenewableenergyfromNorthAfrica:thelargestpotentialforSTEliesinwhatisknownastheMediterraneanSolarRing,whichcomprisesnotonlytheSouthernEuropeancountriesbutalsotheMiddleEastandNorthAfricaRegion.

The transition towardsa100%decarbonisedenergymarket in theEUrequires thedevelopmentofa largertransmissioncapacitybetweenremotegenerationandexistingloadcentres.Thisnewtrans-European‘ElectricityHighways’shallnotbeanextensionofexistinginterconnectorsbetweenstatesbutanewnetworkofhighvoltagedirectcurrent(HVDC)transmissionlines.‘ElectricityHighways’willbethemosteconomicandefficientwaytoconnectEuropeanditsneighbouringcountries,facilitatingtheintegrationoflarge-scalerenewableenergyandthebalancingandtransportationofelectricitytocreateawell-functioninginternalelectricitymarket.

Inthiscontext,theEuropeanNetworkofTransmissionSystemOperatorsofelectricity(ENTSOe),incoordinationwiththeEuropeanCommission,haselaboratedthe“StudyRoadmaptowardsaModularDevelopmentPlanonpan-EuropeanElectricityHighwaysSystem”(MoDPEHS)toestablishguidelinesforthestrategicplanningtoreacha2050pan-Europeanelectricitysystem.

Polic

y ov

erv

iew

4

40 STrATegIc reSeArcH AgendA 2020-2025

Page 41: ESTELA Strategic Research Agenda 2020-2025

41december 2012

Polic

y ov

erv

iew

4

4.3Europeancontextandframeworks2014-2020TheFrameworkProgrammeforResearchandInnovationHorizon202019

Horizon2020istheEuropeanFrameworkProgrammeforResearchandInnovationfortheperiod2014-2020.Itstreamlinesandidentifiesthedirectionsforfutureresearchandcoversabroadrangeofsectors.TheProgrammeisformulatedalongthreesections:‘ExcellenceScience’,‘IndustrialLeadership’and‘SocietalChallenges’.ThefundingdedicatedtoHorizon2020(about80b€)ispartoftheMulti-annualFinancialFramework(MFF)fortheperiod2014-2020.

Following theSeventhFrameworkProgrammeforResearchand Innovation (FP7),Horizon2020gets ridofadministrativebarriersandseamlesslyintegratesresearchandinnovationactivitiesbyallowingmoreflexibilityandinnovativeinitiativesthaninthepreviousFrameworkProgrammeFP7.

Inthecontextoftheknowledgetriangleofresearch,educationandinnovation,theKnowledgeandInnovationCommunities(KIC),undertheEuropeanInstituteofInnovationandTechnology(EIT),willhelpaddresstheobjec-tivesofHorizon2020,includingthesocietalchallenges,byintegratingresearch,educationandinnovation.

Horizon2020andtheSTE:

Theemphasisgiven toRenewableEnergyandEnergyEfficiency inHorizon2020issignificant: It isexpectedtoaccountforalmosttwothirdsofthetotalcommitments,andthisisproportionaltotheenvi-ronmentalchallenges thatmustbeaddressedin thenear future.Theframework includes theSET-Plan,whichisexpectedtofacilitategreatlythedevelopmentoffirst-of-its-kindprojectsandtobringresearchtomarketintherenewableenergyfield.

Withastrongfocusontechnologicaldemonstrationprojects,this framework is of great importance for the STE sectorandamaindrivertoreachtheobjectivesdescribedintheSTESolarIndustrialInitiative:toreducecost,increaseefficiencyandimprovedispatchabilityandenvironmentprofile.

19-COM(2011)809:ProposalforaregulationoftheEuropeanParliamentandoftheCouncilestablishingHorizon2020TheFrameworkProgrammeforResearchandInnovation(2014-2020)

Page 42: ESTELA Strategic Research Agenda 2020-2025

42 STrATegIc reSeArcH AgendA 2020-2025

Polic

y ov

erv

iew

FIGURE6:Overview of the European schemes for STE funding

EUROPEAN COMMISSION - FP6 (2000-2006) - FP7 (2007-2013) - Horizon 2020 (2014-2020)

ESFRI (DG RTD) SET-Plan (DG ENER and DG RTD)

EII

SEII

SETIS (JRC)

Projects within FP

EU-Solaris

EERA (joint Programmes)

OPTSEducation and

training initiatives Solar ERANET

STE projects see list AnnexSFERA

Projects Instruments

4.4Researchoverview:participationoftheSTEsectorintheEUinstrumentsThesolarthermalindustrydependsfullyonthestrongsupportfromboththepublicandprivatesectorstoreachquicklytheintegrationleveloftheotherrenewablesourcesalreadyinthemarket.Inthepast,MemberStateshaveawardedsignificantincentivesandEuropeanentitieshavefundedimportantprojects.PastandpresentprojectsfinancedbytheEuropeanCommissionarelistedinANNEXII:PastandpresentEU-fundedprojects.

42 STrATegIc reSeArcH AgendA 2020-2025

Toachievethetargetsleadingtoadecarbonisedenvironmentinthecomingdecades,theEuropeanCommis-sionhasimplementedasetoftoolstargetedtoresearchinstitutionsandindustry.Thosetoolsareelaboratedtoenhanceknowledgeexchangeandcooperationamongalltheplayersintherenewableenergyfield.Monitoring,coordinationandsupportfortheimplementationofenergyresearchprojectsconstitutefurtheraddedvaluefromthoseinstruments.

TheSTEtechnologybenefitsfromthefollowinginstruments:

EERA:TheEuropeanEnergyResearchAlliance(EERA)isoneoftheinitiativesoftheSET-Plan(StrategicEnergyTechnologyPlan).ItisaninstrumentoftheEuropeanCommissionaimedatacceleratingthedevelopmentanddeploymentofcost-effectivelowcarbontechnologiesfortheachievementofEurope’s2020targetsandvisionongreenhousegasemissions,renewableenergyandenergyefficiency.

TheassociatedJointProgrammeonConcentratedSolarPoweriscoordinatedbyCIEMAT:itaimstointegrateandcoordinatescientificcollaborationamongtheleadingEuropeanSTEresearchinstitutionstocontributetotheachievementofthe'SolarThermalElectricity-EuropeanIndustrialInitiative'(STE-EII).Elevenpartnersareinvolved.Withinthisscheme,theOPTS(OptimisationofaThermalEnergyStorageSystemwithIntegratedSteamGenerator’)programmehasbeenlaunchedinearly2012:thisiscoordinatedbyENEA.

SETIS: TheStrategicEnergyPlanInformationSystem(SETIS),elaboratedbytheEuropeanCommissionandledbytheJointResearchCentre,providesacompletesetofinformationrelatedtotheimplementationoftheSET-PlaningeneralandtotheSTEtechnologyinparticular.KeyPerformanceIndicators(KPI)havebeendefinedandapprovedbytheSETISteaminordertodefinewithprecisionthetargetstobereachedandtheimprovementstobemadeinthecomingdecades.AtechnologymapandamaterialroadmapelaboratedbyasetofSTEexpertswerereleasedattheendof2011.

4

Page 43: ESTELA Strategic Research Agenda 2020-2025

43december 2012

Polic

y ov

erv

iew

ESFRI:TheEuropeanStrategyForumonResearchInfrastructure(ESFRI)waslaunchedinApril2002tocoordinatetheworkonnewresearchinfrastructuretoaddressindustryneedsandtoensureabetterexploitationofexistingfacilities.TheForumbringstogetherrepresentativesfromEUMembersandassociatedStatestoworkonregulatoryissuesofresearchinfrastructuresledbyacommonadvancingstrategy.

Apan-Europeansolarthermalelectricityresearchinfrastructure“EU-Solaris”,promotedandcoordinatedbyCTAER(CentroTecnológicoAndaluzdeEnergíasRenovables)andsupportedbyESTELA,hasbeenincludedintheESFRIRoadmapbytheEuropeanCommissionanditwillbefinanciallysupportedbytheFP7foritspreparatoryphase.ThisprojectaimstoestablishaneffectivenetworkamongthemostrelevantSTEresearchcentresinEuropeandassociatedcountries.Itwillprovideaneffectiveinterfacebetweenthetechnologycentresandtheindustry.ThisSTEcoordinatedanddistributedresearchinfrastructurewillalsoplayanimportantroleinreachingthegoalsoftheEuropeanStrategicEnergyTechnologyPlan(SET-Plan).

4

Page 44: ESTELA Strategic Research Agenda 2020-2025

44 STrATegIc reSeArcH AgendA 2020-2025

ERANET:TheEuropeanResearchAreaNet(ERANET)fitsintheFP7andisintendedtosupportMemberStates’jointactionsintheformofpublic-privatepartnerships.

Thespecificprogramme‘SolarERANET’isdedicatedtosolarenergyandwilllast4years,startinginthebegin-ningof2013.TheSTEtechnologybenefitsfromthisprogrammethroughtheimplementationofconcreteresearchactionsselectedbypriorityorder.2M€areprovidedforcoordinationactionstomitigatecostsandefforts.

SFERA:The‘SolarFacilitiesfortheEuropeanResearchArea’(SFERA)isaprojectoftheEuropeanCommissionwithintheframeoftheFP7.ItaimstoboostscientificcollaborationamongtheleadingEuropeanresearchinstitutionsinsolarconcentratingsystems,financingnetworkingactivitiesthroughyearlyrounds.

Education and training initiative:At thebeginningof2012, theEuropeanCommission launchedanexercise todefine theEuropeanEnergyEducationandTrainingInitiative,buildingonthetechnologyandresearchinitiativesoftheSET-PlantoensureacoordinatedapproachtoassessthecurrentandfuturesituationregardingenergyskillsinEuropeandtoengageinactionsaimedatbuildingupandattractingenergyexpertise.

Thescopeofthisinitiativeistoestablishastrategicdocumentaddressingthewholeinnovationchain,frombasicresearchthroughappliedresearchanddevelopment,tofirst-of-its-kinddemonstration.

Polic

y ov

erv

iew

4

Page 45: ESTELA Strategic Research Agenda 2020-2025

45december 2012

STATe-OF-THe-ArT OF STe TecHnOLOgIeS

Page 46: ESTELA Strategic Research Agenda 2020-2025

46 STrATegIc reSeArcH AgendA 2020-2025

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

5

Parabolictroughcollectors

Theparabolictrough(PT)iscurrentlythemostwidelyusedtechnologyaroundtheworld,particularlyinSpainandintheUnitedStateswhereplantsinoperationgenerateover1,000MWand500MW,respectively.

PTtechnologyconsistsofinstallingrowsorloopsofparabolictrough-shapedmirrorsthatcollectthesolarradiationandconcentrateitontoareceivertubewhereafluidisheateduptoabout400°C.Thisfluidislaterusedtoeithergeneratesteamtodriveaturbineconnectedtoageneratorortoheatastoragesystemconsistingoftwotanksofmoltensalt.

Thecollectorrowsareusuallyorientednorth-southtomaximisetheamountofenergycollectedduringtheyear.Atrackingsystemmovesthecollectorsfromeasttowestduringtheday,followingthesuntoensuretheproperangleofincidenceofthedirectsolarirradiationonthemirrors.

Theheattransferfluid(HTF)usedintheseplantsisasyntheticdiathermicoil.AlthoughthespecificformulationoftheHTFhasvariedslightlyduringtheyears,theHTFsetslimitsintheuppertemperatureandconsequentlyintheconversionefficiencyofthewholesystem.Someconcernshavebeenexpressedabouttheenvironmentalcompat-ibilityoftheHTF.Fluidsallowinghighertemperaturesandhavingalesserenvironmentalimpactarebeingtested.

Theseplantscanbedesignedtoallowrathersimplehybridisationwithothertechnologies,sotheycanbeusedwithatraditionalfossilorbiomassfueltogenerateelectricityduringthenightoroncloudydays,boostingsolaroperation.Theadvantagesofhybridisationarethatitmakesitpossibletomaximisetheuseoftheturbinegeneratorandthatitallowsthedesignofmorerobustdispatchablesystems.This,inturn,makesitpossibletotakeadvantageofeconomiesofscaleinmanysubsystemsoftheprojectduringbothoperationandconstruction:powerlinesareanobviousexample.

CurrentpowerplantsinSpainarelimitedto50MWperplantbytheSpecialRegime.About60%oftheplantswhichhavebeenregisteredfortheFiTincludeamoltensalttwo-tanksystemproviding7.5hoursofstorage.IntheUnitedStates,powerplantsarebeingbuiltwithmuchlargerturbines(>100MW),takingadvantageofthefactthat,inthistechnology,whileenergycollectionperformanceispracticallyunaffectedbysize,costsofgenerationareloweredconsiderably.

Intermsofthematurityofthetechnology,PTcanbeconsidered“mature”,sinceanumberofmanufacturersareavailable forerectingentireplantsorsubsystems.There isgoodexperience inengineeringprocurementandconstruction(EPC)and20-yearoperatingexperienceallowsforgoodconfidenceontheoperation.Therefore,thesecanbeconsideredlow-riskprojects.AlltheexistingcommercialPTplantscanbeplacedinthe“firstgenera-tion”categoryasdefinedinChapter1.

Anew“secondgeneration”ofPTplantswillaimtoreachahigherHTFtemperature,allowingthefullintegrationofthesolarfieldandthestoragesystem.This“secondgeneration”shouldprovidesignificantimprovementsintheaverageconversionefficiencyandfurtherreductionofcosts.Althoughademonstrationplanthasalreadybeenbuilt,adequateoperatingexperienceisstillneededandcomponentswithenhancedperformanceanddurabilityarebeingstudiedanddeveloped.

Page 47: ESTELA Strategic Research Agenda 2020-2025

47december 2012

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

5

Centralreceivers

Solartowerswithcentralreceiver(CR)concentratesolarradiationbymeansofafieldofheliostats,eachconsistingofareflectingsurfacemountedonapedestalwhichcantrackthesunontwoaxes.Theheliostatsreflectthesolarradiationontoareceiverlocatedatthetopofatower.AHTF,whichincurrentpowerplantsiseithersteamormoltensalt,isheatedinthereceiverandusedtogenerateelectricityinaconventionalsteamturbine.

TheefficiencyoftheseplantsisusuallybetterthanPTplants,becausefluidtemperaturesarehigher–around550°C.Thisleadstobetterthermodynamicperformanceanditalsofacilitatesstorage:smallervolumesarepossiblebecauseofthehighertemperaturedifferencebetweenthecoldandthehottanks.Atpresent,thereareonlythreecommercialsizepowerplantsofthistypeinSpain;intheUnitedStates,severallargerprojectsarecurrentlyunderconstruction.

AlthoughcommercialexperiencewithCRplantsislimited,itisestimatedthatthecost(LCOE)oftheelectricityfromsuchplantscouldbelowerthanthatgeneratedinPTplants,eventhoughlanduseisslightlylessefficient.Therequirementsfor“flatland”arelessdemandingthanforPT.Growingconfidenceforthistypeofplantisexpectedasmoreofthemgointooperation.Theseplantscouldhavearatedpowerofover100MWealthoughtheirefficiencydecreasesslightlywiththesize.

ThefirsttwocommercialCRplantsusingsaturatedsteambelow300°Ccanbeconsideredas“firstgeneration”technology,whereaslatersystemsarealreadyinthe“secondgeneration”category.ThisisespeciallytruewhentheHTFisamoltensaltorwhentheplantincludesan“integratedstoragesystem”.CRplantsarestillontheirwaytowardsmaturity.Muchofthedevelopmentworkoutlinedlaterwillbefocusedontheoptimisationofcomponents,systemsandoperatingstrategies,basedonthefindingsfromtheoperationoftheseplants.

InafuturegenerationofCRplants,thefullcapacityofthehighconcentrationallowedbyCRwillbeexploitedtoreachtemperatureswhicharehighenoughtodrivetheadvancedpowercycles,suchascombinedcyclesandsupercriticalsteam/gasturbines,whichareassociatedwithmuchhigherconversionefficiency.

Page 48: ESTELA Strategic Research Agenda 2020-2025

48 STrATegIc reSeArcH AgendA 2020-2025

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

Thistechnologyisalsobasedonsolarcollectorrowsorloops.However,inthiscase,theparabolicshapeisachievedbyalmostflatlinearfacets.Theradiationisreflectedandconcentratedontofixedlinearreceiversmountedoverthemirrors,combinedornotwithsecondaryconcentrators.Oneoftheadvantagesofthistechnology(“linearFresnelreflectors”,orLF)isitssimplicityandthepossibilitytouselowcostcomponents.Directsaturatedsteamsystemswithfixedabsorbertubeshavebeenoperatedwithoutproblems.ThistechnologyeliminatestheneedforHTFandheatexchangers.Increasingtheefficiencydependsonsuperheatingthesteam;however,thisisstillachallenge.Overcomingthischallengehasstilltobedemonstrated.

Thistechnologyiscurrentlylessdeployedthantheothertwo(PTandCR)alreadydescribed.Concentrationandtemperatureofthefluidinthesolarfield–todatemostlysaturatedsteam–arelowerthanintheothertwotech-nologies.Becausesteamistheworkingfluid,itismoredifficulttoincorporatestoragesystems.However,otherfluidsand/orsolutionscanbeconsideredtoallowforstorage.

Afterafirstpilotscaleapplication inAustralia,a fewnewpilotplantshavebeen tested inSpainandin theUnitedStates,andafirstcommercial30MWeLFplantisalreadyinoperationinSpain.FrancehasalreadyimplementedaLFpilotplantandiscurrentlybuildingtwonewcommercialplantswiththistechnology,of9and12MWrespectively.

Comparedtoothertechnologies,theinvestmentcostspersquaremeterofcollectorfieldusingLFtechnologytendtobelowerbecauseofthesimplersolarfieldconstruction,andtheuseofdirectsteamgenerationpromisesrelativelyhighconversionefficiencyandasimplerthermalcycledesign.Manyimprovementsintheabsorbertubesandthegeometryareunderdevelopment.Someofthoseongoingimprovementeffortsrelatetotheshapeandthedispositionofmirrorstoaccommodatesomeofthepeculiaritiesofthistechnologyandtoachieveaperformancewhichisclosertothatofothertechnologies,inparticularPT.

TheLFtechnologyisalsoquiteusefulfordirectthermalapplications,suchascoolingorgeneratingprocesssteam.

ThefuturedeploymentoftheLFtechnologywilldependonwhetherinvestmentandgenerationcostscanbeloweredenoughtocompensatefortheslightlylowerperformanceandfulfilitspromiseofbeingcompetitive.

Duetothesmallnumberofdemonstrationinstallations,wecannotrefertoamature“firstgeneration”plant,butitisexpectedthatthiswillchangeverysoon.Thegaininoperatingexperiencewithpresentandfutureinstalla-tionswilldefinethisbasiclevel.Futureimprovementsmatchedwithimportantcostreductionswhicharepossiblebecauseofthesimplifieddesigncanrenderthistechnologyverycompetitive,especiallywhencombinedwithotherenergysystems.

LinearFresnelreflectors

5

Page 49: ESTELA Strategic Research Agenda 2020-2025

49december 2012

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

Parabolicdishes

Powerplantsusingparabolicdishes(PD)withStirlingenginesconsistoftwobasiccomponents,aconcentratororsolardishandapowergenerator.Eachcompleteunitproduceselectricitybyitself.Thepowerofthecurrentdevicesvariesfrom3kWto25kWperunit.

Theparaboloidalconcentratorscollectthesolarradiationdirectlyandreflectitontoareceiverlocatedoverthedishclosetothefocalpoint.Thestructurerotates,trackingthesunandthusconcentratingtheraysontothefocuswherethereceiver–connectedtotheengine–islocated.Themostcommonthermo-mechanicalconverterusedisaStirlingengineconnectedtoanalternator.TheStirlingengineusesaheatedgas,usuallyheliumorhydrogen,togeneratemechanicalenergyinitsshaft.Theefficiencyoftheseplantsismuchhigherthanthoseoftheotherthreetechnologiesalreadydescribed.

Thisdesigneliminatestheneedforwater,becausecoolingoftheengineisachievedbymeansofaradiatorsimilartothoseusedinsomecars.Thisisanadvantagecomparedtotheusualdesignsemployedbyothertechnologies–althoughsomeofthemcouldalsoutilisedrycoolingsystems.Ontheotherhand,asthePD’saresingleunits,ThermalEnergyStorage(TES)andhybridisationsolutionsarenoteasytoimplementandthisconstitutesamajorbottlenecktothelargescaledevelopmentofthistechnology.Dispatchabilityandstabilityareotherimportantissues,asthePDsystemshavenothermalinertia.However,thistechnologycanbedisplayedmodularlyandPD’sareeasiertositeonunevenlandthanothercollectingsystems.Therefore,PDscouldbeasolutionfordistributedgeneration.

Storage

Oneofthemainchallengesforrenewableenergytechnologiesisfindingsolutionstoproblemsderivedfromthevaryingorintermittentnatureofmanyrenewableresources.Amongtheseresources,solarenergyhassomemajoradvantages,notonlybecauseitismuchmoreabundantthananyothersourcebutalsobecausethehoursofsolarradiationaremorepredictable.However,thekeyadvantagesforthethermaloptionarethatthermalenergystorage(TES)isefficientandrelativelycheapandthattherearealreadymanyavailablecommercialsolutions.Inaddition,becauseSTEplantsareeminentlysuitableforhybridisation,aplantwhichtakesadvantageofthesolarradiationwhenitisavailablecandeliverenergyuponrequestandcanfollowthedemandcurveevenwhenneithersunnorstoredenergyisavailable.

Theenergycollectedcanbestoredforlateruseduringthenightoroncloudydaysbyincreasingtheinternalenergyofasubstance.Storagemakesitpossibletoseparateenergycollectionfromelectricitygeneration,andthereforethestoragesystemfortheSTEplantcanhaveahighcapacityfactor.

Infinia–YumaPowerDishII

5

Page 50: ESTELA Strategic Research Agenda 2020-2025

50 STrATegIc reSeArcH AgendA 2020-2025

Inmanyregions,dailypeakdemandcoincideswiththehoursofhighestsolarradiationavailability.Dependingontheseason,forafewhoursaftersundownthereisasecondpeakdemand.InSpain,inparticular,plantswithstorageusuallyhaveupto7.5additionalhoursofcapacity;thisallowstheoperationofthesolarthermalplantstobeextendedandmakesthemmorecompetitive.

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

FIGURE7:Electricity demand and STE production on 11th July 2012 and in the full month of July 2012 20

Figure7showsthecurveofelectricitydemandinSpain(scaleontheleft)andtheaggregatedproductionofalltheSTEplants(scaleontheright)on11thJuly2012andinthefullmonthofJuly.Thereisagoodmatchbetweenthecurves.

Practicallyallsolar thermalplantshaveeitherstoragesystemsorallowhybridisationwithother technologies.Thishelpstoregulateproductionandguaranteethatpowerisavailable,especiallyduringpeakdemandhours.

Hybridisation

ForSTEplants,hybridisationisthecombinationoftheuseofsolarenergywithheatcomingfromothersourcessuchasbiomassorconventionalfossilfuels.Theadvantagesofhybridisationare:

n Makingitpossibletoconvertthecollectedsolarpowerwithhigherefficiency;n Ensuringdispatchabilitytocoverpeakdemandanddeliverenergyondemand;n Overcomingthevariabilityofthesolarradiation;n Reducingstart-uptime;andn Minimisingthegenerationcost(LCOE).

Steamproducedwithsolarenergycanbeusedtoboostthecapacityofaconventionalfossil-fuelpowerplant,savingfuel,reducingCO2emissionsandachievinghighersolarenergyconversionefficiencies.

AllSTEplants(PTs,CRandLF),withorwithoutstorage,canbeequippedwithfuel-poweredbackupsystemsthathelptopreparetheworkingfluidforstart-up,regulateproductionandguaranteecapacity(Figure8).Thefuelburners(whichcanusefossilfuel,biomass,biogasor,possibly,solarfuels)canprovideenergytotheHTForthestoragemediumordirectlytothepowerblock.InareaswhereDNIislessthanideal,fuel-poweredbackupmakesitpossibletoalmostcompletelyguaranteetheproductioncapacityoftheplantatalowercostthaniftheplantdependedonlyonthesolarfieldandthermalstorage.Providing100%firmcapacitywithonlythermalstoragewouldrequiresignificantlymoreinvestmentinalargersolarfieldandstoragecapacity,whichwouldproducerelativelylittleenergyovertheyear.

20-Source:ESTELAPositionPaper'TheEssentialRoleofSolarThermalElectricity:ArealopportunityforEurope'October2012.

23

25

27

29

31

33

35

37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

200

400

600

800

1,000

1,200

1,400

1,60037,000

35,000

33,000

31,000

29,000

27,000

25,000

23,000

------GlobalDemandMWh(left) ------STEProductionMW(right)

Hours of the day

Days of the Month

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0

500

1,000

1,500

GW

h

5

Page 51: ESTELA Strategic Research Agenda 2020-2025

51december 2012

Fuelburnersalsoboosttheconversionefficiencyofsolarheattoelectricitybyraisingtheworkingtemperaturelevel;insomeplants,theymaybeusedcontinuouslyinhybridmode.STEcanalsobeusedinhybridmodebyaddingasmallsolarfieldtofossilfuelplantssuchascoalplantsorcombined-cyclenaturalgasplantsinso-calledintegratedsolarcombined-cycleplants(ISCC)ThereareoperatingexamplesinseveralnorthernAfricancountrieswithsolarfieldsof25MWeequivalentand,intheUnitedStates,thereareexampleswithalargersolarfield(75MWe.)Apositiveaspectofsolarfuelsaversistheirrelativelylowcost:withthesteamcycleandturbinealreadyinplace,onlycomponentsspecifictoSTErequireadditionalinvestment.

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

FIGURE8:Combination of storage and hybridisation in a solar plant

50 MW

40

30

20

10

00 2 4 6 8 10 12 14 16 18 20 22 24

Fuel backup

Firm capacity line

Solar direct

TimeofdaySource: Geyer, 2007, SolarPACES Annual Report

To storage

From storage

5

Page 52: ESTELA Strategic Research Agenda 2020-2025

52 STrATegIc reSeArcH AgendA 2020-2025

Otherapplications(desalination,processheat,solarfuels)

Thethermalenergygeneratedinsolarthermalpowerplantscanalsobeusedforindustrialpurposesotherthantheproductionofelectricityandthusenhancetheapplicabilityoftheplants.Oneconceivableoptionwouldbethecombinationofelectricityproductionwiththedesalinationofseawater.Particularlyinaridcoastalareas,itwouldbeaninterestingperspectivenotonlytogenerateelectricitybuttomakedrinkingwaterthatisoftenscarceintheseareasavailableaswell.

Furthermore,theplantscanalsoprovidesteam,heatorcoolingforindustrialpurposes.Oneexampleistheuseofconcentratingsolarthermalsystemsforthegenerationofsteamtoenhanceoilrecovery,asprovedinacommis-sionedfeasibilitystudyforaplantinthesultanateofOman.Here,hotsteamisinjectedintothemostlyexploiteddepositsunderhighpressureinordertominetheremainingresources.Previously,fossilfuelsweremainlyusedforthegenerationofsteam.However,ifthesteamisprovidedusingsolarthermalmethods,emissionsthatareharmfultotheclimatecouldbereducedsignificantly.

Regardingproductionoffuelsfromconcentratedsolarpowertherearebasicallytworoutes.ThefirstoneistheelectrochemicalroutewhichusesthesolarelectricitygeneratedbySTEplantstopoweranelectrolyticprocess.Anotherapproachisthethermochemicalroutewhichusessolarheatathightemperaturesfollowedbyanendo-thermicthermochemicalprocess.Solarfuelscouldbethemeanstostoresolarenergytoenhancetheperformanceofasolarthermalplantandtheycouldalsobethemeanstotransportthecollected(andtransformed)solarenergytositesthatmaybefarfromthecollectorfields.

Stat

e-of

-the

-art

of

STe

tech

nolo

gies

5

Page 53: ESTELA Strategic Research Agenda 2020-2025

STe mAIn cHALLengeS On InnOVATIOn

53december 2012

Page 54: ESTELA Strategic Research Agenda 2020-2025

6.1TheSTEEuropeanIndustrialInitiativeTheStrategicEnergyTechnologyPlan(SET-Plan)isthemajorinstrumentelaboratedbytheEuropeanCommissiontostrengthenandgivecoherencetotheoverallEuropeanefforttoaccelerateinnovationincuttingedgeEuropeanlowcarbontechnologies.Indoingso,theSET-Planwillfacilitatetheachievementofthe2020targetsandthe2050visionoftheEnergyPolicyforEurope.InitsCommunicationentitled‘AEuropeanStrategicTechnologyPlan’21, theEuropeanCommissionproposesto launchtheEuropeanIndustrial Initiatives(EII) toacceleratethedevelopmentanddeploymentofcost-effectiveLowCarbonTechnologies.EIIshavelaunchedinsixsectors:Solar,Wind,Bioenergy,Grid,CarbonCaptureandSequestration(CCS)andNuclear.The“SolarEuropeInitiative”encompasseslarge-scaledemonstrationprojectsforbothPVandSTE.

InJuly2009,ESTELAreleasedits“EuropeanSolarThermo-ElectricIndustryInitiative”(STEII)contributingtotheSET-PlanoftheEuropeanCommission.AfinalversionincludestheKeyPerformanceIndicators(KPIs),developedbyESTELAincollaborationwiththeSETISteam.

TheproposedSTEIIhasbeendevelopedforthepurposeofachievingtwomaingoalsfortheEU:

n TocontributetoachievetheEUtargetsfor2020andbeyondbyimplementinglarge-scaledemonstrationprojectstobecarriedoutbyindustryandaimedatincreasingthecompetivenessofthesolarthermalelectricitysector.

n ToenhancemarketpenetrationandtoconsolidatetheEuropeanindustrygloballeadershipthroughoutmedium-termresearchactivitiesaimedatreducinggenerationandoperationcostsinsolarthermalelectricitygenerationplants.

Inparticular,theSTEindustryinitsSTE-EII(EuropeanIndustrialInitiative)22hasidentifiedthreetechnologyobjectivestobeconsideredforfunding:

n Increaseefficiencyandreducecostsn Improvedispatchabilityn Reduceenvironmentalimpact

Increaseefficiencyandreducecosts

ThisobjectiveisofutmostimportanceforthedevelopmentofSTEtechnologiesandtofurthertheirmarketpenetra-tion.Manyimprovementsneedtobeachievedthroughtechnologicaladvancementsoncomponentsandcycleefficiency,creatinganewgenerationofefficientsolarthermalpowerplants.ThisaspectcannotbedissociatedfromasubstantialreductionofinvestmentandO&Mcosts,anoptimisationoftheinformationandcommunicationtechnologies,abetteruseoftheinstallations(betteruseofland,largerplants)andmoreadequatetermsofcredit(lowerinterestrates,lesstechnicalrisks).

21-COM(2007)723:CommunicationfromtheCommissiontotheCouncil,theEuropeanParliament,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegions–AEuropeanStrategicEnergyTechnologyPlan(SET-Plan)

22-Source:ESTELA.‘SolarPowerfromEurope’sSunbelt’,AEuropeanSolarThermo-ElectricIndustryInitiativeContributingtotheEuropeanCommission‘StrategicEnergyTechnologyPlan’,June2009

23-Source:A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

FIGURE9:LCOE comparison of solar thermal energy versus conventional sources 23

STrATegIc reSeArcH AgendA 2020-202554

STe

mai

n ch

alle

nges

on

inno

vati

on

6

0

5

2010

2012

2015

2020

2025

10

15

20

25

30

12-14

Gas price€ 22/MWh >€ 40/MWh >€ 55/MWh >€ 60/MWh

12-15 13-16

-----Hardcoal Combinedcyclegasturbine Solar-thermal:dispatchable*

* Includes cost and efficiency improvements and economies of scale

Source: A. T. Kearney analysis

Page 55: ESTELA Strategic Research Agenda 2020-2025

55december 2012

STe

mai

n ch

alle

nges

on

inno

vati

on6

Studiesperformedtoanalysehowthesolarfieldsizeinfluencesthespecificinvestmentcostin€/m2haveshownthatthecurrentcapof50MWeimposedinSpainforSTEplantsisaratherartificiallimitanditisbynomeansatechnicallimit.AsPTtechnologyisverysensibletotheeffectofscaling-up,thedesignofbiggersolarfieldscouldleadtoasignificantcostreduction.

Themaximumpoweroutputofasingleplantistheoreticallynotlimitedbyanyphysicalconstraint.Inpractice,thepressuredropoftheHTFdoesimplythatthereisanoptimumscaleandthiseffectivelylimitsthesizeofthesolarfield.However,STEplantsofmorethanonehundredMWwithasinglepowerunitarebeingdesigned.

Improvedispatchability

Dispatchabilityisastrongadvantageoverotherrenewablesources.Itallowsflexibility,financialsavings,andcompetitionwithfossilfuels.Theimprovementofthethermalenergystoragesystems(throughimprovementsinfillermaterials,transferfluids,phase-changesystems,“ultra”capacitors)andthehybridisationwithotherpowerplantswillleadtoanincreaseinthehoursofproductionandhaveadirectimpactontheoverallplantperform-anceandeconomics.

ThedispatchabilityofSTEplantscanbefurtherincreased,whenthinkingintermsofsystemcollectionsratherthanindividualplants,byconnectingtheplantsinaninter-continentalgrid,increasingtheflexibilityandavailabilityofthepowersupplyondemand.

Reduceenvironmentalimpact

Examplesofmeasurestoreduceenvironmentalimpactarethedevelopmentofnewcoolingsystemswithlowerwaterneeds(steamcycles)andthedeploymentofenhanceddrycoolingsystems.Abetteruseoflandandmate-rialsandthedesalinationandpurificationofwaterwillalsocontributetofulfillthisobjective.

Page 56: ESTELA Strategic Research Agenda 2020-2025

STrATegIc reSeArcH AgendA 2020-202556

STe

mai

n ch

alle

nges

on

inno

vati

on

TABLE3:Solar power cost reduction factors

Components Systems ConfigurationsSolarreceivers:linearandcentral Receptorsystems:hotairtogasturbine HybridisationMirrors HTFsystems:directsteamgeneration Dualelectricitywater-plantsNewHTFs StorageSystemsStoragemedia Coolingsystems:hybridcoolingsystemsSupportingstructuresTrackersAuxiliarysystems:pumps,valves

6.2UpcomingchallengesThefirstobjectivedescribed in thepreviouschapter iscrucial toallelectricitygeneratingrenewableenergysystemsiftheyaretobecompetitivewithconventionalpowerplants,eveniffundingisreducedorphasedoutinthefuture.Thesecondobjectiveisrelatedtothe“quality”oftheelectricitysupply,i.e.toprovidegridstabilityandavailabilityondemand.ThesearetwoofthemajoradvantagesofSTEplantsthankstotheirthermalinertia,storabilityandtheirabilitytooperateinhybridmode.ThethirdobjectiveislargelyimposedbytheSTEindustryonitself,becausetheindustryanditsmarketacceptancearedrivenbythegoaltoachievesustainability,andtoeliminateorreducethecostofexternalitiesiskeytoachievingsustainability.

Themeasurestakentomeettheseobjectivesaffectcomponents,systemsandconfigurations.Table3illustrateswheremeasuresarebeingtakentoachievetheobjectivetoreducecosts.AdetaileddescriptionincludingKPIsisgiveninANNEXI:KeyPerformanceIndicators.

6

Page 57: ESTELA Strategic Research Agenda 2020-2025

STe

mai

n ch

alle

nges

on

inno

vati

on

FIGURE10:From innovation to commercial operation

ThedifferentSTEtechnologiespresentedinchapter5representdifferentstagesofmaturity,sincePTsandCRsaswellasLFsinanearlystagealreadyexistascommerciallyoperatingpowerplants.Barringsomeunforeseenbreakthrough,therefore,thechallengesforthesetechnologiescanbeaddressedthroughincrementalinnovation,althoughthe“increments”maybequiteimportant.Thesituationisdifferentforparabolicdishes,however,sincesofarthesehaveonlybeentestedasdemonstrationplants.ForPD,therefore,thefirstchallengeistoprovethatplantsbasedonthistechnologycanalsobeoperatedcommercially.

57december 2012

The reflector concentrates the sunlight to a receiver tube, through which the HTF is circulated.

✔ 30 years✔ Utility scale power

Heliostats follow the sun to reflect the sunlight to the top of a tower where the HTF is heated.

✔ 5 years✔ Utility scale power

Rows of mirrors concentrate the sunrays onto a receiver tube where the HTF is pumped.

✔ Demonstration✔ Heat applications

A group of mirrors with a parabolic shape reflect the sun to an engine located in the focus point

✔ Demonstration✔ Distributed power

Description

Track recordApplication

Next challenges Incrementalinnovationandpossiblebreakthroughs

PT CR LF PD

Commercialoperation

Commerciallyprovenforutility

scalepower

6

Page 58: ESTELA Strategic Research Agenda 2020-2025

58 STrATegIc reSeArcH AgendA 2020-2025

STe

mai

n ch

alle

nges

on

inno

vati

on

Incrementalchanges(suchasnewcollectordesignsinanexistingcollectorfieldorinnovativemirrorcleaningmechanisms)canhelp improve theperformanceofanSTEplantandmeet theobjectivesalreadydescribed.However,veryoften,thiskindofshorttermdemonstrationisnotpossibleincommercialpowerplants,sincesomeinnovativecomponentsandsystemscannoteasilybeincorporatedintoanexistingpowerplant.Togivejustoneexample,itwouldbealmostimpossibletotestadirectsteamgenerationsysteminaplantwhichusesanoilheat transferfluidsystem.Therefore,besidesshort termdemonstrationof innovativecomponentsandsystems,akeyneedintermsofR&DfundingtoachievecommerciallyviableSTEplantsisthefinancingoffirst-of-its-kindcommercialpowerplantswithinnovativetechnologies.Thesepowerplantsaretypicallylargerthan“pure”R&Ddemonstrationplantsand,thus,requiresignificantlymoreinvestments,buttheyaretoosmalltooperateasefficientlyascommercialpowerplants(cf.diagrambelow).

FIGURE11:Financing first commercial plants for breakthrough technologies

Demo Plant First Commercial Commercial PlantSize 1-5MW 5-20MW >20MWCost 5,25Me 25-100Me >100Me

Financing Instrument

BalanceSheetR&DFunding

ProjectFinancingFeed-in-Tariffs/PPAs

n Essential to achieve bankability, especially for breakthrough technologies

n Risk too high for individual CSP players

n Suboptimal scale to operate efficiently

n R&D funding and FiT exclude each other

Asaconsequence,financialinstrumentsareneededtohelprolloutbothincrementalandbreakthroughinnovation.Inaddition,risksharingmechanismsforfirst-of-its-kindandcommercialpowerplantsarerequired.

ToclarifytheprioritiesforR&DeffortsinSTEplants,itisusefultodividetheobjectivesforinnovationintoshort-mid-andlong-term.Theindividualtargetstoaddresseachobjectivearedescribedindetailinthefollowingchapters.

6

Page 59: ESTELA Strategic Research Agenda 2020-2025

59december 2012

Page 60: ESTELA Strategic Research Agenda 2020-2025

nthistimeofgrowingconcernforfutureinvestment,theStrategicResearchAgendaappearslikeanecessaryandinevitablestepforsettingupthebaselinesfortheshorttolongtermresearchforSTEtechnology.Itstargetistoidentifyclearlythebottlenecks,milestonesandchallengesofthisemergingtechnologythroughtheaccomplishmentofthethreeobjectivesoutlinedabove:toincreaseefficiencyandreducecosts,toimprovedispatchabilityandtoimprovetheenvironmentalprofile.

STEresearchprioritytopicsaredefinedinthefollowingchapters,orderedbyobjectiveandtechnology,withdedicatedchaptersforcross-cuttingissues.Theyincludestorage,hybridisationandenvironmentalprofile.Atableattheendofeachchapterbringstolighttheobjectivestobeachievedintheshort(2015),mid(2020)orlongterm(2025andbeyond).Thetablealsoshowstheassociatedtargets.

Thesetechnicaltopicsmustbeaddressedwithdueconsiderationtothestandardisationaspectsthathavebeendescribedinchapter3.4.Anefficientandconcretereductionofcostsisnotpossiblewithouttheestablishmentofclearinternationalstandards.

7.1Objective1:Increaseefficiencyandreducegeneration,operationandmaintenancecostsReductionofcostisthekeypointforthefuturelargescaledeploymentofSTEplants.Itcanbeachievedbyincreasingtheefficiencyofthesystems,reducingthecostsoftheequipmentandloweringO&Mcosts.Certainlytheircombinationwillprovideafurtherreductiononthecostsofthegeneratedelectricity.

Largersizeofplantsalongwithscalefactorsincomponentmanufacturingandthelessonslearnedinassemblyofcomponentsandconstructionofplantswillcertainlycontributetoachievethecostreductionobjective.

InourpreviousapproachontheSEII,increasingefficiencyandreducingcostswereconsideredindependently.However,theyaresointerconnectedthatwehavepreferredtopresentthemjointlyinthisStrategicResearchAgenda.

TheSTEindustryiscommittedtopushtechnologicalimprovementinitiativesalongtheselinesinclosecollabora-tionwiththetechnologicalresearchcentres.

By2015,whenmostoftheplannedimprovementsaretobeimplementedinnewplants,energyproductionboostsgreaterthan10%andcostdecreasesupto20%areexpectedtobeachieved.Furthermore,economiesofscaleresultingfromtheincreaseoftheplantsizewillalsocontributetoreducetheCAPEXperproducedunitofenergyupto30%.STEdeploymentinlocationswithhighsolarradiationwillfurthercontributetoachievingcostcompetitivenessbyreducingLCOEbyupto25%.

Allthesefactorscanleadtoelectricitycostsavingsofupto30%by2015andupto50%by2025,thusreachingcompetitivelevelswithconventionalsources(e.g.coal/gaswithLCOE<10c€/kWh).

FIGURE12:Sensitivity analysis of several parameters on the LCOE of a 50 MWe PT plant with 7.5 hours of thermal storage (Reference case: plant located in Southern Spain, 2011)

60 STrATegIc reSeArcH AgendA 2020-2025

7

Stra

tegi

c r

esea

rch

Agen

da

60 STrATegIc reSeArcH AgendA 2020-2025

0

10

20

30

40

50 %

0 10 20 30 40 50 60 70 %

Reductionoffixedchargerate Incrementofoverallplantefficiency Lifetimeincrease Reductionofsolarfieldcost ReductionofO&Mcosts

Parameter variation

LCO

E re

duct

ion

Page 61: ESTELA Strategic Research Agenda 2020-2025

61december 2012

Stra

tegi

c r

esea

rch

Agen

da7

Figure12showstheimpactofchangesinseveralcharacteristicsontheLCOE.Theitemsrepresentedinthegraphandtheirreferencevaluesare:

n Plantlifetime(referencevalue:20years)n Solarfieldspecificcosts(referencevalue:225€/m2)n Plantoperationandmaintenancecosts,excludingthepowerblock(referencevalue:40€/MWh)n FixedChargeRate(referencevalue:0.0682)n Overallplantyearlyefficiency(referencevalue:15.2%)

AlthoughvaluesrepresentedinFigure12arefora50MWePTplantwith7.5hoursofthermalstoragesystemwithmoltensalt,sensitivitiesshowninthisgraphareverysimilartothevaluesfora50MWeplantwithoutstorage.

ThetwoparametersshowingagreaterinfluenceontheLCOEarethefixedchargerate(financialcosts)andtheoverallplantefficiency.TheimpactofareductionoftheO&Mcosts(€/MWhe)andofthespecificsolarfieldcosts(€/m2)haveasmallerinfluence.

Thelifetimeoftheplanthasanintermediateimpact,andanincreasefrom20to30yearswouldreducetheLCOEbyabout17%.Thisnumbershowsthegreatimportanceofimprovementsonthedurabilityofcomponentstoextendlifetime.

Today,aquickevolutionthroughthelearningcurvecanbeobservedintheSTEtechnology.Mostofthenewplantswhichhavebeenrecentlyconnectedto thegridwereconstructedinSpainrequiringFiTswhichweresettledin2009atalevelofaround27c€/kWh.OngoingprojectswhichhavebeenawardedoncompetitivebasesinIndiaorMoroccoorwhichresultedonbilateralPPAnegotiationsbetweenutilitiesandpromotersintheUnitedStatesshowpromisingresults,inaccordancewiththeA.T.Kearney/ESTELAcostreductionforecast.

Thedevelopmentof the topics included in thisStrategicResearchAgendaof theSTE industrywillcertainlycontributetoreachingthesegoals.

7.1.1Cross-cuttingIssues

7.1.1.1 MirrorsSincemirrorsarekeyelementsinanySTEplant,improvementsreducingthemanufactureormaintenancecostsassociatedwithmirrorswillbeimportanttoachievethepursuedLCOEreduction.

Thestate-of-the-artforthereflectivesurfaceofsolarreflectorsisrepresentedbyeitherfacetsofthick(4-5mm)glassmirrorswithstructural functionsor thin (0.8-1.1mm)glassmirrorsattached toastructuralsurface(fibreglass,composite,metallic…)thatprovidesshapeandstiffness.Whilethefirstsolutioniscurrentlyusedinallfourtechnologiesconsideredinthisdocument(PTcollectors,heliostats,LFandPD),thinglassmirrorshavebeenusedmainlyinPD.Theuseofotherreflectivesurfaces,suchassilverpolymerfilms,ispossiblebutitwillrequireprovendurability.

Light reflective surfacesTheuseoflightweightreflectivesurfaceswillresultincheapermirrors.However,alternativesolutions to thickglassmirrorsmustbeat leastcomparableintermsofdurabilityandreflectance.

Glass reflector with anti-soiling coatingMirrorwashingisoneofthemostfrequentmaintenanceactivitiesatthesolarfieldofsolarthermalpowerplants.Anyimprovementthatreducesthenumberofwashingswouldalsoreducenotonlythemaintenancecostsbutalsotheplantwaterconsumption,whichisacriticalfactorforthecommercialdeploymentofSTEplantsindesertareas.

Mirrorsamplesexposedtooutdoorconditionstoevaluateanti-soilingcoatings

(CIEMAT-PSA,PlataformaSolardeAlmería)

Page 62: ESTELA Strategic Research Agenda 2020-2025

62STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

Mirror glass with higher solar transmissivityThesolartransmissivityoftheglasscurrentlyusedforsolarreflectorscanbeimproved.Improvementoftransmis-sivitywillimprovethemirrorreflectivityandloweropticallossesforthefourSTEtechnologies;inaddition,forPTandlinearFresnelsystems,itwillalsoimprovetheoverallefficiencyofthereceivertubesbyimprovingthesolartransmittanceoftheirglasscover.

7.1.1.2 ReceiversThereceiveristhekeycomponentofaSTEplant,becauseitisinthereceiverthattheconcentratedsolarradiationisconvertedintothermalenergy.ThereceiverefficiencyiskeyfortheoverallSTEplantperformance.Therefore,anyimprovementthatincreasestheefficiencyofthereceiverwillhaveasignificantimpactonthefinalLCOE,providedthattheadditionalcostsassociatedwithsuchimprovementareaffordable.

Selective coatings with better optical propertiesThesolar-to-thermalconversionefficiencydependsgreatlyon theopticalpropertiesof the receiverselectivecoating.Theopticalpropertiesofselectivecoatingscurrentlyavailableforevacuatedtubes(usedinPTandinLFcollectors)areexcellent,buttheiremittanceandabsorptancepropertiescouldstillbeimproved.However,fornon-evacuatedtubes,therearenocommerciallyavailablecoatingsforoperatingtemperaturesabove400°C.ThislimitationisparticularlysevereforlinearFresneltechnologies.Also,fortowerapplications,selectivecoatingswhicharestableatatmosphericconditionsattemperatureshigherthan600°Carenotavailableyet.

7

Page 63: ESTELA Strategic Research Agenda 2020-2025

63december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.1.1.3 Heat transfer fluidsThethermaloilusednowadaysasworkingfluidinmostPTcollectorslimitsthemaximumworkingtemperature(398°C).Italsoposessomeenvironmentalhazardsduetopossibleleaksandfires.Thesefactorsincreasetheoperationandmaintenancecostsandtheylimitthemaximumpowerblockefficiency.

Synthetic oil with new chemical formulation

Theperformanceofexistingsolarplantsusingoilasheat transferfluidcanbeenhancedifanewchemicalformulationisdevelopedthatreducesthechemicaldegradationwithtime.Newfluidswithlowerviscosityatlowtemperaturecanbestudied,avoidingtheneedtopreheatthefluidandtomaintainitaboveaminimumtemperature.TheadditionofPCM,nanoparticles(nanocrystals)orfullerenesaresomeofthepossiblesolutions.Binarysystemssuchasionicliquid-carbonnanotubescanalsobeconsidered.

Low melting-temperature salt mixtures

Moltensalt,mostcommonly,aNa/K60/40wt%24nitratesmixtureusedasathermalstoragemediuminSTEplants,wouldbeanalternativetothermaloilasthesaltremainsstableattemperatureshigherthan400°C.Onedrawback,however,isthemeltingtemperatureofthesaltmixturenormallyusedintheTES,whichliesbetween220and240°C.Thismeansthatthetemperatureinthesolarfieldmustalwaysbekeptabovethisrangetopreventthesaltfromsolidifyingintheabsorbertubes,orthatsomealternativesolutionmustbefound.

Therefore,thedevelopmentofnovelmoltensaltmixtureswithalowermeltingtemperature(i.e.<100°C)andwhicharethermallystableupto450°C(suchas.Na/K/Canitratesmixture)orhigher(suchasNa/K/Linitratesmixture),andwhichhaveanacceptablecostwouldbeasignificantimprovementforPTandcompactlinearFresnelsystems.Suchmixtureswouldallowmoreefficientthermalstoragesystemsbasedonatwo-tankmoltensaltdirectsystem,becausethecurrentoil/moltensaltheatexchangerswouldnolongerbeneeded.Howeverifthecostofthenovelmixtureishigh,itwouldbenecessarytomaintaintheintermediateheatexchanger(indirectsystem)usingthemixtureonlyinthesolarfield–exactlyaswiththeoil.

ForCRplants, the reductionof themelting temperaturemustbeaccomplishedwithout reducing the thermalstabilityat600°Cormore.Thismeansthatameltingtemperaturelowerthan100°Cmustbecomplementedwithagoodthermalstabilityuptoatleast600°C.Otherwisethelowerovernightthermallossesduetolowersalttemperatureswouldnotcompensateforthelowerplantefficiencyduringsunlighthoursandthenetimpactontheyearlyplantefficiencywouldbenegative.Therefore,differenttargetsmustbedefineddependingontheSTEtechnologybeingconsidered.

Pressurised gas

Theuseofpressurisedgas(air,CO2,etc.)forbothPTandCRplantsshouldbefurtherinvestigated.Inspiteoftheirpoorerheattransferpropertiespressurisedgaseshavenotemperaturelimitsandnoimportantconstraintsregardingthereceivertubematerials.Althoughpressurelossesarehigherwithpressurisedgasthanwithliquids,thisproblemcanbesignificantlyovercomewithanoptimiseddesignofthepiping.FurthermoreusingpressurisedairastheworkingfluidforCRplantswouldmakethesolarcombinedcycleconceptpossiblewithsomesupportofgasfiringbeforetheairentersthegasturbine,andthishasthepotentialtoresultinaconsiderableincreaseintheconversionefficiencyfromsolarenergyintoelectricity.

Direct steam generation

Theuseofwater/steamasworkingfluidinPT,CRorcompactlinearFresnelSTEplantshasbeenwidelystudiedduringthelasttwodecades.ItsadvantagesanddisadvantageshavebeenevaluatedandcomparedtootheroptionsforcommercialSTEplants(moltensaltorairinCR,thermaloilinPTorinlinearFresnelsystems).ForPTplants,inparticular,costassessmentsperformedrecentlyhaveshownthata6-7%LCOEreductioncanbeachievedbydirectsteamgeneration(DSG)incomparisonwithoptionsbasedonheatingupthermaloilinplantswithoutthermalstorage.

Peculiaritiesduetotheexistenceofatwo-phaseflowinthereceivertubesintroducesometechnicaluncertain-ties,relatedtocontrolsinparticular,thatmustbefullyclarified.AlthoughthetechnicalfeasibilityofDSGinPT,CRandlinearFresnelplantshasbeenalreadyproven,therearemanyaspectsforoptimisationthatmustbefullyinvestigatedtoassessthecommercialpotentialofDSG.

24-Na/K60/40wt%:Percentageinweightof1stcomponent/2ndcomponentofthemixture

7

Page 64: ESTELA Strategic Research Agenda 2020-2025

64

Development of high pressure/temperature absorber tubes for direct steam generation DSGtechnologyallowsavoidingtheuseofanintermediateHTFbetweenthesolarfieldandtheconversioncycle,withapotentiallybeneficialeffectonplantcosts.Highefficiencysteamcyclesarecharacterisedbyhighsteamtemperatureandpressure.Theycanbeusedprimarilyinlineartypeconcentrators(PTandlinearFresnel),althoughtheremayalsobesomepotentialforCRapplications.DSGtechnologyusesthewater/steamfluiddirectlyintheabsorbertubes.Inordertohaveagoodconversionefficiency,steamcycleconditionsarerequiredwithpressureshigherthan100barat500°Cormore.Absorbertubesaretobebuiltaccordinglyandspecialcoatingscouldberequired.

7.1.1.4 StorageThepotentialtostorethermalenergytofollowthedemandisoneofthemostimportantadvantageofSTEcomparedtoPV.EnhancingthisfeatureatthelowestpossiblecostisessentialtoincreasetheshareofSTEinthefuture.

Advanced high temperature thermal storage systemsThetwo-tankmoltensaltconceptisprovenandreliable.However,duetosaltstability,themaximumoperatingtemperatureislimitedtoaround550°C.Therefore,newmaterialsandconceptsneedtobedevelopedtoprovideefficientandeconomicstoragesystemwhenworkingat600°Corbeyond.

7.1.1.5 Control and operation toolsUser-friendlyequipmentandproceduresforon-sitecheckingofopticalandgeometricalqualityofsolarconcentra-torsconstituteanimportanttool.Veryefficientqualitycontrolproceduresareimplementedduringtheassemblyofthesolarcollectorsattheconstructionsite,butthereisalackofequipmentandproceduresallowinganeasyandquickevaluationoftheiropticalandgeometricalqualityaftertheirinstallationinthesolarfield.

Stra

teg

ic r

esea

rch

Agen

da

STrATegIc reSeArcH AgendA 2020-2025

LaboratoryatFraunhoferISEfortestingthedynamicaloperationofhightempera-turestoragesystemsandsmallsteamheatenginesforcombinedheatandpower.Thesteamoutputofasolarfieldusingconcentratingcollectorsissimulatedinrealtimebyagasheaterwithevaporator

7

Page 65: ESTELA Strategic Research Agenda 2020-2025

Stra

teg

ic r

esea

rch

Agen

da

Topics Objectives Parameter/Target/Action Short Mid Long

Mirrors Lightreflectivesurfaces

•Identifyanddeveloplight-weightanddurablereflectivesurfaceswithhighreflectance

Parameter:DurabilityDemonstratethedurabilityofaluminum,thinglassmirrorsandpolymerfilms

X

Glassreflectorswithanti-soilingcoating

•Reducemaintenancecostandplantwatercon-sumption=>enhancecom-mercialdeploymentofSTEplantsindesertareaswithhighsolarradiationlevels

Parameter:Waterrequirementformirrorwashing[m3/m2/y]Target:<0.015(waterconsumption=-50%insouthernSpain)LCOE=-0.1%

X

Mirrorglasswithhighersolartransmissivity

•Increasethereflectanceofglasssolarreflectorsandtheefficiencyofthereceivertubes

Parameter:Glasssolartransmittance(ρ)Target:ρ =0.93forglassthickness=3.5mmLCOE=-1%forCRLCOE=-2%PT&LF

X

Receivers Selectivecoatingswithbetteropticalproperties

•Increasesolar-to-thermalefficiency-ofthereceivertubesusedinPTandCLFRsystems-ofthetubularreceiversinCRsystems

Parameter1:Solaremittance(ε)Parameter2:Solarabsorbance(α)PTandLF:Target1:ε<0.1(450°C)Target2:α ≥0.96(vacuumconditions)LCOE=-1.5%CR:Target1:ε<0.25(600°C)Target2:α ≥0.94(stableatmosphericconditions)LCOE=-2%

X

Heat transfer fluids

Syntheticoilwithnewchemicalformulation

•Lowerthevalueofviscosityatlowtemperature

•AddPCM•Considerbinarysystems

Parameter:O&MsolarfieldcostTarget:5to10%reduction

X X

Lowmelting-temperaturesaltmixtures

•ReducethethermallossesovernightandtheriskforcrystallisationinthepipingofSTEplantsusingmoltensalt

=>reducemaintenancecosts

Parameter1:Meltingtemperature(T)andthermalstabilitylimitofthenovelsaltmixtureParameter2:OverallefficiencyηParameter3:Cost(C)

Target1:T≤100°C(goodthermalstabilityupto450°C)Target2:η =+4%(15.2%>15.8%)Target3:C<40%ofthecostofoilLCOE=-4%

X

Target1:T≤100°C(goodthermalstabilityT>=600°C)Target2:η =+6%(15.2%>16.1%)Target3:C<120%ofthecostoftheNa/K60/40wt%nitratesmixtureLCOE=-5.5%

X

Action:Implementationofasmallplant(<5MWe)toinvestigateO&Mrelatedissuesusingnewworkingfluidunderrealsolarworkingconditions

Pressurisedgas

•Increasesolar-to-electricefficiency

Parameter:overallconversionefficiency

DevelopmentofhighpressureabsorbertubesforDSG

•Developnoveldesignabsorbertubes,withsuitablemetalsandthicknesstowithstandpressureandtemperaturelimits

Parameter:Workingpressure(p)andtemperature(T)oftheabsorbertubesTarget1:p=125baratT=575°CforPTandLFTarget2:p=150baratT=700°CforCR

X

Storage Advancedhightemperaturethermalstoragesystems

•Developnewsystemsbasedonnewmaterialsornewconceptsinordertoobtaintechnicalandeconomicallyfeasiblesolutionsattemperaturesabove600°C

Parameter:Storageworkingtemperature(T)

Target1:T=600°CStorageconceptsforairreceiverswithT=800°Cby2015

X

Target2:StorageconceptsforairreceiverswithT>1,000°Cby2020

X

Control and operation tool •Developfaster&cheapertools&procedures

=>maximisesolarradiation=>improveefficiency

andLCOE

Parameter:Costandtimerequiredtoassesstheopticalqualityofalife-sizesolarconcentratorTarget:<2kW,<6h,totaluncertainty<1.5%(11.2x5.7mPTmodule,a120m2heliostat,oranyconcentratorwithanaperturearea≥30m2)Action:Implementationandevaluationofaprototypefortheintendedon-siteevaluationequipment

X

TABLEI:RESEARCHPRIORITIESFORCROSS-CUTTINGISSUES

Thecross-cuttingissuesthathavebeenidentifiedabovearesummarisedinthefollowingTable.Bythespecificparameters,itidentifiestargetsandactionitemswhereapplicable.

65december 2012

7

Page 66: ESTELA Strategic Research Agenda 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

66 STrATegIc reSeArcH AgendA 2020-2025

7.1.2ParabolicTroughCollectors

Parabolictrough(PT)isbyfarthesolarthermalelectricity(STE)technologywiththewidestcommercialimplementationtoday,withahighnumberofcommercialplantsinoperation.However,thepotentialfortechnicalandeconomicimprovementsisstillhighandasignificantcostreductionoftheelectricitygeneratedbythistypeofSTEplantsispossible.

AsignificantR&Deffortisstillneededtoincreaseefficiencyandreduceoperationandmaintenancecosts.Togetherwithbetterdurabilityandreliability,thiseffortshouldleadtoaveryimportantcostreductionoftheelectricityproducedbythistypeofSTEplants.

Researchprioritiesdescribedbelowfocusonefficiencyanddurability improvementsandon thereductionofoperationandmaintenancecostsforPTs.AssumingabaselineLCOEof0.21€/kWhin2011fora50MWeSTEPTplantwithoutthermalstorage,and0.19€/kWhforaplantwith7.5hoursofthermalstorage,successfuldevelopmentandimplementationoftheseimprovementswouldleadtoachievingtheLCOE-relatedKPIestimatedbyESTELAfor2013(15%LCOEreduction)and2020(45%LCOEreduction).

7.1.2.1 ReceiversReceivertubesarethekeycomponentofsolarfieldswithPTcollectors,becausetheoverallsolarfieldefficiencyverymuchdependsontheirperformance.Improvementsrelatedtoreceivertubesmayincreasetheoverallplantefficiencyifhigherworkingtemperaturesareachieved;andmayalsoreducetheO&Mcostassociatedtothereplacementofthetubesthemselves,ifahigherdurabilityisachieved.

Evacuated receiver tubes suitable for higher temperaturesEvacuatedreceivertubesusingcurrentdesign(i.e.,metallicbellows,glass/metalweldsandgetters)andsuitableforhighertemperatures(550°Catthesteelpipe,atleast)needthedevelopmentofnewselectivecoatingswithbetterthermalstabilitythanthecurrentchoices.Achievinganimprovementofthereliabilityanddurabilityoftheglasstometalweldsathighertemperatureswithoutincreasingthecostisalsoanimportantgoalwithinthisresearchpriority.

Innovative receiver tube designsThisR&Ditemincludesnotonly innovativereceiverdesignswithvacuumandwithoutglass-to-metalwelds (theweldsarethemostcriticalpartincurrentcommercialreceivertubes)butalsostandarddesignswithimprovementstoreduceH2-permeationthroughthesteelpipe.

7

Page 67: ESTELA Strategic Research Agenda 2020-2025

67december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.1.2.2 Heat transfer fluidsThermaloilistheHTF(heattransferfluid)usedatpresentinPTSTEplants.Thermaloilhastwomajordisadvantages:

n Lowthermallimitof398°C,becausetheoilsuffersahighdegradationrateifthistemperaturelimitisexceeded.Itimposesatemperaturelimittothesuperheatedsteamproducedforthepowerblockandlimitsitsefficiency;

n HighO&Mcostsduetotheneedforsafetyequipment(becauseoffirehazards)andofapurificationplant(theso-calledullagesystem).

ThesetwodisadvantagesofthermaloilmaketheconsiderationofdifferentHTFsadvisableinordertoreduceO&Mcostswhileincreasingthepowerblockefficiency.

Pressurised gasPressurisedgas(e.g.CO2,N2,air,etc.),isusuallysuitablefortemperaturesofatleast500°C,whichcanleadtohigherefficienciesthanthecurrentthermaloilusedinparabolictroughplants.Althoughpressurelossesarehigherwithpressurisedgasthanwithliquids(duetohigherspeedsinthegas),thisproblemcanbesignificantlyovercomewithanoptimiseddesignofthepiping.

The direct steam generation once-through option

InaDSG(directsteamgeneration)solarfieldoperatedinonce-throughmode,thepreheating,evaporationandsteamsuper-heatingsectionsofeachrowinthesolarfieldaredirectlyconnected:theendofeachprecedingsectionisdirectlyconnectedtothebeginningofthenextsectionwithoutanydeviceinbetween.

Sincetheonce-throughoperationmodedoesnotneedwater/steamseparatorsorwaterrecirculationsysteminthesolarfield,theinvestmentcostforaDSGsolarfieldtooperateinonce-throughmodeislowerthanifoperatingininjectionorrecirculationmodes.

Ontheotherhand,withtheonce-throughmode,technicalrequirementstoensureastablesteamtemperatureandpressureatthesolarfieldoutletintroducesomeuncertaintiesontechnicalandcommercialfeasibility.ExperimentalR&Disneededtoassessandaddresstheseuncertainties.

Direct steam generation: assessment of saturated steam vs. superheated steam

ADSGsystemcanproducesaturatedorsuperheatedsteam,andbothoptionshaveadvantagesanddisadvantages.Anin-depthstudyofbothoptionsunderrealsolarconditionsisimportant.

ThePSAHTFtestfacility,whichisusedforevaluationofnewcomponentsandparabolictroughdesigns(CIEMAT-PSA,PlataformaSolardeAlmería)

7

Page 68: ESTELA Strategic Research Agenda 2020-2025

68 STrATegIc reSeArcH AgendA 2020-2025

Molten saltTheuseofmoltensaltasHTFwouldhaveclearadvantageswhencomparedtothethermaloilcurrentlyusedinPTSTEplants.Fromanenvironmentalpointofview,sodiumandpotassiumnitrateshavebeenusedinagricultureasfertilizersforalongtime,andthemaximumworkingtemperaturewithanaffordablecorrosionrateinmetalliccomponentsishigherthan525°C.

Atpresent,thereareonlydemonstrationorexperimentalfacilitiesthatusethesamesaltmixture(Na/Kbinarynitratesmixture)asheatstoragemediumorasHTF.Themixturemakesitpossibletoreachupto550°Cinthesolarfieldinadirectsystem–moltensaltdirectlyheatedinthereceivertubesofthePTcollectors,withoutusinganyotherHTFbetweenthesolarfieldandthemoltensaltsystem.Duringoperation,thefluidcirculation(nightandday)avoidsanykindofproblems.However,duringmaintenanceoperations(whilecharginganddischargingtheloops,orwhencoolingorwarmingoftheloopsbyanauxiliaryheatingsystem)thelowerthefreezingtemperaturetheloweraretherisksofoccurrenceofsolidifiedsaltplugsinsidethepipingduringcoldperiods.

7.1.2.3 System components with enhanced propertiesTheoperationalexperiencegainedbycurrentSTEplantswithPTcollectorsshowsthatsomeimprovementsconcerningsystemcomponentsarenotonlypossiblebutalsoadvisablebecauseoftheirpotentialtoreduceO&Mcosts.Severalresearchprioritiesarerecommendedhere:

Interconnecting elements for receiver tubeInterconnectingtheelementsmaylowerthecostsassociatedwiththeball-jointsandflexiblehosesnowusedtoconnectthereceivertubesofadjacentPTcollectors,aswellastheinletandoutletofeveryrowwiththeheaderpiping.

Stra

tegi

c r

esea

rch

Agen

da

FIGURE13:Different interconnecting elements used nowadays

Ball-jointconnection Flex-hoseconnection

Autonomous drive units and local controlsThehydraulicdriveandlocalcontrolunitsbeingusednowinPTplantsrequireapowersupplyfromcentralswitch-boardcabinetslocatedclosetotheplantcentralcontrolroom.Thousandsofmetersofelectricalwiresarerunalloverthesolarfieldtosupplyelectricitytoeachdriveunitandlocalcontrol.Thousandsofmetersofcommunica-tionwiresarealsousedtosendandreceivecommandstoandfromthelocalcontrolstothemaincontrolroom.Uninterruptedpowersupplyisalsorequiredtoassuresafetyconditionsincaseofafailureintheconventionalpowersupply.DevelopmentofautonomousdriveunitsandwirelesscontrolsystemspoweredbysmallPVcellsandbatteries,similartothealreadydevelopedandpatentedforthe“AutonomousHeliostatConcept”,couldlowertheinvestmentcostwithoutpenalisingthereliabilityanddurabilityofthesystem.

7

Page 69: ESTELA Strategic Research Agenda 2020-2025

69december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.1.2.4 System size, component manufacturing and other improvementsThescale-upeffectisveryimportantinthetechnologyofPTcollectors,becausetheinfrastructureneededfortheon-siteassemblyofcomponentscanbeoptimised.SincetherearemanyelementscomposingaPTcollector,theoptimisation(e.g.automation)ofthemanufacturingprocesscanalsoplayasignificantroleinthefinalinvestmentcost,andthereforeontheLCOEofacommercialSTEplant.

Improved collector designsNewPTcollectordesignscouldleadtoasignificantreductionintheplantinvestmentcosts.Thiscostreductioncanbeachievedindifferentways,suchasincreasingthecollectorsizeandoptimisingthemanufactureandassemblyprocessestoreducemanpowerrequirements.

7.1.2.5 Control and operation strategyTheamountofthermalenergydeliveredbythesolarfieldcanbeincreasedwithoptimisedcontrolsystemsandastrategythatwouldmaximisetheamountofsolarradiationcapturedbythesolarcollectorsduringthesunlighthours.TheoperationalexperiencegainedbySTEplantsalreadyinoperationhasshownthatthesolarfieldoutputcanbesignificantlyincreasedduringdayswithsoftcloudtransientsifpropercontrolandoperationstrategiesareimplemented.

Solar field controlInexistingplants,thesolarfieldoutlettemperatureisusuallycontrolledbypartiallydefocusingsolarcollectorstochangetheamountofsolarenergycollectedandtransmittedtotheworkingfluid.Sincethispartialdefocusingreducesthesolarfieldactivecollectingarea,newcontrolapproachesbasedonthesolarfieldmassflowinsteadofthesolarfieldcollectingareawouldincreasetheamountofsolarenergycollectedatthesolarfieldincreasetheoverallplantefficiency.Developmentofnewadvancedcontrolandoperationstrategiesshouldthereforebebasedonthemaximisationoftheamountofsolarradiationcollectedduringbothcleardaysanddayswithcloudtransients.

Early detection of HTF leakageLeakagesareaconcerninPTplantsusingthermaloilastheworkingfluid.Theearlydetectionoftheseleakagesisthekeytoavoidspillsandtopreventpossiblefires.Oilspillsalsocausesoilcontamination:savingsinoperatingcostsandanimportantreductionofenvironmentalhazardscanbetargetedwithdedicatedinstrumentsandmethodstoalertaboutaleakage.

Auxiliary heating system for molten salt plantsTheuseofmoltensaltasworkingfluidinPTsolarfieldsrequirestheinstallationofanAuxiliaryHeatingSystem(AHS)forthereceivertubes,pipingandothercomponentsthroughoutthemolten-saltcircuit.AlthoughtheAHSshouldoperateonlyforshortperiodsduringtheyeartomeetthemaintenanceneedsofthesolarplantorinthecaseofaccidentsthatrequiretheAHSsupport,thecurrentinvestmentcostsofthisAHSarehigh,andsoistheassociatedelectricityconsumption.Thesecostsshouldbecompensatedbythelowercostsofthemoltensalt,i.e.,lowerpurchasingcostandlowerdegradationrate(longerlifetime),incomparisontooil.

7

Page 70: ESTELA Strategic Research Agenda 2020-2025

70 STrATegIc reSeArcH AgendA 2020-2025

Topics Objectives Parameter/Target/Action Short Mid Long

Receivers Evacuatedreceivertubessuitableforhighertemperatures

•Increasesolar-to-electricplantefficiency

Parameter:Maximummetaltemperature(T)withspecificoperatinglifewarranty

Target1:T=575°Cin2013LCOE:-5%

X

Target2:T=600°Cin2020LCOE:-6%

X

Action:Qualificationofprototypesatexistingsolartestfacilities

X

Innovativereceivertubedesigns

•ReduceO&Mcostsandincreasereceivertubeslifetime

Parameter:CommercialevacuatedreceiverswithlowerO&Mcosts

Target1:Evacuatedreceivertubeswithoutglass/metalwelds,lifetime25y

X

Target2:Commercialevacuatedreceiverswithglass/metalweldsandaH2permeation50%lowerthanin2011LCOE:areductionof1%intheyearlyrepositionrateofreceivertubeswouldreduceLCOEbyabout1%.(from200to198€/MWh)

X

Heat transfer fluids

Compressedgasses

•Increaseoverallplantefficiency

Parameter:MaximumworkingfluidoperatingtemperatureTarget:T≥500°C

X X

•Decreasethermalstoragesystemsize

•Reduceoilenvironmentalimpact

Action:achieveforsmallSTEplants(<15MWe)thesameLCOEasthatofbiggerplantswithRankinecycle

X

TheDSGonce-throughoption

•ReduceLCOE(Feasibilitytobeassessedunderrealsolarconditions)

Parameter:LCOE[€/kWh]Target:LCOE:-9%(ifsolarfieldconnectedtoaPCMstoragesystemof50€/kWhth)

X

DSG:assessmentofsaturatedsteamversussuper-heatedsteam

•Increaseworkingtempera-tureandreduceinvestmentcostduetoasimplificationoftheplantconfiguration

•=>LCOEreduction

Parameter:LCOE[€/kWh]Target:LCOE:-6%(w/oTES)-9%(wTES50€/kWhth)Action:implementationofasmallplant(between3and5MWe)abletooperatewiththetwosolarfieldoptions

X

Moltensalt •Increaseworkingtemperatureforahigherpowerblockefficiency

•Reducemoltensaltquanti-ties=>reducestoragecost

•Reducefirehazard•Reducethefreezing

temperature

Parameter:ηsol-elec/y&LCOE[€/kWh]Target:ηsol-elec/y:+5%(15.2%to16%)LCOE:-5%

X

System com-ponents with enhanced properties

Interconnectingelementsforreceivertube

•ReduceinvestmentcostsandO&Mcosts=>reducecostsofelectricity

Parameter:Investmentcosts(purchasingandinstallation)ofthenewinterconnectingelementsandguaranteedlifetimeTarget:2,500€percompleteinterconnectionbetweenadjacentcollectorsLCOE:-1%(25%costsreduction)

X

Autonomousdriveunitsandlocalcontrols

•ReduceinvestmentandO&Mcosts

Parameter:Totalcost(purchasing+installation)ofthedriveandlocalcontrolunitsTarget:4,000€LCOE:-1%

X

System size, component manufactur-ing and other improvements

Improvedcollectordesigns

•Developnewcollectorde-signswithlowercostsandmanpowerrequirements

Parameter:Solarfieldinvestmentcost[€/m2]Target:-25%comparedto2011LCOE:-6%

X

Control and operation strategy

Solarfieldcontrol

•Moreefficientcontrolandoperationstrategies=>increasesolartoelectricefficiency

Parameter:yearlyaverageηsol-th

Target:ηsol-th:+5%(consideringabaselinesolarfieldefficiencyof46%forPTplantsin2010)LCOE:-9%Action:ImplementationinacommercialPTplantbyreplac-ingtheoldcontrolsystembasedoncollectorsdefocusing

X

EarlydetectionofHTFleakage Target:Availabilityofaninnovativeearlyleakagedetectionsystem

X

Auxiliaryheatingsystemformoltensaltplants

•Developmorecost-effectiveauxiliaryheatingsystemsformoltensaltplants

Parameter:AHSspecificinvestmentcost(Ci)in€/m2andyearlyelectricenergyconsumptioncost(Cec)in€/m2ofsolarfieldforalifetimeofthesolarplantassumedtobe25years,comparedwiththecost(Coil)ofasinglechargeofoilinthesolarfieldforthenumberofsubstitutionsforeseeninthelifeofthesolarplant,assumedtobe4Target:Ci+Cec*25<Coil*4LCOE:-1%

X

TABLEII:RESEARCHPRIORITIESFORPARABOLICTROUGHCOLLECTORS

Stra

tegi

c r

esea

rch

Agen

da

7

Page 71: ESTELA Strategic Research Agenda 2020-2025

71december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.1.3CentralReceivers

Thecentralreceiver(CR)orsolartowertechnologyhasagreatpotential.BecauseofthehighconcentrationratiosthatcanbeachievedinCRsystems,thesecanoperateathightemperatures.Thehighoperatingtemperaturesmakeitpossibletoachievehighersolar-to-electricityconversionefficienciesthanthosepossiblewithothertechnologies.

TotransformtheCRpromiseintoreality,asignificantR&Deffortisstillneeded.Thiseffortshouldbetargetedtoimproveefficiencies,increasedurabilityandreliabilityandreduceinvestmentandO&Mcosts.Theresearchpriori-tiesdescribedbelowareintendedtoachievesubstantialprogressineachofthetechnologytargetssummedupinthetableattheendofthechapter.

7

Page 72: ESTELA Strategic Research Agenda 2020-2025

72 STrATegIc reSeArcH AgendA 2020-2025

7.1.3.1 Heliostat fieldGeneralissuesregardingmirrorshavebeenalreadydescribedinpoint7.1.1.

Asageneralcomment,itmaybestatedthatmechanicalrequirementsaremuchhigherinparaboliccurvedmirrorswheretemperedtechniquesareapplied.Inthecaseofheliostatfields,floatglass,acheapersolution,ispreferred.

However,reflectivityimprovementsareessential,andreflectivitymaybeimprovedbyreducingthethicknessofthefrontlayerofthemirrors.Incomparisonwithconventionalflatmirrormanufacturingtechniques,costandperform-anceconsiderationsmayjustifynewmanufacturingtechniquestoreducethethickness.

Optimisation of the heliostat field layouts YearlyaverageopticalperformancesofheliostatfieldsincurrentlargecommercialCRplantsareoftheorderof55%to60%.Inthoseplants,thesolarcollectionandconcentratingsystemsarecomposedofoneheliostatfieldandasingletower.Thereareotheroptionsthatshouldbeexplored,suchastheuseofmultiplesmallertowersdeliveringtheHTFtoacentralpowerblockwithstorage.

Wireless heliostat control systemsInordertotrackthesunproperlyandtohaveanautonomousheliostatfield,atwo-waycommunicationsystembetweenthecentralcomputer,thegroupcontrolboxesandtheindividualheliostatcontrolboxesmustbecontinu-ouslyinoperation.Somedevelopmentsareunderwaytoassessthefeasibilityofwirelessconnectionsbetweentheheliostatindividualcontrolboxes,thegroupcontrollersandthecentralcomputerforthiskindofautonomouspowersupplyandasafeandeffectivecontrolofthefield.

Theaimistodevelopsecureandreliablewirelessheliostatcontrolsystemswithalowoverallcost.

Optimisation of heliostat technologyState-of-the-artinheliostattechnologyisrepresentedbytheso-calledT-typeheliostatconfigurations.Thepotentialofdifferentdrivetechnologiesaswellasotherorientationsoftherotationaxesthatallowforimprovedperformanceand/ordenserheliostatpositioningshouldbeexplored.

7.1.3.2 ReceiverThereceiveristheheartofCRplantsanditsdesignisstrictlydependentonthechosenworkingfluid.Efficiencyanddurabilityaretheessentialconcernsofeachapproach.

Advanced high temperature receiversTheCRtechnologycanachievehighconcentrationratiosontothereceiver,usuallyoneorderofmagnitudehigherthanPTcollectors.Thehighertemperaturesintheworkingfluidmakehigherconversionefficienciesandbetteroverallperformancepossible.Handlinghighradiationfluxesathightemperaturesisaverychallengingissue,however,andfurtherdevelopmentisneededinnewreceiverconceptsandmaterials.Amongthosenewconcepts,directabsorptionreceiversofferthepotentialtoaddressthematerialchallengeswhilemakinghighefficienciesachievable.

New engineered materials for high temperature solar receiversResearchanddevelopmenttoimprovetheopticalandmechanicalperformanceanddurabilityofmaterialsisneeded.RecentdevelopmentsondesignsshowimprovedperformanceonmetallictubereceiversthroughimprovementsintheopticalandmechanicalfeaturesofthecoatingsandoftheInconelbasedalloys.

Reachingoutlettemperaturesof1,000°Cormorecanonlybeachievedbyusingceramicmaterialseitherinstuddedtubedesignsorpressurisedvolumetricreceivers.Headersandjoiningpartsoftheceramictubesareimportantchallengesthatneedtobeaddressed.

Stra

tegi

c r

esea

rch

Agen

da

7

Page 73: ESTELA Strategic Research Agenda 2020-2025

73december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.1.3.3 Heat transfer fluidsWorkingfluidssuitableforhighertemperaturesandradiationfluxesaretobeselected.

Molten salt, othersNewmoltensalt,liquidmetals,airorCO2aswellsteamathighertemperaturesandpressureshavetobeinvestigated.

Moltensaltappears tobe theshort-termnextstepwithworking temperaturesup to620°C; thesewillmakesupercriticalsteamcyclespossible.Ternaryfluidsratherthanthecurrentbinarymixturescouldprovideahighertemperaturerangeandlowercosts.

AirandCO2allowforworkingtemperaturesabove1,000°Candtheycanbetheprimaryfluidsforsolarcombinedcycles.

Directsuperheatedsteamatsupercriticalconditionscanbealsoconsideredforfuturepowerplants.Thecurrenttubepanelmustbecorrespondentlyadaptedtoovercomeimportantmechanicalandthermalissues.

Anotherpromisingoptionisparticlereceiversystems.Thesesystemsofferthepotentialforefficientoperationatevenhighertemperatures.Inthisoption,theheatedparticlesalsoserveasthestoragematerial.

7.1.3.4 New conversion cycles and systemsCurrentreceiveroperatingconditionsonlyallowforconventionalRankinecycles.Reachingmorethan600°Cinasupercriticalsteamturbinesataworkingpressureof25MPacouldprovideasignificantincreaseintheconversionefficiencyand,therefore,ontheplantperformanceandcost.

Usingairasprimarycoolantfluidinthereceivermakesitpossibletoconceiveasolarcombinedcycleandtoincreaseconsiderably theconversionefficiencyfromthermalenergy toelectricity.Nevertheless,acombustionchamberbetweentheairreceiverandtheturbinehastobedesignedinordertoreachandmaintainstabletheoptimalinletconditionsintothegasturbine.

Inaddition,newpossibilitiesmayappearintermsofhybridisationwithbiomass.Withgasifiedbiomass,forexample,onecanconceivearenewablecombinedcyclewherebiomassisusedfortheBraytoncycle(opencyclebasedonairorgasturbinesreachingveryhightemperatures)whilesolarenergyisusedfortheRankineone(aclosedcyclebasedonwater/steamturbines,operatingatlowertemperaturesthantheBraytoncycle).Gasifiedbiomasscouldalsobeusedinasolarcombinedcyclewithairreceiversinsteadofnaturalgas,recoveringthehightemperaturesfromtheBraytoncycleandenhancingtheoverallefficiency.

Advanced power cycles and thermal storage system integration schemesAdvancedpowercyclesandthermalstorageintegrationschemes,suchascombinedcyclesorsupercriticalsteamcycles,offergreatpotentialforperformanceimprovements,andtheymustbeexplored.

Advanced hybridisation schemes with other renewable energy sourcesAdvancedhybridisationschemeswithotherrenewableenergysourcessuchas integratedsolar-biomassplantsshouldtobeexplored.

BiomassboilersorHTFheaterscanbeeasilyintegratedintotheSTEdesigns.BiomasscanthenfunctioneitherasabackupofthesolarenergywhenheatingtheHTFindifferentoperationalmodesorasanalternativetothesolarradiationproducingorsupplementingthesuitablesteamconditionsfortheturbine.Althoughthistechnologycanbeconsideredstate-of-the-art,thereisnoSTEplantusingityet.Therefore,appliedresearchisalsoneededtooptimisetheintegratedoperation.

7

Page 74: ESTELA Strategic Research Agenda 2020-2025

74 STrATegIc reSeArcH AgendA 2020-2025

Secondary concentratorsSecondstageconcentratorsforheliostatfieldsaremeanttoproducehighersolarenergyfluxlevelsincomparisontothoseachievedatconventionalsolarfurnaces.Higherconcentrationfactorswillpermithigheroperatingtempera-tures;leadingtohigherthermodynamicconversionefficienciesorcreatingbetterconditionsforotherapplicationsofconcentratedsolarenergy(applicationssuchassolarfuelsproduction,thermo-chemistryathightemperatures,etc.).

Stra

tegi

c r

esea

rch

Agen

da

Secondstageconcentrationcanbeachievedat the topof thetower,butcanalsobecombinedwithotheropticalsolutionssuchasthebeam-downreflectorsthatredirecttheimpingingraysfromtheheliostatfieldontoareceiverplacedatgroundlevel.

Forlargeheliostatfields,effectiveopticalsolutionsarelikelytorequiretheuseofacombinationofsecondstageconcentrators(multiplesecondstageconfigurations)facingdifferentportionsofthefield.

For largeflux levels,coolingof thesecondaryand/or tertiarymirrors isstillan issuewhich requires furtherattention,inparticulariftheenergyabsorbedbythemirrorsproducestemperaturesthatmayleadtotheirquickdegradationordestruction.

Solarfurnacesorcavitiesatgroundlevelcombinedwithbeam-downsolutions,arealsodifferentintheirgeometryandconfigurationfromconventionalfurnacesattowerlevel,and,therefore,willconstituteanimportantR&Dtopicbythemselves.

FIGURE14:Typical secondary concentrator redirecting the impinging sun rays from the heliostat field to a receiver placed at ground level

ThenewVariableGeometryCentralReceiverTestFacilityattheCTAERpremisesinTabernas,Almería.Inthefirstphase,recentlycommissioned,thefacilityonsistsofafieldof13heliostatsmountedonmobilesupportsandatowerwitharotatingplatformontop,equippedtohostdifferenttypesofreceivers.ThefacilityhasbeencommissionedinOctober2012

7

Page 75: ESTELA Strategic Research Agenda 2020-2025

75december 2012

Topics Objectives Parameter/Target/Action Short Mid Long

Heliostat Field

Optimisationoftheheliostatfieldlayouts

•Exploreadvancedopticaldesigns(bio-inspired,multicavitiesorpoli-towers)

Parameter:ηSol-thTarget:ηSol-th=5%

X

Wirelessheliostatcontrolsystems

•Developmentofalowoverallcost,secureandreliablewirelessheliostatcontrolsystem

•Wideuseofwirelesssystembefore2020

Parameter:€/m2

Target:-5%X

Optimisationofheliostattechnology

•Developmentofadvancedstructureanddrivemechanisms

Parameter:€/m2

Target:-15%X

Receiver Advancedhightemperaturereceiver

•Improvetheperformanceanddurabilityofconventionalpressurisedtubereceiversworkingwithdifferentfluids

•ExploreadvancedCRdesigns(highefficiencyandhightemperatureheatpipe,particles,andcompressedgasreceivers)

•Exploresolarreceiverdesignsbasedontheuseofnewmaterialsandofmeta-materialswithimprovedthermalandopticalproperties

Parameter:Outletreceivertemperature(T)inairpressurisedmodulesTarget:T=1,000°C(Fortubes<8mandvolumetricmodules<50m2)

X

Newengineeredmaterialsforhightemperaturesolarreceiver

•Increasetubecoatingabsorptivity

•Reducetimedegradationeffect

•Increasemechanicalcharacteristicsandpanelarraydesignstowithstandhigherfluxesathighertemperatures

Parameter:Maxpressureradiationflux(p)Target:p=1.5MW/m2

X

Heat Transfer Fluids

Moltensalt,others

•Increaseofreceiveroutlettemperaturewithsafeandstableconditions=>increaseplantperformance

Parameter:ExtendeduseofnewfluidsTarget:Moltensaltusewithworkingtemperatureupto620°CAction:Directsuperheatedsteamatsupercriticalconditionsinfuturepowerplants

X

New conver-sion cycles and systems

Advancedpowercyclesandthermalstoragesystemintegrationschemes

•TakeadvantageofthehightemperaturesthatcanbereachedwithtowersystemsbyimplementingthemostappropriatecyclesdependingontheHTFusedinthereceiver

Parameter:ηSol-thConversionefficiencywithsolarcombinedcycleTarget:ηSol-th=+25%

X

Advancedhybridisationschemeswithotherrenewableenergysources

•Usebiomassinorderto:-IncreasedispatchabilityandfirmnessofSTEplants-ReduceLCOE

Parameter:PlantrobustnessandreliabilityAction:Implementhybridsolar/biomassplantsinawiderangeofcoverage

X

2013:Simpleintegrationconcept X

2015:HybridplantsusinggasifiedbiomassclassicalRankinecycles

X

2020:CombinedcyclesusingbiomassfortheairandsolarenergyforthesteamLCOE=-10%

X

Secondaryconcentrators Parameter:Breakthroughapplications2020:Implementlargerinstallations(higherthan10MWth)forspecificapplicationsdifferentthanelectricitygeneration

X

TABLEIII:RESEARCHPRIORITIESFORCENTRALRECEIVERS

Stra

tegi

c r

esea

rch

Agen

da7

Page 76: ESTELA Strategic Research Agenda 2020-2025

76 STrATegIc reSeArcH AgendA 2020-2025

7.1.4LinearFresnelReflectors

Itisimportanttoplaceastrongemphasisonearlydevelopment,demonstrationandup-scalingprojectsdesignedtocreatetherightopportunitiesfortheFresneltechnologytofollowitslearningcurveandreachastatusofmaturitywhereitcanexhibitandproveitscompetitiveness.Referencedemonstrationsprojectsaremajorrequirementsforthebankabilityofatechnology.

Thestate-of-the-artlinearFresneltechnologyonthemarketisasingleormultipletubereceiverwithadirectlyattrib-utedmirrorfield(primaryconcentrators),wheresaturatedsteamisgenerateddirectlyinthesingleormultiple-tubereceiveratabout270°C.OtherHTFsuchasthermaloilsarealsoused.Insomedesignswithsingletubereceiversthereisasecondstageconcentrator,concentratingradiationfromtheprimaryconcentratorsontothereceiver.Thesedifferentconfigurationsstillexhibitalowsolartoelectricityconversionefficiency(intheorderof8to9%)becauseofthelowoperationtemperatureandthesimpleturbinedesigns.Itisimportanttomodifythecollectorstoproduce(directlyorindirectlythroughanotherHTF)superheateddirectsteamat450°Candabout120bar.Then,withmoresophisticatedthermodynamiccyclesusingturbinesforsuperheatedsteam,averyimportantandpromisingalternativeforlow-costelectricityproductionathigherefficienciescanbedeployed.

InordertomakethelinearFresneltechnologybankable,itisnecessaryto:

n Demonstrateandvalidatenewconceptsandcomponents,includingcontrolandoperationstrategies;n Achieve linearFresnel reflectorsystemswithadaptedstorageconcepts, includingoptimisedchargingand

dischargingoperationandpressure-steammanagement;n Ensurethestabilityofoperationunderfluctuatingconditions;n Designpredictivecontrolstrategiesformaximisedusefulsolargains,profitandminimisedstressonplantcomponents.

Efficiencyimprovementandcostreductioncancomethroughanumberofdifferentdevelopmentsattheleveloftheopticalpropertiesofmaterials,newmaterialsandmanufacturesolutions,etc.

7.1.4.1 MirrorsAnimportantresearchtargetistheincreaseinopticalefficiencyforbothdesign(atmidday)andoff-designcondi-tions.Theopticalperformancedependsontheopticalconfiguration.InthecaseofFresnelopticstherearedesignsthatconsiderjustaprimarysetofmirrorsandthereareotherswherebothprimaryandsecondstageconcentrationarepresent.Optimisedperformancewillresultfromchangesinthesize,shapeandplacementofthemirrors,andfromtheopticalpropertiesofallthematerialsused.

Second stage concentration and optical performance optimisationIncreasingconcentrationleadstohighertemperaturesandhigherefficiencies.However,thisshouldnotbeachievedbysacrificingthedesirablehighopticalefficiencyofthewholesystem.Thisimpliesthatnewdesignsrequirethejointoptimisationofprimaryandsecondaryconcentrationstagesthattakeintoaccounttheconservationofradiantpowerperareaandsolidangle(i.e.“etendue”conservation)atallstagesofopticalcollectionandtransmission.

Solutionswillbedifferentforevacuatedandnon-evacuatedtubularreceivers,requiringspecificdesignsandresultingindifferentfinalsolutions.

Secondstageconcentratorscanbedesignedforevacuatedandfornon-evacuated tubular receivers,andthedesignshouldminimiseopticalgaplosses.

Primary mirrors performance and manufactureMirrorperformanceiscrucialandlinearFresnelmirrorsarecurrentlyfabricatedfromflat(thin)glassmirrors,forcedtobeslightlycurvedtoaccommodatetheproperprimaryperformancerequirements.Alternatively,thinfilmscanbegluedorappliedoveralreadyslightlycurvedsupportingsurfaces.Thesetechniquesarenotyetmassivelydevel-opedandtherearemanypossiblepracticalwaysstilltobeexplored.Shapeaccuracyisthekeyformirrorswithlargedistancetothefocalline.Propertiessuchasstiffness,torsionresistanceandopticalpropertiesofthereflectingsurfacesareveryrelevanttotheopticalperformance.

Stra

tegi

c r

esea

rch

Agen

da

7

Page 77: ESTELA Strategic Research Agenda 2020-2025

77december 2012

7.1.4.2 ReceiversReceiversareanintegralpartofareceivercavity.Theperformanceof the linearFresnelconcentrator isverydependentonthethermalbehaviourofthecavity,withorwithoutsecondstageconcentration.Receiverswiththeproperemissivityandabsorptivityarerequiredforoperationat500°C.Thetypeofreceiver,evacuatedornon-evacuated,isdeterminantofthekindofR&Dneeded.

Evacuated tubular receiversThebestevacuatedtubesforlinearFresneltechnologiesarenotnecessarilythesameastheonesstandardisedforPTcollectors.Animportantdesignissueisthecost-effectivechoiceoftheprimarymirrorwidth,thenumberofmirrors,thesecondaryconcentratordesignandthetubediameter.Acost-optimisedconfigurationwillprobablyneeddifferenttubediameters.Secondstageconcentrationisalsoparticularlysensitivebecauseoftheradiationlossinthegapbetweenthetubes.ThesizeadvantageofLFcollectors–i.e.thefactthatverylargeprimarymirrorscanbeconsidered–islostwhenusingevacuatedtubeswhichwereoriginallydesignedforsmallerPTaperturewidths.

Non-evacuated tubular receivers and receiver cavitiesNonevacuatedreceivercavitiesarepresentlybeingusedinlinearFresneltechnologies.However,goingfrom270°C,whichisthecurrentdaypractice,tomorethan450°Coreven550°Crequiresanewgenerationofmaterialsandmaterialscombinationsforthecavitytubesandcoatingswhichwillhavetobestudied,developedanddemonstrated.

7.1.4.3 Heat transfer fluidsTheresearchinHTFshouldaddresstheissuesarisingfromraisingthetemperaturefrom270°C,wherewetsteamcanbeproduced,toabout500°C,forhigh-pressuresuperheatedsteamorabout560°C,formoltensalt.Usingsteam,thethermodynamicefficiencyofthepowerblockcanbevastlyenhancedfromaround25%tocloseto40%.

Superheated direct steam productionTheuseofenvironmentally friendlywater/steamas theworkingfluid isstandardin linearFresnelsolarfields.However,superheatingandcontrolstrategieshavetobeinvestigatedmorethoroughly.

Peculiaritiesduetotheexistenceofatwo-phaseflowinthereceivertubesofthesolarfieldevaporatingsectionintroducessometechnicaluncertaintiesthatmustbefullyclarified.AlthoughthetechnicalfeasibilityofDSG(directsteamgeneration)inlinearFresnelcollectorshasalreadybeenproven,therearemanyaspectsforoptimisationthatmustbefullyinvestigatedtoassessthecommercialpotentialofDSG.

Molten saltTheuseofmoltensaltastheworkingfluidinthesolarfieldcouldreplacethecurrentoil/moltensaltheatexchangers,reducingcostsandincreasingefficiency.Ifalowermeltingpointiscomplementedwithgoodthermalstabilityattemperaturesabove450°C,theimprovementwouldbeevenmoreimportantbecauseitwouldallowbothhigherpowerblockefficienciesandasmallersizeofthethermalstoragesystem.

Pressurised CO2 or air in non-evacuated receiversTheuseofcompressedairasHTFisanentirelynewpossibilityandmustbestudiedanddemonstratedfor thekindofextendedtubularreceiverswhichareappliedinPTandlinearFresneltechnologies.

Stra

tegi

c r

esea

rch

Agen

da7

Page 78: ESTELA Strategic Research Agenda 2020-2025

78 STrATegIc reSeArcH AgendA 2020-2025

7.1.4.4 Control and operation strategyAgeneralaimshouldbetominimiseenergyandhydraulicpressure lossinparallel loopsandtoincreasetheoverallplantefficiency.

Particularfocusshouldbelaidonthetrackingsystem.

Tracking optionsLFandcompactlinearFresnelreflectors(amultiplereceiverconfiguration)withsecondstageconcentrationandnewsolutionsthatconservethe“etendue”,canbenefitfrommoresophisticatedaimingstrategies.Astrategymaybebasedontrackinglongrowsindividually;alternatively,itmaybebasedonmovingcompletegroupswithonemotor.Inaddition,thecommunicationbetweenthetrackingmotorsandthecontrolcentrecanbeachievedindifferentways.

7.1.4.5 Field design and configuration

Hybridisation of collector fields with different performance parametersTowerandLFcanbecombinedinordertoboostoperationtemperatures.OnepossibilityistouseLFforthephasechangepartoftheheatingcycleandthetowerforsuperheating,withthegoalsofreducingcostandlanduse.AnotherpossibilityisthecombinationofacheapersaturatedsteamlinearFresnelconfigurationwithsuperheatinglinearFresnelcollectors.

Stra

tegi

c r

esea

rch

Agen

da

7

Page 79: ESTELA Strategic Research Agenda 2020-2025

79december 2012

Stra

tegi

c r

esea

rch

Agen

da

Topics Objectives Parameter/Target/Action Short Mid Long

Mirrors Secondstageconcentrationandopticalperformanceoptimisation

•Increaseconcentrationbyuseofsecondstageoptics•Optimisesimultaneouslyprimaryandsecondarymirrors•Designoflow-weight,modularand

heatresistantcavityconcepts

Parameter:ImprovemaintenancerequirementsandreliabilityTarget:Lifetime=20years

X X

Primarymirrorperformanceandmanufacture

•Newmaterialsandsupportconstructionsforprimarymirrors

•Increaseopticalefficiency(mirrorwidth,accurateshapeandhighrigidityparameters)

•Lowerweightandreducecomponentcosts

Parameter:€/m2

Target1:-5%X

Target2:-10% X

Receivers Evacuatedtubularreceivers

•Newmaterialsandcoatingsfornon-evacuatedandevacuatedreceivers(forT~500°C)

•Newproductiontechniquesandconfigurations(relationbetweentheinnerandtheoutertubediameter)

Parameter:Temperature(T)Target:T=500°C

X

Non-evacuatedtubularreceiversandreceivercavities

•Multipletubularreceiversarrangedindifferentgeometriesandadaptedtothesecondstageconcentrators

Parameter:€/mTarget1:-5%

X

•Newmaterialsandnewselectivecoatingsforhightemperatures

•Gasfilledcavitiesandotherconvectionsuppression/reductiontechniques

•Insulationmaterials,connectors,bearings,cover,betteradaptedtothehighoperatingtemperatures

•Newmaterialsforsecondstagemirrorscapableofwithstandinghightemperaturesresultingfromenergyabsorption

•Coverswithlowemissivity/anti-reflectivecoatings

Target2:-10% X

Heat transfer fluids

Superheateddirectsteamproduction

•Raiseoperatingtemperatureforincreasedthermodynamiccycleefficiencyconversion=>LCOEreduction

Parameter:LCOE[€/kWh]Target:LCOE:-10%

X

Moltensalt •Newmoltensalt:-Freezeprevention/riskreduction-Othermaterialsorsystemconcepts-Cheapsaltcompositions•Raiseoperatingtemperatureforincreased

thermodynamiccycleefficiencyconversion•Reducethecostandincreasetheefficiency

ofthethermalstoragesystem•Reducesizeofthethermalstoragesystem•Proofconceptinnon-evacuated

tubularreceiverconfigurations•Proofconceptinevacuatedtubular

receiverconfigurations•Prooffreezingpreventionmeasures

Parameter:verificationoffeasibilityAction:Twolevelsofinvestigation:1.experimentalinasmall

solartestfacilitytoprovethetechnicalfeasibility

2.O&Mrelatedissuesusingthenewworkingfluidinasmallplant(i.e.<5MWe)underrealsolarworkingconditions

X

PressurisedCO2orairinnon-evacuatedreceivers

•Optimisethewholecollectorfieldforpossiblenewconcentrationfactorandreceiverconfiguration

•Newheatextractionloop(pressureandtemperatureoptimisationinviewofbetteroverallenergyperformance)

Parameter:Temperature(T)Target:≥550°C

X X

Control and operation strategy

Trackingoptions

•Mosteffectiveaimingstrategies•Reducecostswithparasiticlosses•Controlcommunicationstrategies•Reductionofmaintenance

Parameter:LCOETarget:LCOE:-3%

X

Field design and configuration

Hybridisationofcollectorfieldswithdifferentperformanceparameters

•Checkthecostreductionpotentialusingdifferentmaterialsintemperature-specificcollectorfieldsegments

Parameter:cost/m2

Target:-5%X

TABLEIV:RESEARCHPRIORITIESFORLINEARFRESNELREFLECTORS

7

Page 80: ESTELA Strategic Research Agenda 2020-2025

80 STrATegIc reSeArcH AgendA 2020-2025

7.1.5ParabolicDishes

Themostattractivefeaturesoftheparabolicdishtechnologyare:

n Highefficiencyin theconversionofsolar radiation toelectricity,derivedfromtheability tooperateathightemperaturesthankstothehighconcentrationratiosachievable;

n Modularityandnegligiblerequirementofwaterforenginecooling,whenthepowerconversionsystemisbasedonStirlingenginesorgasturbines.

ThedevelopmentofthistechnologyhasbeenverycloselyconnectedtoStirlingengines.Infact,thehighestrecordintheconversionofsolarradiationtoelectricityhasbeenachievedwithacombinationofaparabolicdish(PD)concentratorandaStirlingengine,aconfigurationcommonlyknownasdish-Stirlingsystem.

Dish-Stirlingsystemshaveattractedmuchattentionduetotheirhighefficiency,modularity,negligiblewaterconsump-tionandpotentialformass-productionoftheirmajorcomponents.Playingagainstthesepositivefeatures,thereistheissueofdispatchability.Thedispatchabilityofdish-Stirlingsystemsiscompromisedbythefactthatthereisnoproventhermalenergystoragesystemwhichcanbeefficientlycoupledtodish-Stirlingsystems:noneofthemostdevelopedsystemshasbeenhybridisedinanefficientwaysofar. In thiscontext,dish-StirlingsystemshavetocompetedirectlywithPVintermsofinvestmentandelectricitygeneratingcosts,whiletheirO&Missignificantlymorecomplex.Therefore, the futureviabilityof this technologyrelieson the improvementofdispatchabilitybyaddingstorageorhybridisationcapabilitiesand/orsignificantcostreductions,reachinglevelsatleastcomparabletothoseofPVgeneration.

Itdoesnotseemrealistictoexpectgreatimprovementsinthepeakefficiencyofdish-Stirlingsystemsinthenearfuture.Thedevelopmentofthedish-StirlingtechnologyduringthelastyearshasbeenmainlyorientedtowardsthereductionofcostsforbothPDconcentratorandStirlingengineandtheimprovementofthesystemreliabilityandavailability.However,thereisnolargecommercialplantinoperationatthismomentandthereareseriousconcernsaboutthefutureofthemostsignificantprojectsinSpainandtheUnitedStates.

Theeffortstoreducethecostsofthedifferentsystemcomponents–mainlytheparabolicconcentratorandtheStirlingengine–havebeenfocusedonthepotentialformassproductionoftheseelements.Inbothcases,synergieswiththecarmanufacturingindustrieshavebeenidentifiedandexploredtodifferentlevels.Despitethefactthattherehasbeensignificantprogress,thishasbeeninsufficienttobringthistechnologytothemarketsofar.

AnotherpotentialpathofdevelopmentofthePDtechnologyisthecombinationofthePDconcentratorwithotherpowerconversionsystems,suchasgasturbines25,26,27orsteamengines28.

AccordingtotheSETISKPIdocumentdefinedin2010,thebaselineyearlysolar-to-electricefficiencyfordish-Stirlingsystemsis17%.Thisfigurereflectstherelativelyhighdowntime(unavailability)ofthesesystemsduetopreventiveorcorrectivemaintenance.Therefore,theR&Deffortsshouldbedirectedtotheimprovementoftheavailabilityofthesystemmorethantotheincreaseinefficiencyitself.However,formass-productioncomponents,therearesomechallengesrelatedtothesystemefficiency.

Thecurrenttotalcapitalinvestmentforalargedish-Stirlingsolarplantislikelyintherangeof4€/W.

7.1.5.1 Stirling engineAlthoughtherehasbeensomeexperiencewithgasturbinesorsteamenginesincombinationwithPDconcentrators,theStirlingengineisbyfarthemostcommonlyusedthermalenginewiththistypeofconcentrators.ThecharacteristicsoftheStirlingenginemakeitextremelyattractiveforsolarelectricitygeneration.Someofthesecharacteristicsarethedependenceonanexternalheatsupply,highefficiency,silentperformanceandrelativelywell-knownmechanics.

TwotypesofStirlingenginesarebeingconsideredforSTE:kinematicenginesandfree-pistonengines. In thekinematicengines,thepistonsareconnectedbyacrankmechanism,whereasinthefree-pistonenginesthereisnomechanicallinkagebetweenthemovingcomponentsandthedisplaceroscillatesbyresonance.

Stra

tegi

c r

esea

rch

Agen

da

25-Source:Buck,R.;Heller,P.;Koch,H.ReceiverdevelopmentforaDish-Braytonsystem.ProceedingsoftheASME1996InternationalSolarEnergyConference,1996;p91-96,1996

26-Source:Bammert,K.;Seifert,P.Designandpart-loadbehaviorofareceiverforasolar-heatedgasturbinewithaparabolicdishcollector.AmericanSocietyofMechanicalEngineers(Paper),1984

27-Source:www.swsolartech.com/pages/SolarTurbineEngine28-Source:www.greencarcongress.com/2009/05/cyclone-renovalia-20090507.html

7

Page 81: ESTELA Strategic Research Agenda 2020-2025

81december 2012

Stra

tegi

c r

esea

rch

Agen

da

FIGURE15:Free-piston Stirling generator 29

29-Source:Infinia

Kinematicenginesrequirecompleteisolationbetweentheworkinggas(usuallyhydrogen,helium)andthelubri-cantofthedrivemechanism.DuetothehighoperatingpressureofStirlingengines,thesealshavetobereplacedregularly.Finally,enginesoperatingwithhydrogenaresubject to leaks thatmakeitnecessarytorechargethehydrogendepositsafteracertainnumberofoperationhours,dependingontheengine.Asaresult,maintenancerequirementsofkinematicStirlingenginesarerelativelyhighandexpensive,andtheoperationalavailabilityoftheseenginesisrelativelylow.

Freepistonengines(Figure15)usedinsolarapplicationshaveonlytwomovingpartsinasinglecylinderandgenerateelectricitybymeansofalineargenerator.Theyareconceptuallysimplerandeliminatemostoftheprob-lemsassociatedtokinematicengines,includingleaksofworkingfluidandreplacementofringsandseals.Theyalsoexhibitexcellentpart-loadperformanceandeasystart-up.However,thecomplexcontrolandthedesignofthelineargeneratorneedtobeimprovedtoachievetheexpectedperformance.

Increase availability (increase MTBF: Mean Time between Failures)AreductionofcomponentfailuresandmaintenancerequirementsforkinematicStirlingenginesisessentialforthistechnology.Theuseofnewmaterialsforringsandsealsandtheredesignoftheenginestothispurposeseemtobethebestalternatives.

Reduce needs for H2 refilling in kinematic enginesHydrogenhasabetterthermodynamicperformanceasworkingfluidoftheStirlingengineincomparisontohelium.However,kinematicStirlingenginesusinghydrogenhavesufferedleakageproblemstodifferentdegrees,makingitnecessarytorefillthehydrogenreservoirsperiodicallyinordertomakesurethattherequiredhighoperatingpressurescanbeachieved.Thisrequirestheinstallationofrefillingstationsinmostunitsasashorttomediumtermsolution.

Regenerator

Flexure Bearings

Cooling

Power Piston

HEATIN

ELECTRICITYOUT

Flexure Bearings

Linear Alternator

7

Page 82: ESTELA Strategic Research Agenda 2020-2025

82 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

Optimise manufacturing Stirlingengines,especiallythekinematicones,havemanysimilaritieswiththeinternalcombustionenginesusedintransportation.SignificantcostreductioncanbeachievedbyredesigningtheStirlingunitstotakeadvantageofmassproductionandthequalitycontrolandassurancetechniquesdevelopedinthecarmanufacturingindustry.

7.1.5.2 Gas turbinesThecombinationofgasturbinesandPDconcentratorsisnotnew,butitbecamemoreattractivewiththedevelopmentofsmallandefficientgasturbinesandtheneedtoprovidedispatchablepower.Inthisrespect,theintegrationofthegasturbinefacilitatesthehybridisationwithnaturalgasorbiogasorthecombinationofthedish-turbinesystemwithcompressedairenergystorage(CAES)system.

7.1.5.3 ReceiversThelowthermalinertiaofthereceiversofsolarStirlingenginesresultsinhighrampratesofthepoweroutput,especiallyduringcloudpassages.Thislowinertiamakesitmoredifficulttocontrolthesystem.Thischallengecanbeaddressedbyreplacingthecurrentlyusedtubularreceiversbyrefluxreceiversofeitherthepoolboilerorheatpipetypes.

Increase thermal inertia (improve part-load operation)Existingdish-Stirlingenginesexhibitaveryfastreactiontosolarradiationchanges,dueagaintotheverylowthermalinertiaofthereceiver.Thisisadisadvantagefromthepointofviewofintegrationinpowergrids.

7.1.5.4 DispatchabilityDispatchability,basedeitheronenergystorageorhybridisationwithotherenergysourcesisakeyfactorforthesuccessofthedish-Stirlingtechnology.However,developingenergystorageandhybridisationsystemsforPDisstillataveryearlystageandonlyafewpilotexperiments30havebeenconductedsofar.

Developing storage concept Duetothegeometricalandstructuralconstraintsofdish-Stirlingsystems,onlysmallthermalenergystoragecanbeintegratedintopresentdesigns.Alternativesforlargerenergystoragesystemsarebeingexplored.AccordingtotheATKearneyreportforESTELA31,“therearecurrentlytwoalternativesbeingpursuedtodevelopstoragesolutionsforthedish-Stirlingtechnology:thesearetheelectro-mechanicalandthethermalstorage.Basedonthestageofdevelopmentofthesealternatives,largecommercialdeploymentofstorageforthedish-Stirlingtechnologycanbeexpectedbetween2013and2016”.AtleastoneAmericancompanyisconsideringtheuseofCompressedAirEnergyStorage(CAES)asanalternative.

Developing hybrid receiver/heater unitsDispatchabilitycanbeachievedby integratinganalternativeorsecondaryenergysourcesuchasnaturalgasorbiomass.Ideally,thisintegrationshouldbeachievedinthereceiver,toavoidduplicityofelements.HybridisationwouldalsoeasetheuseofPDinstand-aloneapplicationssuchaspowergenerationforremoteareas.

30-Source:Ramos,H.;Ordóñez,I.;Silva,M.Anoverviewofhybridreceiversforsolarapplications.In:ProceedingsOfSolarPACES2010.TheCSPConference:Electricity,FuelsandCleanWaterfromConcentratedSolarEnergy(Cd-Rom).Perpignan,France.2010

31-Source:A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

Infinia-SuperQuark

7

Page 83: ESTELA Strategic Research Agenda 2020-2025

83december 2012

Stra

tegi

c r

esea

rch

Agen

da

Topics Objectives Parameter/Target/Action Short Mid Long

Stirling engine

Increaseavailability(increaseMTBF,reducescheduledmaintenance)

•IncreaseMTBFofessentialenginecomponents Parameter:Kinematicengineoperatinghours[h]Target:4,000h

X

ReduceneedsforH2refilling(kinematicengines)

•Reduceoreliminatehydrogenleakagesbyusingtheappropriatematerialsandcomponents(valves,seals)

Parameter:GasrepositionrateTarget:0ornegligible

X

Optimisemanufacturing

•Achieveasignificantcostreductionviaefficientmassproduction(know-howfromcarmanufacturingindustry)

Parameter:StirlingenginecostTarget:50%costreduction

X

Gas Turbines •Easehybridisationandenergystorage Parameter:YearoffirstcommercialunitsTarget:2013-2014

X X

Receivers Increasethermalinertia

•Increaseoperationalstabilityandcontrollabilitybyimprovingthethermalinertiaofthereceiver

Improvepart-loadoperation X X

Dispatch-ability

Developingstorageconcept

•Developmentofeconomicandefficientenergystoragesystems

Atpresent,thereisnothermalstoragesystemcommerciallyavailableforparabolicdishes

X X

Developinghybridreceiver/heaterunits

•Develophybridreceiversabletooperatebothfromtheconcentratedsolarradiationandanalternativeenergysource(naturalgas,biogas)

Parameter:YearoffirstoperationalprototypeTarget:2015

X X

System compo-nents with enhanced material properties

Structureandtrackingsystem

•Developlighterandmoreefficientstructures•Optimisemanufacturingbyexploitingsynergies

withthecarmanufacturingindustry•Easeon-fieldinstallation•Developon-factoryadjustmentproceduresthatreduce

oreliminatetheneedforon-fieldadjustment•Reducethecostoftrackingsystems

Parameter:ConcentratorcostTarget:30%costreduction

X

Controls and operating issues •Developthepowerelectronicsandcontrolsrequiredtoeasetheintegrationofalargenumberofunits;

•Developefficientpowerelectronicsforfree-pistonengines

Parameter:Efficiencyofpowerelectronicsforfree-pistonenginesystemTarget:+2%

X X

TABLEV:RESEARCHPRIORITIESFORPARABOLICDISHES

7.1.5.5 System components with enhanced material propertiesThePDconcentratorneedstobeefficient(thatis,itmusthaveahighinterceptfactorandhavethefluxdistribu-tionmatchedtothereceiverdesign)andeconomic,bothfromthepointsofviewofmanufactureandinstallation.Economyofscalecanbeachievedbyexploringandexploitingthesynergieswiththecarmanufacturingindustry,assomemanufacturershaverecentlydonebothintheUnitedStatesandinEurope.Efficiencyreliesonmirrorreflect-ance,stiffnessofthestructureandtrackingaccuracy.Theuseofnewreflectivesurfacesandnewmaterialsforthestructure–includingstructuralsupportforthereflectivesurfaceifnecessary–mayhelptoachievetheseobjectives.

Structure and tracking systemThePDconcentratorisbasicallyaparaboloidalreflectivesurfacemountedonastructurethatincludesatwo-axistrackingsystem.Thereflectivesurfacecanbeconstructedindifferentwaysandwithdifferentmaterials.Asforthestructureandtrackingsystem,therearetwobasicmountingtypes:pedestalandcarrousel.Thepresentcostsoftheconcentrator,includingtracking,installationandadjustment,areabove2.5€/W.Theinterceptfactorvarieswidelybetweendifferentdesigns,withvaluesrangingbetween85%and95%.Concentratorcostshouldbereducedbyatleast50%tomakethistechnologycompetitivewithPV.

7.1.5.6 Controls and operation issuesTheoperationoflargePDfarmsrequirespowerelectronicsandoperatingstrategiestoeasegridintegration.Thechallengesaresimilartothoseofwindfarms,althoughtheyarelessdemandingandhaveparticularcharacteristics.Inthecaseoffree-pistonengines,thecontrolofthelineargeneratorisamajorissue.

7

Page 84: ESTELA Strategic Research Agenda 2020-2025

84 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

7.2 Objective2:Improvedispatchability

ASTEplantcomprisesfourmainsub-systems(Figure16):concentratingsystem,heattransfersystem,storageand/orsupplementaryfiring(labelled‘thermalstorage’inFigure16)andpowerblock.Theyarelinkedtogetherbyradiationtransferorfluidtransport.Theheattransfersystemabsorbstheconcentratedsolarenergyandtransferstheenergytothepowerblockand/orintoahotstoragetank.

OPTICAL CONCENTRATOR

RECEIVER

POWER BLOCK

THERMAL STORAGE

Beamsolarradiation

ConcentratedSolarRadiation

Heat

Electricity

Wasteheat

FIGURE16:Main components and sub-systems of a STE plant including storage

ToillustratethekeydriversforthecostreductionforSTEtechnology,asimplifiedcostmodelofaSTEpowerplantcanbeused,evaluatingthespecificinvestmentandannualenergyoutput.ThereferenceplantissupposedtobethepresenttechnologyPT50MWplantwithoutstorage.Theratiooftotalinvestmenttotheannualoutput,whichrepresentsanimportantpartofLCOEandcanbenamed“costindex”,isusedasasimplefigureofmerit.Plantswithstoragearesupposedtoprovideasubstantialincreaseinenergyoutputincomparisontoasimilarplantwithoutstorage.Thesolarfieldsizeisincreasedaccordinglyandadditionalstoragelossesareoffsetbyaddingsuitablecoststoover-sizethesolarfieldandHTFsystems.

Estimatesforthefollowingplantshavebeenmade(Figure17):

n OilThroughwithoutstoragen OilTroughwithstoragen 2015SaltHTFat550°Cn 2015Hybrid32

n AdvancedHTF33

n AdvancedHybrid34

32-Hybridsystem:Injectionofheatfromothersources(suchasbiomass,etc.)tothethermodynamicconversioncycleortotheHTF.33-AdvancedHTFsystem:UseofhightemperatureHTF,increasingoverallefficiency.34-Advancedhybridsystem:CombinationofahybridsystemwithahightemperatureHTFwithincreasedperformancesduetotechnicalimprovements.

7

Page 85: ESTELA Strategic Research Agenda 2020-2025

85december 2012

Stra

tegi

c r

esea

rch

Agen

da

Animportantlessontobedrawnfromtheillustratedresultsistherolethatthermalenergystorageplaysontheexpectedelectricitycostinthecaseofstate-of-the-artPTtechnologyusingthermaloilandtwo-tankmoltensaltthermalenergystorage.Systemswithstorageandoversizedsolarfieldsproducetwicetheenergyofthereferenceplant,butdonotrequiretwicetheinvestmentsbecauseotherpartsoftheplant,e.g.thepowerblock,donotneedtobescaled.Electricityfromasystemwithstorageisthereforelessexpensivethanelectricityfromonewithoutstorage.

Conceptswithstoragearethereforeparticularlycompetitiveformarketswhichassignextravaluetosolar-onlydispatch-ability.Therearekeydriversthatcanfurtherhelptoreducetheelectricitycostswhileprovidingdispatchableelectricity.

IftheHTFisusedalsoasstoragemediumandelevatedtemperaturesarereached(whichisnotthecaseforstate-of-the-artconfigurations),thespecificcostofthestoragecanbesignificantlyreducedbecause:

n onlyonefluidcircuitisneeded,insteadofseparatecircuitsforHTFandstorage;n heatexchangersarenotrequired;n moreenergycanbestoredinthesamevolumebecauseofthehighertemperatureachievablewiththemoltensalt.

Furthermore,asthehighermoltensalttemperaturealsoleadstohigherpowerblockefficiency,lesssolarcollectorfield(andHTFcircuit)isneededperkWeandthespecificcostofthesecomponentscouldalsobereduced.Botheffectsleadtoasignificantlyimprovedoutput-to-investmentratioandalowercostindex,0.73.

FurtherimprovementscanbeachievedifadvancedHTFscanbedevelopedthatallowforawidertemperaturerange.Highersubsystemefficienciesandadvanceddesignswithlowermanufacturingcostswillgreatlycontributetothecostreduction.Theexpectedachievablecostindexis0.55.

Itisveryreasonabletoconsiderthatsomemarkets,andinparticularthosewherethedemandisgrowingcontinu-ously,willtargetnotonlyfordispatchableenergybutalsoforfirmcapacity.

ThehybridisationofSTEpowerplantswithfossilorbiofuelisanattractiveoptionforthesemarkets.Hybridplantconceptshavesomebenefitsthatcouldhelptoreducetheoverallsystemcostsofthesolarelectricitythatdiffersinpartfromthoseconceptsthatemploystorage:

n Lowerspecificpowerplantcostsduetomoreconventionalplantdesign;n Lowerspecificfieldcostsduetohigherplantefficiencywhenoperatedathighertemperature;n LowerHTFsystemcostduetosimplerandlessexpensive(HTFsuchassteamorgas).

Duetothesefactors,hybridplantsystemsin2015couldhaveacostindexaslowas0.7.Furtherimprovementsareexpected,forexample,throughthechangetoadvancedpowercyclesusinggasturbinetechnology.Highersubsystemefficiencyandadvanceddesignswithlowermanufacturingcostswillcontributetoanadditionalcostreductionwithanexpectedcostindexreaching0.52,i.e.aboutonehalfofthepresentdayreferenceplant.

FIGURE17:Comparison of today’s state-of-the-art PT power plants with and without storage and targets for solar-only and hybrid concepts in 2015

ADVHTF

2015 Molten

Salt

OilTrough

2015Hybrid

ADVHybrid

Storage

No storage

Future development

Specific Investment

Hybrids

0.52 0.7 1

1

Sola

r Out

put

2

1 2

1

Cost index = Specific Investment Solar output

Technologies

7

0.55 0.73 0.93

Page 86: ESTELA Strategic Research Agenda 2020-2025

86 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

7.2.1Hybridisationandintegrationsystems

7.2.1.1 Integration with large steam plantsHybridisationcanbeperformedbyinjectingsolarheatatdifferenttemperaturelevelsinthewaterpreheatinglineorintheboilerwater/steamcircuits.Althoughintegrationwiththeboilerismoredifficultbecauseoftheheavyinteractionwiththedelicateequilibriumofheattransferparametersinsidetheboiler,itshouldbepreferred,asahigherconversionefficiencycanbeobtainedthroughintegration.However,evenalower-temperatureapplicationinthepreheatingline,whichgenerallyrequiresalowercostsolarcollectingfieldsuchasoneofLF,couldresultinasimplerandcheaperdesignofthecyclemodificationsandpossiblyalowerLCOE.

Thereareseveraldesignconceptsforhybridisingasolarpowerplantwithfossilfuels(gasorcoal)orbiomass(solidorgasified).

Theoptimaldesignandtheeconomicconvenienceoftheapplicationmustbeevaluatedonthebasisofglobalplantcost.

Independentlyofthedesignapproachandsolutionadopted,animportantaspecttobedevelopedandstudiedindepthisthemodificationofthepowerplantcontrolsystemstoaccommodatetheissuesderivingfromthevariabilityofthesolarsource.Foreachapplication,theoptimaloperationofthehybridisationisthekeyforachievingthebestcosteffectivenessoftheplant.

Largesteamcycleplantsarecommonlyusedforbaseloadoperationorheavyintermediateload.

Positiveeffectsondispatchingareexpectedfromthesesystemsbecausetheymakeitpossibletosavefuelintheearlymorninghours,andthisfuelcanthenbefreelyusedintheeveningpeakhourstoproducecheapenergyathighmarketprices.

HTF/steam cycle heat exchangers

ThedifferenttemperaturesandpressurelevelsofthesteamcycleboilerrequireacleverlydesignedsetofheatexchangersbetweentheHTF(heattransferfluid)andthewater(orsteam)ofthethermalcycle,becausetheheatexchangemustbebalancedbetweendifferentsectionsoftheboilertooptimisetemperaturedifferencesandheattransfer.Theresultingsolarheat-to-electricityconversionefficiencystronglydependsonthedesignchoices.

Boiler design

Thecouplingofsolarheatexchangerstothesteamcycleboilercanbebuiltindifferentways,providingvariousflowsolutions(e.g.seriesorparallel),valvepositioning,pumpmodificationsandotheroptions.Thedesignanddimensioningdependonthespecificsteamcycleconfigurationchosen.Thepossiblevariationsinshort-termperiodsofsolarcollectioncanbehandledbythecontrolsystemonlywithinthelimitationsarisingfromthepracticalboilerdesignandsetup.

However,anoptimisedcouplingbetweentheHTFandthethermalcycleisrequired,andthisistobeachievedthroughspecificdesignsandexperimentalanddemonstrationinstallationsthatleadtofullsizeapplications.

Boiler control system

Thecombinedoperationofthesolarsteamgeneratorandthesteamcycleboilerrequiresacarefulmodificationofthecurrentboilercontrolsystemdesignstoenablethemtomaintainthestabilityofthepowerplantoperationwithvaryingsolarradiationinthecourseofthedayandyear.

Therefore,modificationstotheboilercontrolsystemmustbemadeinordertohandlethevariations.

7

Page 87: ESTELA Strategic Research Agenda 2020-2025

87december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.2.1.2 Integration with gas turbine and combined cycle plantsThemostconvenientwayto improvestability is to interactwith thesteambottomingcycle. In thiscaseall theconsiderationsmadeforthehybridisationwithsteamplantsareapplicable.

Highertemperaturesolarcollectors,eitherPTorCR,canbeeffectivelyusedtopreheatairinthegasturbineatthecompressoroutput,beforetheinjectionofthefuel.Thiswillraisethetemperatureoftheair,loweringtheamountoffuelneededforthesameoutputpower.Theresultisaveryhighefficiencyoftheconversionofsolarenergyintoelectricity.

Thisapplicationrequires thedevelopmentofcompact,high temperature-to-airheatexchangers thatare tobecloselycoupledtothegasturbinebodyorapressurisedairreceivertechnology.Anadaptationofthegasturbinecombustionsystemsduetotheincreasedinlettemperatureisnecessary.

Anintermediateandnecessarystepinresearchanddevelopmentisthehybridisationwiththegasturbinealone,intendedtodevelopandoptimisetheheatexchangerandtotest theoperationofthiscriticalcomponentatalowpowerlevel.Theresultisasolargasturbinehybridplantwithasolarheat–to-electricityconversionefficiencyintherangeof35-39%.Thefinalstepwillleadtoafullcombinedcyclesolarhybridwithsolarheat-to-electricityconversionefficiencyofabove50%.

Acleverre-designofthecontrolsystemisnecessarytohandlesolartransientsandtobalancetheoperationofthegasturbineandthesteamturbineundereverypossibleworkingconditionsofsolaravailabilityandloaddemand.

Design of HTF/steam cycle heat exchangersTheheatrecoverysteamgeneratorofacombinedcycleisatypeofboilerwhichdiffersfromwhatisnormallyusedinsteamonlypowerplants.Dependingonthedesign,twoorthreedifferentwater/steamcircuitsatdifferentpressurelevelsareused.Consequently,thecouplingwithasolarheatgeneratormustbeoptimisedinordertogetthemaximumefficiencyofsolarheat-to-electricityconversion.

Materials for high temperature heat exchangers (such as ceramic or metal)Integrationofheatintothegasturbinesectionofacombinedcyclerequiresexchangingheatathightemperature.Typically,thetemperatureoftheoutputairfromthecompressorisaround350°C,whiletheturbineinputtempera-turerangesfrom1,100°Cto1,400°C.Compactheatexchangersrequirespecialmaterialsandspecialcompactdesigntoallowforhighefficiencyandlowthermalandfluiddynamiclosses.

Overall system design optimisationToachieveefficientcouplingbetweenthesolarfieldandthecombinedcyclerequiresanefforttooptimisethedesign,properlyplacingtheheatexchangersandthevarioussystemcomponents(pumps,valvesetc.).Combinedcycleswithaheatrecoverysteamgeneratorareoftendesignedusingtwoorthreedifferentpressurelevels,andmanyfeaturesarestudiedandoptimisedtomaximisetheoverallcombinedcycleefficiency.Theadditionofexternalheathastobedesignedinsuchawaythatitdoesnotproducenegativeeffects.Sizingofcombinedcyclecomponentsisalsoaffectedanddifferentdesigns(1-on-1or1-on-2)canbeeffectivelyusedtoachievethebestsolarhybridsystemperformance.Thegoal,ofcourse,istomaximisethesolarheat-to-electricityconversionefficiency.

7.2.1.3 Integration with biomass plants

Theintegrationofsolarenergywithabiomassfuelledplantallowsthebuildingofanall-renewableresourcewhichcanoperateallyearlong,takingadvantageofthebenefitsderivingfromthetwodifferentsources.

Forestsandenergycropsmustbebroughttothebiomassplantfromanextensiveareaofland,andthismakesthefuellingandsittingofaverylargesizepowerplantdifficult.ThesizeisthereforenormallylimitedtotherangeofafewMWeorevenless.Theconversionefficiencyofsuchcyclesisnotveryhighbecauseofthesmallsizeoftheplantandthehigherrelativeimportanceofcyclelosses.

Combustionmaybenoteasybecauseofthecompositionoftheavailablebiomass,andspeciallydesignedfirebedsandboilersareneededwhichmayhavealowerboilerefficiencyandaloweroutputsteamtemperature.Alternatively,biomassgasifierscanproducehotgastobeusedintheboilerswithreducedfoulingproblems.

Bio-gasorbio-oilobtainedfromappropriateprocessingplants(fomenters,digesters,pyrolysers,etc.)canalsobeusedasfuels.

Somerecentapplicationsuseorganicfluidthermodynamiccycles(ORC),heatedbyburningthebiomass,forenergyconversionwithlowtemperatureworkingfluids(about300°C).

7

Page 88: ESTELA Strategic Research Agenda 2020-2025

88 STrATegIc reSeArcH AgendA 2020-2025

Theheat fromdifferentsourcescanalsobeintegratedintoTES(thermalenergystorage)andthismayhaveabeneficialeffectondispatchability.

Relatedresearchprioritiesare:

Integration of low cost solar fields with biomass steam boiler or ORCThesmallsizeofavailablebiomassplantsandtherelativelylowtemperaturesoftheconversioncyclesmakethemwellsuitedtohostalow-costsolarhybridisationbymeansoflowcostsolarfield,suchasoneusingLF.TheuseofORC,whichisalreadyappliedinbiomassfuelledapplicationsaswellasinsolarplants,willsimplifytheoperationwhileincreasingtheefficiency.

Theresearchanddevelopmentgoalhereistodesignsmallsizesolar/biomasshybridconfigurationstoobtainanall-renewablepowerplant.

Molten salt PD developmentThePDpresentlyusedindish-StirlingsystemscanbeeffectivelyusedtoheatmoltensaltHTFtohightemperatures,andthesesystemscanbecoupledwithabiomassplantbymeansofheatexchangers.

7.2.1.4 Hybridisation for the direct systems using the same molten salt mixture as HTF and HSM (heat storage medium)IntheSTEdirectsystems,wherethesamemoltensaltsmixtureisusedasHTFandHSM,anotheroptionalreadyexplored(i.e.demonstrativeFP7projectsMATS,OPTSandHYSOL)istohybridisethesystemusingagas-firedmoltensaltheaterplacedinparallelwiththesolarfield.Thegas-firedheaterentersinoperationifthesolarenergyinputdecreasesbelowacertainvalue.Whenitdoes,themoltensaltcirculatinginthesolarfieldisswitchedtothemoltensaltheaterloopwhereitisheatedtotheoperatingtemperatureandflowsintotheTES(and/ortheSteamGenerator).Thissuppliesalltheback-upthermalenergynecessaryforacontinuousoperation.

Inthisway,theoperationoftheTESandthepowerblockneversuffersfromvariationsofsolarradiationandthedispatchabilitycanbegreatlyimproved.ThisoptionlowerstheLCOElargelybecausetheinvestmentcostonthepowerblockissharedoveralargenumberofoperationhours.

Onanannualbasis,thepercentageofhybridisationofthedispatchedelectricenergydependsonthesizeofTESandofthesolarfieldrelativetotheratedpoweroftheplant.Eachcomponentisselectedbycomparingyearlytheir impacton theLCOEfromthedifferentsolarcomponents,whichdependon theinvestmentcostsandthesolarradiationonthesite.Fortheback-upcomponent,theimpactontheLCOEdependsontheexpensesfortheintegrativegaseousfuel.Therelatedresearchprioritiesare:

Gas-fired molten salt heater for the system back-up Themoltensaltheaterhastobedesignedcarefullybysuitablethermo-fluiddynamicandthermo-mechanicalcodesinordertouseatbestthecharacteristicsofthemoltensalt,upto550°C,andtoavoidhotspotsinthetubebundlethatcouldcausethedecompositionofmoltensaltwithdevelopmentofgas.Thecombustionchambershallbeseparatedfromthetubebundle,whichwillbefloodedbyexhaustgasesatcontrolledtemperature,withoutdirectexpositiontotheflame.Thedischargeoffluegasattheoutletofagas-turbineshallbealsoconsidered.

Thesensibleheatofthefluegasescanbeusedforheatingthemoltensaltdowntotheminimumtemperatureofoperationofthesolarfield(e.g.290°C),andmoreorlessdownto120°C,forproducingauxiliarysteamforthepowerblockorotherheatingservices.Amongthepossiblegaseousfuel,gasifiedbiomassshouldbeconsideredasmainoption.

Demonstrationsatrelevantscaleclosetocommercialonearenecessary.

Stra

tegi

c r

esea

rch

Agen

da

7

Page 89: ESTELA Strategic Research Agenda 2020-2025

89december 2012

Stra

tegi

c r

esea

rch

Agen

da

Topics Objectives Parameter/Target/Action Short Mid Long

Hybridisation with large steam plants

HTF/Steamcycleheatexchangers

•Increasesolarheat-to-electricityconversionefficiency

Parameter:ηth-elec(includingheatexchangers)

Target1:ηth-elec>40% X

Target2:ηth-elec>45% X

Boilerdesign •Newboilerdesignbestsuitedtothecouplingwithexternalheat

Parameter:ηth-elec(includingheatexchangers)

Target1:ηth-elec>40% X

Target2:ηth-elec>45% X

Action:Specificdesignsandexperimental/demoinstallationleadingtofullsizeapplications

Boilercontrolsystem

•Obtainasetofcontrolsystemalgorithmsandprocedurestobeinsertedintheboilercontrolsystemtomaintaintheboilerfullyoperationalwiththehighestperformanceandstability

Parameter:Availabilityofavalidatedsetofcontrolalgorithmsimplementedintoahybridplantboilercontrolsystem

X X

Integration with gas turbine and combined cycle plants

DesignofHTF/steamcycleheatexchangers Parameter:ηth-elec(includingheatexchangers)Target:ηth-elec>40%

X

Materialsforhightemperatureheatexchang-ers(suchasceramic,metal)

•Selectanddevelopmaterialsanddesignssuitableforhighperformanceforgasturbineheatexchangersthatcanbeappliedinhightemperaturesolarhybridcombinedcycle

Parameter:ηth-elec(includingheatexchangers)Target:ηth-elec>45%

X

Overallsystemdesignoptimisation

•ObtainasetofschematicsystemlayoutsrelatedtohybridsolarplantstoincreaseplantdispatchabilityandlowertheLCOE

Parameter:ηth-elec(includingheatexchangers)Target:ηth-elec>55%

X

Action1:Constructionofsignificantsizedemoplants30to50MWe(solarequivalent)withsteambottominghybridisation

X

Action2:1to5MWe(solarequivalent)withsimplegasturbinehybridisation

X

Action3:30to50MWe(solarequivalent)completecombinedcyclehybridisation(gasturbineandinsteamcycle)

X

Integration with biomass plants

IntegrationoflowcostsolarfieldswithbiomasssteamboilerorORC

•Designofsmallsizesolar/biomasshybridplantstoobtainanall-renewablepowerplant

Target:AvailabilityofoneormorereferencedesignforthistypeofplantAction:Constructionofsmallsizedemo

X

Moltensaltparabolicdishesdevelopment

•Designandtestverysmallsizesolar/biomasshybridplants

Target:AvailabilityofoneormorereferencedesignforthistypeofplantAction:Constructionofsmallsizedemo

X

Hybridisation for the direct systems using the same molten salt mixture as HTF and HSM

Gasfiredmoltensaltheaterforthesystemback-up

•NewMSheaterdesignsuitedtocouplewithaback-upenergysourcesuppliedasgaseousfuel

Parameter:numberofhoursofoperationinayear:NTarget1:N>5,500h/y

X

Target2:N>7,000h/y X

OverallsystemdesignOptimisation

•DesignofthesystemaimedtocontroleasilyandtomanageatthebesttheplantfortheintegrationofthetwoenergywithgreatbenefitontheLCOE

Target:LCOE<20%thanonlysolar X

TABLEVI:RESEARCHPRIORITIESFORHYBRIDISATIONANDINTEGRATIONSYSTEMS

7

Page 90: ESTELA Strategic Research Agenda 2020-2025

90

Stra

tegi

c r

esea

rch

Agen

da

Overall system design optimisationThedesignoftheoverallsystemshouldoptimisetheenergeticcontributionofthesolarradiationandtheback-upfuel.ThesolarfieldandtheTESshallbesizedaccordingtotheratedpowerandthesolarradiationatthesite.TheMSH(moltensaltheater)shallbesizedsothatitcanprovidethepowernecessarytointegratethesystemintheabsenceofsolarradiation.

TheMSHloopisplacedinparallelwiththesolarfieldupstreamoftheTESsothatitcancompensateforanykindoffluctuationsandavoidanyinfluenceontheoperationofthepowerblock.Thisfacilitateseasycontrolandmakesitpossibletomanagetheplanteffectively.Theintegrationofthetwoenergysourcesmakesitpossibletoextendthehoursofplantoperationgreatly,withgreatbenefitontheLCOE.

Demonstrationsatascalelargeenoughtoapproximateactualcommercialplantsarenecessary.

7.2.2Storage

Thermalenergystorage(TES)systemsareanintegralpartofaSTEpowerplant.DuetothevarietyofSTEconceptsreflectedbydifferentHTFandoperatingtemperatures,thereisnosinglestorageconceptwhichcouldbeappliedtoallSTEplants.

Thecostandperformanceofstoragedependsnotonlyonthestoragedesign,butisalsoaffectedbytheintegrationofthestoragesystemintotheoverallSTEsystem.ThevalueaddedbystoragedependsontheinvestmentsinthestorageanditsintegrationintoaSTEpowerplantbutitalsodependscriticallyontheconditionsfromthegrid,i.e.onhowmuchthegridvaluesdispatchability.

Today’sreferenceforstorageisanindirecttwotankmoltensaltstorageintegratedintoaPTpowerplantusingthermaloilasHTF.Theresearchtargetsaretoreducetheinvestmentcostsofstorage(SeeANNEXI:KeyPerform-anceIndicators,2010:35,000€/MWhth;202015,000€/MWhth),andtoincreasetheefficiencyofstorage(ANNEXI:KeyPerformanceIndicators:2010:94%;2020:96%).Astoday,itisnotclearwhichofthedifferentSTEtechnologies(characterisedbythedifferentHTF)willfinallybefoundtobethemosteffective,anditisneces-sarytofollowuponseveralconceptsinparallel.

ThefiguresgivenaboverefertotheconventionalPTdesignwherethetemperaturedifferencebetweenthecoldandhottanksis100°C.CRswherethetemperaturedifferenceisaround300°Ccouldhavelowervalues.

7.2.2.1 Storage designTo lower thestoragecostandincreasestorageefficiency, the followingprioritieshavebeenidentifiedfor thedifferentsystems:

Storage system for thermal oil as HTFPTsystemsusingthermaloilasHTFstillconstitutethemajorityofall installedSTEsystems.Two-tankmoltensaltstoragesystemscoupledthroughaheatexchangerwiththeHTFcircuitarestate-of-the-arttechnology.Inordertoreducethestoragecosts,twoapproachesarediscussedbelow.Thefirstideaistolimitthestoragecontainertoasingletankandtheotheristousealow-costsolidmaterialasanalternativestoragemedium.

-SingletanksolutionsAsingletanksolutionrequiresanoptimisedthermalstoragedesigninordernottopenalisethestorageefficiencybymixinghotandcoldstoragefluid.Forthispurposeanexcellenttemperaturestratificationorseparationbetweenthehotandcoldsectionsinthetankneedstobeachieved.

-SolidmediastoragesolutionsAthermalstoragedesignthatallowsaseparationoftheheatexchangermaterial(whichrelatestopower)andthestoragematerial(whichrelatestocapacity)mustbedevelopedtotakeadvantageoflowmaterialcosts.

STrATegIc reSeArcH AgendA 2020-2025

7

Page 91: ESTELA Strategic Research Agenda 2020-2025

91december 2012

Storage system for molten salt as HTFSignificantcostreductioncanbeachievedifmoltensaltisnotonlyusedasstoragemediumbutalsoasHTF,becausethisavoidstheuseoftwoindependentHTFcircuitsandoftheheatexchangersystem.Ifthetemperatureofthesaltmixturecanbefurtherincreased,highercycleefficienciesareexpected.LowercostsfortheHTFsystemareachievablebychoosinganHTFwithalowerfreezingpoint.Threedifferentapproachesarediscussedbelow.

-NewsaltmixturesAsstoragematerials,newsaltmixtureswithlowerfreezingpointandhighertemperaturestabilityaretargeted.Screeningofsaltmixturesandevaluationofthephysicalandchemicalpropertiesofthemostpromisingmixturesisrequired.Inaddition,longertermstabilityandcorrosiontestsneedtobedone.

-Storagecontainermaterials,innerliners,gasblanketsNewsaltmixturesoperatedathighertemperaturesmayresultincorrosionproblems.Newmaterials,innerlinersandgasblanketscanpotentiallylowertheoverallmaterialcost.

-SingletanksolutionsAsingletanksolutionrequiresanoptimisedthermalstoragedesigninordernottopenalisethestorageefficiencybymixinghotandcoldstoragefluid.Forthispurpose,optionsthatleadtoanexcellenttemperaturestratificationorseparationbetweenthehotandcoldsectionsinthetankneedtobedeveloped.Theintegrationofthesteamgeneratorintothetankispossible,thusenhancingthecapabilityofstratificationandfurtheringthereductionofcosts.

Storage system for steam as HTFSteamasHTFisattractiveasitcanbedirectlyusedinthepowerblock.However,steamstorageconceptsmusttake intoaccount thatwaterundergoesaphasechange(atconstant temperature)duringevaporation. In thiscontext,phasechangematerials(PCM),typicallybasedonsaltmixtures,canbeusedasstoragemediabecausetheyundergoaphasechangeintherequiredtemperaturerange.Thewatermaybepreheateduntilitreachestheevaporationpointandtheresultingsteammaybesuperheatedwiththeheatfromsensibleheatstoragewhichmaybesolidorliquid.

Thereareresearchactivitiesinapplicationsusingsaturatedandsuperheatedsteam.Conceptsbasedonsolid/liquidPCMtoheatsaturatedsteamwouldmakeitpossibletousesteamasasingleHTFintheSTEsystem.ThiscouldprovidecertainadvantagestoPTandlinearFresnelsystems.

Storage system for gas as HTFGasesusedasHTFhavenopracticallimitforupperandlowertemperatureoperationandarethereforeconsideredofinterestforveryhightemperatureapplications.Duetothelowdensityandheatcapacityofthegas,however,storagesystemsarebasedonsolidorliquidstoragemedia.Adesignforaneffectiveheattransferandtheidenti-ficationofsuitablehightemperaturestoragematerialsaremajorchallenges.

-HeattransferoptimisationinstorageconceptsTheheattransferinstorageconceptsbasedongastosolidorgastoliquidhastobeoptimised.

-Lowcostmaterials/particlesasstoragesmediaLowcostmaterials/particlesasstoragemediasuitableforpackedbedorfluidisedbedconfigurationshavetobeinvestigated.

7.2.2.2 Storage optimisation

Optimised charging and discharging strategiesOptimisedcharginganddischargingstrategiestomaximisethestoragecapacityofexistingstoragedesignsshouldbebasedonadetaileddynamicmodellingofexistingstorageconfigurationsinordertooptimisethefuturedesignstakingintoaccountthecompletesystemoftheplant.

Thesestrategiesshouldbebasedonadetaileddynamicmodellingofexistingstorageconfigurations.

Optimised multi-storage conceptsAcombinationofmultiplestoragetanksofdifferenttypesandcapacitiesmaybeusedtoachievecost-effectiveoptimisation,notonlywhenusingdirectsteamasHTFbutalsoforothersystems.Multiplestoragecanalsobecombinedtoachieveabettermatchofstoragecapacitytotheoperatingtemperaturerange.

Stra

tegi

c r

esea

rch

Agen

da7

Page 92: ESTELA Strategic Research Agenda 2020-2025

92 STrATegIc reSeArcH AgendA 2020-2025

7.2.2.3 New storage conceptsTheadvantageofstoringsolarenergyinchemicalformisthatthestoragetimecanbeextendedwithoutfurtherlosses.Thehigherenergydensityachievableinchemicals,incomparisonwithstorageintheformofsensibleheatallowsmovingthestoredenergytootherlocations.ThisoffersavarietyofbenefitsthatclearlygoesbeyondtheTEStechnology.Howeverthedevelopmentofthetechnologyisstillinanearlyphaseandfundamentalproblemsneedtoberesolved.

Thermo-chemical energy storage systemsReversiblechemicalreactionsbasedonnon-toxiclow-costmaterialscanbedrivenbyhightemperatureSTE.Insystemsbasedonsuchchemicalstorage,theheatisreleasedwhenthereversereactiontakesplace.

It isnecessarytoevaluateconceptsthatusechemicalreactionsasheatstoragesystemsinengineeringstudiesandtocharacterisethethermo-physical,kinetics,andstabilityofthosematerialsinlaboratoryscaleresearchthatisalreadyunderway.

7.2.2.4 Storage as energy integratorInordertoidentifythemostreasonablemarketsforSTEsystemswithstorage,itisimportanttoidentifyandquantifythevalueofenergy,capacityandgridservicesinfutureenergyscenarios.

Comprehensive electric grid modelsThereisaneedtodevelopandupdatecomprehensiveelectricgridmodelsthatallowestimatesofthevalueofSTEsystemswithstoragefordifferentscenariosofEurope’senergysystemuntil2050.TheyareneededtopredictthevalueofdispatchableelectricityinafutureenergysystemandtoidentifysuitablemarketsforSTEtechnology.

Stra

tegi

c r

esea

rch

Agen

da

7

Page 93: ESTELA Strategic Research Agenda 2020-2025

93december 2012

Stra

tegi

c r

esea

rch

Agen

da

Topics Objectives Parameter/Target/Action Short Mid Long

Storage design

StoragesystemforthermaloilasHTF

Singletanksolutions

•Reducethecostsofstorageandincreasethestorageefficiencyanddispatchability

Parameter:SpecificcostsTarget:25€/kWhth

X

Solidmediastoragesolutions

•Reducethecostsofstorageandincreasethestorageefficiencyanddispatchability

Parameter:SpecificcostsTarget:25€/kWhth

X

StoragesystemformoltensaltasHTF

Newsaltmixtures •Reducethecostsofstorageandincreasethedispatchability

•Workingathighertemperaturestoincreasethecycleefficiencyoftheplant

•Increasesolartothermalefficiencyusingsaltwithlowerfreezingtemperatureduetolowerovernightheatlosses.

Parameter:SpecificcostsTarget:20€/kWhth

X

Parameter:ηth-elec

Target:ηth-elec=42%X

Parameter:ηth-elec

Target:ηth-elec=+1%X

Storagecontainermaterials/innerliners/gasblankets

•Reducethecostsofstorageandincreasethedispatchability

Parameter:Specificcosts[€/kWhth]Target:-10%comparedtohightemperaturealloydesign

X

Singletanksolutions

•Reducethecostsofstorageandincreasethestorageefficiencyanddispatchability

Parameter:SpecificcostsTarget:20€/kWhth

X

•Decreasethethermallossesbyintegrationofthesteamgeneratorintothetank

Parameter:ηth-elec

Target:ηth-elec=+1%X

StoragesystemforsteamasHTF •Minimiseenergylossesinheattransferandreducethecostofstorage

Parameter:SpecificcostsTarget:25€/kWhth

(sensibleheatsystems)Target:50€/kWhth

(latentheat,PCM)Parameter:ηStorageTarget:ηStorage=95%

X

StoragesystemforgasasHTF

Heattransferoptimisationinstorageconcepts

•Increasetheenergyefficiency Parameter:ηStorage

Target:ηStorage=95%X

Lowcostmaterials/particlesasstoragesmedia

•Reducethecostofstorageandminimiseenergylosses

Parameter:storageandenergylossTarget1:20€/kWhth

Target2:95%

X

Storage optimisation

Optimisedcharginganddischargingstrategies

•Maximisestoragecapacityofexistingstoragedesignsthusreducingspecificstoragecost(€/kWh)

Parameter:Specificcosts[€/kWhth]Target:-10%comparedtononoptimisedstrategy

X

Optimisedmulti-storageconcepts

•Minimisestoragecostbyeffectivecombinationofseveralindividualstoragesdependingontemperaturelevelandcapacity

Parameter:Specificcosts[€/kWhth]Target:-10%comparedtonon-optimisedcombinationforDSG

X

New storage concepts

Thermo-chemicalenergystoragesystems

•Increasetheroundtripstorageefficiency(heat-to-heat)

Parameter:ηStorage[%]Target:90€/kWhth

X

Storage as energy integrator

Comprehensiveelectricgridmodels

•Predictthevalueofdispatchableelectricityinafutureenergysystem

(NotechnicalKPIofSTEapplicablehere)

X

TABLEVII:RESEARCHPRIORITIESFORSTORAGE

7

Page 94: ESTELA Strategic Research Agenda 2020-2025

94 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

7.2.3Forecastingtools

7.2.3.1 Operation strategy

Studies on the use of solar irradiance for very short term forecast Amajorconcerninthemanagementofsolarthermalpowerplantisthepotentialinstabilitiesduetosteepchangesinthesolarradiationalongsolarfieldareaassociatedwiththepresenceofscatteredcloudsand/ortransientsoriginatedbycloudmovements.Thiskindofskyconditionsrequiresspecialplantoperationstrategiestoaccom-modatethelocalsolarradiationspatialvariabilityandtoreducethethermalstressintothesolarfield.

Anaccurateveryshort-termforecastcanincreaseplantprofitsbydispatchingenergyintothetimeperiodsofgreatestvalue.

Electricity production forecasting systemApreciseelectricityforecastreducestheamountofbackuppowerneededinnetworkmanagement.

Systemswithstoragefacilitycanbeoperatedmoreefficientlyifthesolarforecastisknown,avoidinginefficiencies(forexample,byfirstfeedingthestorageandrunningthepowersystematfullloadoutofthestorage).

Thegoal is todevelopprototypesoftware that integratesall forecasting,modellingandoutputgenerationforconcentratingsolartechnologies.

7.2.3.2 Solar resource assessmentBeforeaSTEprojectisundertaken,itiscriticallyimportanttohavethebestpossibleinformationregardingthequalityandreliabilityoftheenergysource.Thatis,projectdevelopersneedtohavereliabledataonthesolarresourceavailableatspecificlocations,includinghistorictrendswithseasonal,daily,hourly,and(preferably)sub-hourlyvariability,inordertopredictthedailyandannualelectricityoutput.

Improving DNI measurement ground base data networkBecausesiteselectionisalwaysbasedonhistoricsolardataandweatherpatternchangesfromyear-to-year,amaximumnumberofyearsofdataarebetterfordeterminingarepresentativeannualdataset.

Therefore,theradiationdatabasebasedonanetworkofgroundsolarradiationsensorswithextendedgeographicalcoverageofSouthernEuropeandotherMediterraneanandNorthAfricanregionshastobeimproved.

Deriving the global and beam irradiance components from meteorological satellite imagesModelsconvertingsatelliteimagesintothedifferentradiationcomponentsarebecomingincreasinglyaccurateandtheyallowtheaccesstoagoodnumberofstatisticsandphysicalmodels.Moreaccuracyinthedatacouldbeobtainedbycomparingandvalidatingthedifferentmodels.ThiscouldbedonebyderivingtheglobalandbeamirradiancecomponentsfrommeteorologicalsatelliteimagesfordifferentlatitudesandaltitudesinEurope,toobtainingreliableandaccurateknowledgeoftheaerosolopticaldepthandofthebeamirradianceforspecificareas.

Bothstatisticsandphysicsmodelsaretobedevelopedfurther.

DNI forecasting systemSolarpowerforecastingistheprimaryrequirementforefficientintegrationofSTEintopowersystemsandforthereductionofgridintegrationcosts.Theelectricityproductionforecastisdrivenmainlybythedirectnormalirradiance(DNI)forecast.

TwoapproachesmustbefollowedtoobtainreliableDNIdata: thefirstonebasedonsatelliteimages,whichprovidesvaluableforecastsforatimehorizonofupto6hoursandthesecondonebasedonnumericalweatherpredictionmodelswhichprovidevaluableforecastforatimehorizonofupto72hours.

Thisincludestheanalysisofthedependenceontheforecastsreliabilityonthetimehorizon,seasonoftheyearandskyconditions.

Improved Numerical Weather Prediction (NWP) models for DNI forecastingDNIforecastsaretheprimaryrequirementforefficientintegrationofSTEplantsintopowersystems.NumericalWeatherPrediction(NWP)modelsaretheonlytoolsthatprovideDNIforecastwithupto72hourtimehorizon.

Therefore,increasingthereliabilityoftheDNIforecastsbasedonNWPmodelshasadirectimpactonthereduc-tionofgridintegrationcosts.

7

Page 95: ESTELA Strategic Research Agenda 2020-2025

95december 2012

Stra

tegi

c r

esea

rch

Agen

da

Analysis of the inter-annual variability of the DNIAccurateresourceevaluationisakeyissueinthefirststagesofanyrenewableenergyproject.Particularly,asthelifespanofsolarpowerplantsisabout20years,theeconomicfeasibilitystudyofsuchprojectsmusttaketheinter-annualvariabilityoftheresourceintoaccount.

Therefore,analysisofthecausesoftheinterannual/decadalvariabilityoftheDNIinregionsofinterestiscrucialforabetterpredictabilityoftheexpectedperformance.

Analysis of the space-time correlation between solar energy (DNI) and wind energy resourcesAmajorchallengeforthefutureregardingrenewableenergywillbetheintegrationofmajorwindandsolaryieldsintotheexistingenergysupplyinfrastructure,consideringthefluctuationoftheseresourcesandtheirsensitivitytoweatherpatterns.

Oneofthemostpromisingwaystoreducethepowerfluctuationfromsolarandwindenergyistotakeadvantageofthespatialvariabilityoftheseresources.Sincethespatialcorrelationofwindand(toalesserextent)solarenergyresourcesdiminisheswithdistance,interconnectionofwindandsolarpowerinaregionwillreducefluctuationsintotalproduction.Thisbalancingeffectbecomessignificant,providedthatweatherconditionsacrosstheintercon-nectingregionaresufficientlyvariableand/ortheterraincomplexityislarge.

Therefore,theanalysisofthebalancingbetweensolarresources(DNI)andwindenergyresourcesinkeyregionsisanimportantissueforexamination.

7

Page 96: ESTELA Strategic Research Agenda 2020-2025

96 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

TABLEVIII:RESEARCHPRIORITIESFORDISPATCHABILITY

Topics Objectives Parameter/Target/Action Short Mid Long

Optimised operation strategy

Studiesontheuseofsolarirradianceforveryshorttermforecast

•Reduceinstabilitiesintheplants•Maximiserevenuesattheelectricity

stockexchangebysellingtheelectricitypreferablyathighpricetimesratherthanatlowpricetimes

Parameter:MBETarget:<5%Parameter:RMSETarget:<10%

X

Electricityproductionforecastingsystem

•Developaprototypesoftwarethatintegratesallforecasting,modellingandoutputgenerationforconcentratingsolartechnologies

Parameter:DeviationfromplannedtoproductionTarget:-5%

X

Improved solar resource assessment

ImprovingDNImeasurement-groundbasedatanetwork

•ImprovesolarradiationdatabasebasedongroundsolarradiationsensorsnetworkwithextendedgeographicalcoverageofSouthernEuropeandotherMediterraneanandNorthAfricanregions

Parameter:SolarresourcedataAction:Extendthecurrentsolarradiationnetworktoareasofhighinterestwithlackofdata(NorthernAfrica)Action:Extendthelengthofthemeasureddataperiodtoabout10years

X

Derivingtheglobalandbeamirradiancecomponentsfrommeteorologicalsatelliteimages

•ValidateandcomparedifferentproductsderivingtheglobalandbeamirradiancecomponentsfrommeteorologicalsatelliteimagesfordifferentlatitudesandaltitudesinEurope.

•Obtainreliableandaccurateknowledgeoftheaerosolopticaldepthandthebeamirradiance.

Parameter:AccuracyofthebeamirradianceTarget:<10%,standarddeviation=20%

X

DNIforecastingsystem

•Maximisetheeconomicpotentialoftheparticipationatpremiumtariffs

•Reducethesolarenergyyieldintegrationcostsbyaccurateinformationonexpectedsolarirradiance

Parameter:MBETarget:<10%Parameter:RMSETarget:<15%

X

ImprovedNumericalWeatherPrediction(NWP)ModelsforDNIforecasting

•IncreasingthereliabilityoftheDNIforecastsbasedonNWP

Parameter:ForecastreliabilityAction:HighspatialandtemporalresolutionDNIforecastsprovidedbyreferenceNWPmodelsasthoseoftheECMWF

X

AnalysisoftheinterannualvariabilityoftheDNI

•Increasethecurrentunderstandingonthecausesoftheinterannual/decadalvariabilityoftheDNIinregionofinterest

•Analysetherelativerolesofcloudsandaerosolsinthisvariability

•Obtainbetterestimatesoftheexpectedinterannual/decadalvari-abilityintheoutputofsolarpowerplantsintheregionsofinterest

Parameter:DNIvariabilityAction:EvaluationoftherelativeinfluenceofaerosolandcloudsoninterannualvariabilityoftheDNIinkeyregion

X

Analysisofthespatial-temporalbalancingbetweensolarenergy(DNI)andwindenergyresources

•Evaluatethespatialbalancingbetweensolarandwindenergyresourcesinkeyregions

•Determineifbyinterconnectingadvantageously-distributedwindfarmsandSTEplants,itmaybepossibletoachievereducedminimumoutput,eventuallytransformingthesumofthethermalenergyandwindfarmenergyintoareliablesupply

Parameter:CorrelationbetweenDNIandwindAction:Studiesoncombinationofweatherforecastanddemandatalargeregionalscale

X

7

Page 97: ESTELA Strategic Research Agenda 2020-2025

97december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.3Objective3:ImproveEnvironmentalProfile

7.3.1Heattransferfluids

7.3.1.1 Heat transfer fluids vs. environment impactTheenvironmentalcomponentsthatcouldbeaffectedbyleaksoremissionsofHTF(heattransferfluid)arethesoil,groundwaterandsurfacewater,airandhumanpresence.Asareferencesituation,thecaseofsyntheticoilasHTFistakenandcomparedtootherpossibleHTFswhichareexpectedtobefriendliertotheenvironment.

PT,linearFresnelandPDtechnologiesdependonawidespreaddistributionofthereceivers,thatis,awidedistribu-tionoftubesormotorsinthesolarfieldsandthereforeapotentialinvolvementoflargetractsoflandbypossibleHTFleakages.UnderstandingthisservesasacautionarywarningthattheuseofHTFsmaybehazardoustotheenvironment.ThisaspectislessproblematicforthelimitedareadevotedtotheTESandtotheprocessequipment.Inthiscase,aproofingsurfacemayprovideasolution.

AccidentalleakagescouldoccurduringthecirculationoftheHTFinsomepartsnotshieldedbyinsulation,suchasaCR.Inthiscasethepressurisedfluidissprayedoutsideand,duetotheheightofthetowertheareaofdispersioncouldbelarge.

Synthetic oilNowadaysPTplantsinCaliforniaandSpainexhibitsomeleakagesofthesyntheticoilusedasHTF.ThereisalsoaprevailingHTFsmellintheinstallations.Leakageshavebeenmorecontrolledbynewinterconnectionelements(balljoints),whilesoilpollutioncanberecoveredbybacteriologicaldecontaminationorbyremovingandsubstitutinglargeamountsofground.Wheretherearesuperficialpondsorshallowgroundwater,thesyntheticoilpollutesthesoilandcouldpassveryfasttothewater,whereitmaybehighlytoxic.Thisfactsuggeststhatoilshouldbeavoidedinthecaseofveryvulnerableaquifers.

Theresearchanddevelopmentofthepastyearshaveledtovariousnewsystemsthatdonotneedanymorethesyntheticoil,butusewater/steamdirectlyasHTF,asinDSG(directsteamgeneration),gasesormoltensaltmixturesindirect/indirectsystems.ThechoiceoftheHTFhasvariousconstraintsbesidestheenvironmentsafeguardcosts,suchastheirimpactontheperformanceandefficiencyoftheplants.Thisimpliesacompromiseinordertocomplywithsafesolutions.

Advanced HTF solutionsOtheroptionsinvolveadvancedHTFs,including:

n Pressurisedgas,currentlyundertesting,e.g.atthePlataformaSolardeAlmería,Spain.Additionalworkisneededtoimproveheattransfersinthereceivertubesandtoensurecontrolofthesolarfield,whichismorecomplexthanthereferenceoildesign;

n MoltensaltdirectlyusedinthesolarcollectorsfieldthussimplifyingtheTES,becausetheHTFalsoservesasstoragemedium,e.g.intheArchimededemoplant,Italy.Theusedmoltensaltmixture,i.e.thelessexpensive“solarsalt”nowadaysusedforTES,solidifiesbelow235°C;thereforeauxiliaryheatingequipmentandexpensesareneededtoprotectthefieldagainstfreezing.Othermoltensaltmixturesareunderinvestigationtoreducethefreezingpointtoaslowas100°C;

n Densegas-particlesuspensions:itisproposedtousedensegas-particlesuspensions(approximately50%ofsolid)intubesasHTF.Thesetubes,setinabundle,constitutethesolarabsorber(orreceiver),placedatthetopofaCRsystem.ThisnewHTFbehaveslikealiquidwithanextendedworkingtemperaturerange:itstaysalmostliquidatanytemperature(thereisnofreezingtemperature)anditpermitstoincreasetheworkingtemperatureupto700°Candhigher.Moreover,itmaybeusedasanenergystoragemediumbecauseofitsgoodthermalcapacity.Itiscomposedofanyparticulatemineralthatwithstandshightemperatures,thusreducingtheenvironmentalimpactandaddressingthesafetyconcernincomparisonwithstandardHTF;

n Addingnanoparticles to theabovementionedfluids, thusobtaining theso-callednanofluids,wouldgreatlyenhancephysicalandtransportproperties,implyingapositiveimpactontheenvironment;

n Otherattemptstoreducethemeltingpointformoltensaltmixturesthroughtheuseofspecialadditiveshavetobeconsideredtoreducethepotentialenvironmentimpact.

7

Page 98: ESTELA Strategic Research Agenda 2020-2025

98 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

7.3.1.2 Heat transfer fluid characteristicsIntheANNEXIII:Heattransferfluidsvs.environmentalcomponents,differentHTFsarelistedtogetherwiththeimpactoftheircharacteristicsonthepossibleenvironmentalhazards.InTable4,thevariousfluidsareevaluatedonthebasisofavaluescalerangingfrom1to10onthebasisoftheirimpacttotheenvironmentcomponentsandtheirtechnicalandeconomiccharacteristics.

AmongallthepossibleHTFs,onlythemostcommonlyemployedand/orstudiedoneshavebeenselected,togetherwithsomelessinvestigatedbutverypromisingnanofluids,i.e.fluidscontainingnanoparticles:

n Thermaloil:Gilotherm,Therminol,etc;n Na,K(MS):NitratebinarymixtureNaNO3/KNO360:40wt%(generallydefinedas“solarsalt”);n Li,Na,K(MS):Nitrateternarymixturecontaininglithium,atthe“eutectic”composition:

NaNO3/KNO3/LiNO318:53:30wt%;n Ca,Na,K(MS):Nitrateternarymixturecontainingcalcium,atthe“eutectic”composition:

NaNO3/KNO3/Ca(NO3)215:42:42wt%;n HitechMSwithnitrite:TernarymixturecontainingNitrite(CoastalHitech©salt):

NaNO3/KNO3/NaNO27:53:40wt%;n CO2andH2O:CO2,air,steam;n Na,K(MS+nanoparticle):Solarsaltaddedwithnanoparticles(carbonnanotubes,Al2O3,TiO2);n CO2+nanoparticle:CO2,steamaddedwithnanoparticles(Al2O3,TiO2,CuO);n H2O+nanoparticle:Densegas-particlesuspensionsofoxidesorcarbides,typicalparticlediameter,50µm.

HTFs Thermal oil

Na, K (MS)

Li, Na, K (MS)

Ca, Na, K (MS)

Hitech MS with

nitrite

CO2 H2O Na, K MS+

nanop

CO2 + nanop

H2O + nanop

Parameters

Soilpollution 10 2 5 2 2 1 1 3 2 2Waterpollution 10 3 5 3 6 1 1 4 4 4Airpollution 10 1 1 1 1 2 1 2 3 3Toxicitytohumanpresence

10 1 1 1 3 2 1 2 2 2

Cost 10 1 5 3 2 1 1 4 4 4Freezingtemperature 1 10 2 5 2 1 1 10 1 1Costofhandlingequipmentandsystem

8 5 8 8 8 5 8 8 8 10

Upperthermallimit 10 2 2 6 6 1 1 3 2 2

TABLE4:HTF and environmental parameters

Theratingevaluationsareassignedconsideringavalueof10forthematerialpresentingtheworstlevelforthecharacteristicconcerned,andassigningtotheotherHTFsarelativevaluerespecttothemaximumone(from1to9),inparticular:

n Soil,water,airpollution;toxicityforhumans:thermaloilsarethemostpotentiallyharmfulmaterial,andtheyarealsoflammable;

n Freezingtemperature:thebinaryNaNO3/KNO360:40wt%exhibitsthehigherfreezingpoint;n HTFcost:thermaloilsarethemostexpensivematerialsatthemoment,however,thecostsfornanomaterials

particles,consideringtheirpreparationprocedures,havetobemorecarefullyestablished;n Costforhandlingequipmentandsystems:asystemconsistingofsteamandnanoparticlesispotentiallythemost

expensive.

ThechoicetousenormalisedvaluesallowsaqualitativecomparisonoffirstapproximationamongthevariousHTFs,inordertodefinethemostsuitableoneforaspecificapplication.Foramorepreciseandcarefulcomparisonitisnecessarytohavemoredatafromlaboratoryexperimentsanddemonstrationprojects.

Besidestheaspectsalreadyconsidered,thecomplexityandthepossibilityofrecoveryfromlikelyaccidents,e.g.asuddenleakofHTFfromaruptureofaflexibleorrotatingconnection,havetobeevaluated.

7

Page 99: ESTELA Strategic Research Agenda 2020-2025

99december 2012

Stra

tegi

c r

esea

rch

Agen

da

7.3.1.3 Leakage consequencesInabsolute,theleaksofpuregasesandsteamaretheleastcomplex,presentingamomentaryhazardaroundthepointofdispersionoffluidathighpressureandhightemperature.Oncethedischargeends,noappreciablepollutionshouldremain.However, ifnanoparticleshavebeenaddedto the liquid, thepollutionmaybeveryimportant,dependingontheirnoxiousness.Ifthematerialisdispersedoveralargearea,norealisticpossibilityofremediationisachievable.

Similarleaksofmoltensalt,otherthanthemomentaryhazardduringdischarge,resultinaspillofliquidthatsolidifiesveryfastontheground,avoidingpenetrationofthesoil.Oncecooled,thesolidifiedmoltensaltcanberemovedalmostcompletelywithmechanicaltools,minimisingsoilimpact.Onlyinthecaseofconcurrentraincouldthesoilbepolluted,aswellasthegroundwater,iftherainisabundant.Thiswouldbemoresevereforamoreaggressivemixturesuchasmoltensaltwithlithium.WhileNaandKnitratesareusedinagricultureasfertiliserswithadefinitequantitysquaremeteroftreatedsoil,largerdispersedquantityofmoltensaltmixtureswithhigherimpactcouldpollutevulnerableaquiferssuchasshallowgroundwaterorponds.

Besidestheaspectsalreadyconsidered,thecomplexityandthepossibilityofrecoveryfromlikelyaccidents,e.g.asuddenleakofHTFfromaruptureofaflexibleorrotatingconnection,hastobeevaluated.

7

Page 100: ESTELA Strategic Research Agenda 2020-2025

100 STrATegIc reSeArcH AgendA 2020-2025

Stra

tegi

c r

esea

rch

Agen

da

7.3.2Reductionofwaterconsumption

7.3.2.1 Improved cooling systemsWaterconsumptionoftraditionalwet-coolingsystemsisveryhighanditisasignificantbarrierforthecommercialdeploymentofthistechnologyinaridareaswithalackofwaterresourcesandhighsolarradiationlevels.Develop-mentofnewapproacheswithwaterconsumptionlowerthancurrentwet-coolingsystemsandwithsimilarcostandefficiencyisaveryimportantR&Dtopic.

Althoughdry-coolingsystemsarealreadyavailable,theirhighercostandlowerefficiencyoftenmakethemnon-competitive.TwoexamplesofpossibleapproachestolowerthewaterneedsofSTEplantswithPTcollectorsaretheuseoftheso-callednegativegradientindesertareas,wheretheairtemperatureatnightismuchlowerthanthetemperatureduringsun-lighthours,andtheimplementationofhybridcoolingsystemsthatdependonwet-coolingforthesummeranddry-coolingforthewinter.

7.3.2.2 DesalinationDesalinationisavitalnecessitytomanycountries.Thisiswhyithasbeenhighlydevelopedduringthelastdecade,witheveryindicationthatthisactivitywillcontinuetogrowinthenearfuture.

Advantages:Desalinationneedsalargeamountofenergyandrequirestheassociationoflargeplantswithconventionalpowerfacilities.Therefore,thecombinationorintegrationofdesalinationintosolarthermalpowerplantsisaveryinterestingissuethatcanprovideasignificanttechnicalandeconomicadvantageforthefollowingreasons:

n Thetypicalgeographiccoincidenceofwatershortageandlimitationproblemswiththeexistenceofhighlevelsofsolarradiation,whichnormallymakewaterissuesatoppriorityformanysunnylocationsandforcestheuseofdrycoolinginsteadofwatercoolingsystemsforsolarthermalpowerplantswhennowaterisavailableorsevererestrictionsprevail;

n Thepossibilitytoreduceortheoreticallyeliminatetheconventionalcoolingrequirementsforsolarpowerplants;n Thereductionoffinancialschemesbasedonthesynergyeffectbetweenthetwotechnologies,solarpowerand

desalination,duetoreducedoverallinvestmentsbycombiningtwonormallyseparatedplantsintooneandbyobtaininghigherrevenuesthankstotheproductionoftwodifferentgoods:electricityandwater.

Drawbacks:However,thiscombinedconcepthasalsosomedrawbacks.Onedrawbackisthattheplantsneedlargeamountsoflandclosetothesea,whiletheDNIisnormallylowerincoastalareas.

ItshouldbenotedthattheLCOEandthelevelisedwatercosts(LWC)normallyincreaseasaconsequenceoftheenergylossesandtheefficiencyreductionatlocallevelbutthecombinedefficiencyandtheintegratedeconomicscouldimprovesignificantly.Thismayhaveapositivefinancialimpact.Therefore,inthesecases,indicatorssuchasreturnofinvestmentorpresentnetvaluemaybebetterparametersthantheLCOEandtheLWC,consideredseparately.

Asaconsequence,themainobjectiveofresearchactivitiesinthetopicistoincreasethecombinedefficiencyandlowerthecombinedcosts.

Integration

Strategicgoalsandobjectivespursuedarethefollowing:

n OptimisingheatextractionindifferentSTEtechnologiestobeabletodrivedesalinationprocesses;n Reducingcoolingrequirementsofsolarpowercycleswithoutpenalisingthethermodynamiccycleandexergy

efficiency;n Optimisingtheenergyandexergyofcombinedpowerandseawaterdesalinationprocesses;n Optimisingdesalinationtechnologiesforbettermatchingsolarpowercycleconditions.

7

Page 101: ESTELA Strategic Research Agenda 2020-2025

101december 2012

Stra

tegi

c r

esea

rch

Agen

da

Multi-effect distillation (MED)

-InlettemperatureMulti-effectdistillation(MED)is,todate,themostthermodynamicallyefficientthermaldesalinationtechnology,withenergyconsumptionsbetween65and75kWhth/m3ofdesaltedwater(i.e.aconsumptionof65-75kWhofthermalenergypercubicmeterofdistilledwaterproducedbytheMEDunit).TypicalelectricityconsumptionofMEDplantsisaround1.5kWhe/m3.

ThemaininterestinusingthistechniqueisthattypicalenthalpyvaluesoftheexhauststeamofthepowerturbineareclosetotheonesrequiredbytheconventionalMEDtechnologywiththeadvantagethatthelatentheatofthissteamisveryhigh.Therefore,thetotalamountofenergynormallyrejectedishuge,thusmakingthedesalinationprocessveryattractive.AstheMEDplantwouldalsobethecoolerelementofthepowerblock,thetypicalcoolingissuescouldbereducedoreveneliminated.

-Thermo-compressionTypicalMEDplantsassociatedwithpowerfacilitiesincludethermo-compressiondevicestoincreasetheefficiencyofthewaterproduction.Thus,theyheavilypenalisethepowerproduction.Asaconsequence,thechallengeistodevelopimprovedMEDconceptsandspecifictechnologiesdealingwithsomekeycomponentssoastooptimise,fromthethermodynamicpointofview,theoverallcombinedefficiencywhencombinedwithsolarthermoelectricplants.

-TubebundlesUsingnanotechnologyforthetubebundlecoatingscanbeaninterestingoptiontoachieveaneffectiveheattransfer.Itcouldalsohaveapositiveimpactoncosts.

Reverse osmosis (RO)-EnergyrecoveryReverseosmosis(RO)istheleadingworldwidedesalinationtechnologytoday,duetoitslowenergyconsumption(from3.0to4.5kWhe/m3dependingonseawaterconditions;evenlowerconsumptionispossiblewithbrackishwater).Thishasresultedfromsignificantadvancementswithmembranesandenergyrecoverydevices.AsROonlyuseselectricity,thecouplingwithsolarthermoelectricplantsdoesnotprovideanyparticularsynergyeffects,asthedesalinationplantcanbeatadifferentlocationandthereforebeconsideredlikeanyotherpowerconsumptionsource.

-MechanicalenergyInaddition,therearesomeinterestingconceptsthatdeservetobeexplored.ROneedsmechanicalenergytoreachtherequiredpressure(around70bar),whichcanbeprovidedbythesolarsteamcycleatahigherefficiencythanconventionalelectricallydrivenpumps.Intheory,thiscouldavoidtheinefficiencies(implyingeconomicsavings)duetotheelectricityconversion.Thesavedelectricitycanthenbeusedtoproducetheadditionalmechanicalenergynecessaryforthereverseosmosisprocess.Thisapproachcouldalsopermittheexplorationofotherpromisingideasrelatedtotheimprovementofcurrentenergyrecoverydevices,thusincreasingtheoverallefficiency.

Other desalination technologies-Humidification-dehumidification(HDH)TheHDHisadesalinationprocesswheredistillationisachievedunderatmosphericconditionsbyanair loopsaturatedwithsteam.HDHisbasedontheprincipleofmassdiffusionusingdryairtoevaporatesalinewater,thushumidifyingtheair.Thehumidificationcycleisacombinationofevaporatorandcondenser:theairflowishumidi-fiedintheformeranddehumidifiedinthelatter.Aircirculatesbynaturalorforcedconvection.Airflowextractsthesteamfromsaltwater.Sensibleheatandfreshwaterisproducedbycondensingoutthesteam,whichresultsinthedehumidificationoftheair.Thecondensationoccursinanotherexchangerinwhichsaltwaterispreheatedbylatentheatrecovery.Solarenergyisexternallyprovidedtocompensateforthesensibleheatloss.

-Membranedistillation(MD)MembraneDistillation(MD)isanevaporativeprocessinwhichthesteam,drivenbyadifferenceinsteampres-sure,permeatesthroughahydrophobicmembrane,thusseparatingthewaterphasefromthesalt.Oncethesteamhaspassedthroughthemembrane(porediameterintherangeofMFbetween100nmand1µm,withtypicalvaluesaround0.3µm)itcanbeextractedordirectlycondensedinthechannelontheothersideofthemembrane.Theseparationeffectofthesemembranesisbasedonthehydrophobicityofthepolymermaterialconstitutingthemembrane,asmolecularwaterintheformofsteamcanpassthroughthemembranebutnottheliquid.However,thisistrueuptoacertainlimitingpressure,theliquidentrypressure,which,ifexceeded,wetsthemembrane,thuslosingitsproperties.

Theresearchanddevelopmenteffortsinthesetechnologiesareofspecialinterestwithviewtotheadaptationofspecificturbineexhauststeamconditionswhichlimitoravoidanypowerproductionpenaltyatthepowerblock.

7

Page 102: ESTELA Strategic Research Agenda 2020-2025

102

Stra

tegi

c r

esea

rch

Agen

da

35-TheGOR(GainOutputRatio)istheratiobetweentheamountof(latent)heatneededfortheevaporationofthewaterproducedandtheinputenergysuppliedtothesystem.TheGORisameasureoftheamountofthermalenergyconsumedinadesalinationprocessandthereforetranslatestheefficiencyoftheprocess.

Cooling implications-Thermo-electricplantcoolingAnotherresearchtopicofinteresttothecouplingofsolarthermalelectricityanddesalinationisrelatedtotheimpli-cationthatallthesepossiblecombinationsandtechnologiescouldhaveoverthecoolingofthepowerblock.Thetopicisofspecialinterestaswaterisoneofthemajorissueswhensolarplantsarelocatedinwaterscarcityareas,whicharethemostcommonlocationsindesertorsemi-desertenvironments.

Consideringthatthedesalinationunitcanbethe“cooler”oftheconventionalpowerblockandthatmostdesalina-tiontechnologiesalsoneedscooling,anotherimportantareaofresearchistheoptimisationoftheintegratedorcombinedcoolingprocess,whichissummarisedinthefollowingfigure.

Once-through

Hybrid Cooling

CSP POWER PLANT

Wet Cooling

DESALINATION PLANT

Once-through

FIGURE18:Interactions and possible cooling options between solar thermal and desalination plants

7.3.2.3 Solutions for desert locationsPlantsisolatedindesert locationssufferfromtechnicaldifficulties: theanti-soilingcoatingshouldnotjeopardisethereflectivityofmirrorsandshouldpossiblyenhancethetransmissivityofcoverglasses.Thechallengescanbealleviatedbythereductionofsoilingbysurfacecoatings,theanalysisofsitespecificdusting,themanagementofcleaningcycleandthedevelopmentofcleaningtechnologieswithlowwateruseandwithahighautomation.

Thistopichasaspectsthataresharedwithothertechnologies,butgiventheparticulargeometryoflinearFresnelprimarymirrors;thereisroomforresearchanddemonstrationofsolutionsadaptedtolongalmost-flatmirrors.PrimarylinearFresnelmirrorscanalsobeturnedfacedownatnight,reducingcondensationproblemsassociatedwithradiativecoolingofthemirrorsurfaceatnight.

STrATegIc reSeArcH AgendA 2020-2025

7

Page 103: ESTELA Strategic Research Agenda 2020-2025

103december 2012

Stra

tegi

c r

esea

rch

Agen

da

TABLEIX:RESEARCHPRIORITIESFORENVIRONMENTALPROFILE

Topics Objectives Parameter/Target/Action Short Mid Long

Heat transfer fluids

Heattransferfluidsvs.environmentimpact

•ReducetheimpactontheenvironmentfromemissionsandaccidentalleaksofHTFs,maintainingareasonableequilibriumwithcostsandefficiency

Parameter:Levelofrisktowardswaterandland(R)Target:R=MediumAssumingtheregulationECN°1272/2008,and91/155/CEE),thesubstancetobeconsideredshouldbenotclassifiedasverytoxic,toxicandharmful(Xn)

X

Heattransferfluidchar-acteristics

•ReducethecostoftheHTFandofequipmentandsystemnecessaryforitshandlingwithrespectofoil

Parameter:CostofequipmentandsystemforHTFhandlingTarget1:50%Target2:30%

X

Leakageconse-quences

•ForthefeasiblenewHTFsshallbeissuedproceduresanddevicesforremediationofpollutantaccidents

Parameter:costofremediation(C)intherespectofactualonefortheaccidentwithoilleakage(e.g.fullbreakofametallichose)Target:C<40%Action:Anyprocedureofremediationwillensurethefullrestorationoftheprevioussituation

X

Improved cooling systems •Lowerthewaterconsumptioninordertoachieveabettersustainability

Parameter:PowerblockwaterconsumptionperkWhofelectricityproducedkg/kWheTarget1:<2.5kg/kWhe

X

Target2:<2kg/kWhe X

Desa

linat

ion Integration Mechanical

energy•OptimisetheintegrationofMED

desalinationintothermoelectricsolarpowerplants

Parameter:PowerblockinvestmentTarget:-10%inthewholeinvestmentagainsttheindependentinstallationofequivalentsolarpoweranddesalinationplants

X

Intermittentdesalina-tionsystemoperation

•Optimisetheintermittenceofdesalinationplantoperationstoavoidanynegativeinteractionwithpowercycle

Parameter:TimeforstartupofthermallydrivendesalinationunitTarget:<1hour

X

Multi-EffectDistillation(MED)

Inlettemperature

•DesigninnovativeMEDsystemsreducinginlettemperaturetobettermatchingwithexhaustturbinesteam

Parameter:CombinedpowerandwaterproductionthermodynamicefficiencyTarget:+5%

X

Thermo-compression

•Optimisethethermo-compressiontotheeffectiveuseofexhaustturbinesteamtoMEDenergyfeeding

Parameter:ConventionalcoolingrequirementsofsteampowercycleTarget:atleast-50%

X

Tubebundles

•Increasetheeffectiveheattransfersurfacebynanotechnologycoating

Parameter1:CostsoftubebundlesmaterialsandothermetallicsurfacesTarget1:-30%Parameter2:MEDinvestmentcostsTarget2:-10%

X

ReverseOsmosis(RO)

Energyrecovery

•Integrateenergyrecoveryintodirecthighpressuremechanicalsystem=>reductionofnetme-chanicalenergysupplyneeded

Parameter:AchievementofmechanicalenergyrecoveryTarget:>98%

X

Mechanicalenergy

•UsesteamfromturbineextractiontoproducethemechanicalenergyneededbythehighpressureROpumps

Parameter:Directpressureproduction(p)andexergyefficiencies(η)Target:p=70barandη >90%

X

Otherdesalinationtechnologies

Humidifica-tion-Dehu-midification(HDH)

•DevelopadequateHDHtechnologiestotheeffectiveuseofexhaustturbinesteam

Parameter1:Achievementofeffectiveseawaterdesalination(GOR32)andassociatedinlettemperature(T)Target1:GOR>4andT<60°CParameter2:PowerblocknormalcoolingrequirementsTarget2:-25%

X

MembraneDistillation(MD)

•DevelopadequateMDtechnologiestotheeffectiveuseofexhaustturbinesteam

Parameter1:Achievementofeffectiveseawaterdesalination(GOR)andassociatedinlettemperature(T)Target1:GOR>4andT<60°CParameter2:PowerblocknormalcoolingrequirementsTarget2:-25%

X

Coolingimplications

Thermo-electricplantcooling

•Deductionofexternalactivecoolingneeds

Parameter:OverallthermalenergyremovalfromtheintegratedpoweranddesalinationplantTarget:-50%

X

Solutions for desert locations •Reductionofoperationandmaintenancecost

Parameter:WaterrequirementsforwashingTarget:Reductionoftypically1,500m3/(MW*a)byafactorof10(90%reduction)

X X

7

Page 104: ESTELA Strategic Research Agenda 2020-2025

104 STrATegIc reSeArcH AgendA 2020-2025

arringanunthinkablecatastrophe,theexpansionoftheworldpopulationwillnotabateinthenearormediumterm,andneitherwillthelegitimatedemandsofthatpopulationformoreenergytomeetbasicphysicalneeds.Tomeetthoseneedsatall,immediatechallengesmustbeaddressed,andfewareascriticalasthechallengetogenerateelectricityreliablywithoutaddingtogreenhousegasemissions.

Fortunately,thesolarsourceincidentonEarthismorethanenoughtomeetthoseneedsinthenearandmediumterm,ifitcanbeconvertedwithareasonableefficiencyandatareasonablecost.Severaloptionsholdthepromisetomeetthisneed:thermalconversion(STE)anddirectconversion(notablyPV)aretwoofthemostpromising.Itislikelythatbothoftheseoptionswillhaveanimportantroleashumanslearntoaddressthechallengestheyface,butsomecharacteristicsofSTEmakethisoptionofparticularinterest.

Oneofthesecharacteristicsis“dispatchability”–aproperlydesignedSTEplantcanprovideenergyintheformofelectricitywhenandifneeded.Theotherveryimportantcharacteristicistheefficiencyofconversionofthesolarresource.Thermodynamiclimitscanbeverygenerouswhenthethermalsourceisoneatveryhightemperature.

GreatprogresshasbeenachievedinSTEinaveryshorttimeframewithrelativelymodestgovernmentsupport,butpastresultsgiveonlyahintofwhatispossiblewithalongerlearningcurveandwithafirmcommitmentfromgovernmentanddecisionmakers.SomeofthiscommitmentmusttaketheformofsupportforR&D.

ESTELAhasgeneratedthisdocumenttoidentify,withineachoftheSETtechnologiesthoseareaswhereR&Dholdsthemostpromisetofurtherthesharedgoalstoimproveperformanceandlowercosts.Someofthepromisedimprove-mentsmayleadtoincrementalimprovementsbythemselves.Together,theymayleadtomajorbreakthroughsandeventodisruptivetechnologies.

AmajoradvantageofSTEisthattherearemanyoptionsthathavebeenidentifiedandthattheseoptionsmayservedifferentnichesofenergygeneration.Twomajortechnologiesdiscussedinthisreporthavebeenparabolictroughsandcentralreceivers:bothoftheseoptionsledthemselvestointegrationwithinageneratingsystemwithstorage.Theother twooptionsdiscussedhavebeenparabolicdishesandFresnel lenses,whichcanmeet theneedsofhighefficiencyofconversionandverylowcost,respectively.ImprovementsandareasofR&Dhavebeenidentifiedforalloptions.

Theyhavealsobeencomparedintermsofthepotentialforthealleviationofenvironmentalimpact,thedevelopmentoflocalindustryandthecreationofjobs.

ThevarietyofSTEoptionsalsoposesachallenge,becauseresourcesarefiniteanddecisionsonR&Dresourceallocationmayunwittinglypenalisedisruptiveoptionswithagreatpotential.Evenwhenconsideringfinancialincentivesinsupportoftherenewableindustry,decisionsmaypenalisesomeoptions.InadditiontoidentifyingthepathsopenforR&Dforcomponents,subsystemsandsystems,andareaswhereexternalsupportmaybeneeded,thisdocumenthassuggestedpossibletoolstoassistdecisionmakers.

Importantrecommendationsfromthisreportarethatsupportmustbegiventosustaindemonstrationprojectsforlessmaturetechnologies,aswellasforR&Dincomponentsandsystemstodrawonanundeniablealbeitshorthistoryofsuccesstobridgethegaptoafullysustainablefuture.AnotherimportantrecommendationisthatsomesupportmustalsobegiventoR&DinscientificallysoundinnovativeSTEoptionswiththepotentialtosuccessfullycombateclimatechange,savetheEarthandmeethumanenergyneedsfortheforeseeablefuture.

conc

lusi

on

cOncLuSIOn

Page 105: ESTELA Strategic Research Agenda 2020-2025

105december 2012

bIbLIOgrAPHY

n ANEST.CSPinItaly:2012-2014theageofaccomplishments.Presentation.Brussels,June2012

n A.T.Kearney/ESTELA.SolarThermalElectricity2025-Cleanelectricityondemand:attractiveSTEcoststabiliseenergyproduction,June2010

n Deloitte/Protermosolar.MacroeconomicimpactoftheSolarThermalElectricityIndustryinSpain,October2011

n EREC.MappingRenewableEnergyPathwaystowards2020.EURoadmap.Brussels,March2011

n ESFRI.StrategyReportonResearchInfrastructures.Roadmap.2010

n ESTELA.SolarThermalElectricityEuropeanIndustrialInitiative(STE-EII)-ImplementingPlan2010-2012.Brussels,May2010

n ESTELA.‘SolarPowerfromEurope’sSunbelt’,AEuropeanSolarThermo-ElectricIndustryInitiativeContributingtotheEuropeanCommission-‘StrategicEnergyTechnologyPlan’.Brussels,June2009

n ESTELA.TheEssentialRoleofSolarThermalElectricity-ArealOpportunityforEurope.PositionPaper-Brussels,October2012

n ESTELA.TheFirst5YearsofESTELA.Brussels,February2012

n ESTELA.WorkshoponFinancingtheSET-Plan.Presentation.Brussels,June2011

n EuropeanAcademiesScienceAdvisoryCouncil.Concentratingsolarpower:itspotentialcontributiontoasustainableenergyfuture.EASACpolicyreport16,November2011

n GDFSUEZEnergyIberia.PortugalasalivinglabforRESpilotproject.PresentationfortheEUsustainableEnergyWeek.Brussels,June2012

n IEA.TechnologyRoadmap.ConcentratedSolarPower.Paris,2010

n SETIS–EPIA–ESTELA.KeyPerformanceIndicatorsfortheSolarEuropeIndustrialInitiative.Version1,Brussels,October2011

bibl

iogr

aphy

Page 106: ESTELA Strategic Research Agenda 2020-2025

106 STrATegIc reSeArcH AgendA 2020-2025

IndeX FIgureS And TAbLeS

n Figure 1 STEestimateinstalledcapacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28n Figure 2 TotalnumberofjobscreatedbytheSTEindustry(2008-2010)inSpain13. . . . . . . . . . . .34n Figure 3 ExpectedLCOEreductionsfrom2012to2025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35n Figure 4 STEprojectlifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35n Figure 5 Impactofdirectnormalinsolation(DNI)onlevelisedcostofelectricity. . . . . . . . . . . . . . . .36n Figure 6 OverviewoftheEuropeanschemesforSTEfunding. . . . . . . . . . . . . . . . . . . . . . . . . . . .42n Figure 7 ElectricitydemandandSTEproductiononJuly11th2012 . . . . . . . . . . . . . . . . . . . . . . .50n Figure 8 Combinationofstorageandhybridisationinasolarplant. . . . . . . . . . . . . . . . . . . . . . . .51n Figure 9 LCOEcomparisonofsolarthermalenergyversusconventionalsources . . . . . . . . . . . . . . .54n Figure 10 Frominnovationtocommercialoperation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57n Figure 11 Financingfirstcommercialplantsforbreakthroughtechnologies . . . . . . . . . . . . . . . . . . . .58n Figure 12 SensitivityanalysisofseveralparametersontheLCOEofa50MWePTplantwith7.5hours

ofthermalstorage(Referencecase:plantlocatedinSouthernSpain,2011). . . . . . . . . . . .60n Figure 13 Differentinterconnectingelementsusednowadays. . . . . . . . . . . . . . . . . . . . . . . . . . . . .68n Figure 14 Typicalsecondaryconcentratorredirectingtheimpingingsunrays

fromtheheliostatfieldtoareceiverplacedatgroundlevel. . . . . . . . . . . . . . . . . . . . . . .74n Figure 15 Free-pistonStirlinggenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81n Figure 16 Maincomponentsandsub-systemsofaSTEplantincludingstorage. . . . . . . . . . . . . . . . .84n Figure 17 Comparisonoftoday’sstateoftheartPTpowerplantswithandwithoutstorageand

targetsforsolar-onlyandhybridconceptsin2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . .85n Figure 18 Interactionsandpossiblecoolingoptionsbetweensolarthermalanddesalinationplants. . .102

n Table 1 Technologiesmaturityforshort,midandlongtermperiod. . . . . . . . . . . . . . . . . . . . . . . .22n Table 2 BreakdownbyindustryactivityofjobscreatedbytheSTEindustry(2008-2010)inSpain . .34n Table 3 Solarpowercostreductionfactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56n Table 4 HTFandenvironmentalparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

n Table I ResearchPrioritiesforCross-cuttingIssues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65n Table II ResearchPrioritiesforParabolicTroughCollectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70n Table III ResearchPrioritiesforCentralReceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75n Table IV ResearchPrioritiesforLinearFresnelReflectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79n Table V ResearchPrioritiesforParabolicDishes.....................................83n Table VI ResearchPrioritiesforHybridisationandIntegrationSystems . . . . . . . . . . . . . . . . . . . . . .89n Table VII ResearchPrioritiesforStorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93n TableVIII ResearchPrioritiesforDispatchability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96n Table IX ResearchPrioritiesforEnvironmentalProfile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Ind

ex fi

gure

s

Page 107: ESTELA Strategic Research Agenda 2020-2025

107

The

bri

llian

t fu

ture

of

Sola

r Th

erm

al e

lect

rici

ty p

lant

s2

december 2012 107december 2012

Page 108: ESTELA Strategic Research Agenda 2020-2025

108 STrATegIc reSeArcH AgendA 2020-2025

Atafirststage,asetofKPIhasbeenelaboratedfortheSTESolarEuropeanIndustrialInitiative(SEII)inordertoensurethemonitoringoftheSET-PlanInformationSystem(SETIS).TheKPIhavebeenreviewedfortheStrategicResearchAgendaandsomeparametershavebeenincluded.

Thelevelisedcostofelectricity(LCOE)couldbeconsideredasthemainindicatortomonitortheoverallprogressoftheSEIItowardsincreasedcostcompetitiveness.

TheLCOEcanbeexpressedbythefollowingstandardformula:

Anne

x I

AnneX I: keY PerFOrmAnce IndIcATOrS

ESTELAdevelopedasetofKPIinordertofollowtheprogressininnovationoftheSTEindustry.

OVER-ARCHINGKPIDescription Metric Values

BASELINE TARGETS

2010 2015 2020/2025

Competitiveness KPI-1 Levelisedcostofelectricity(c€/kWh)fora50MWplantlocatedinsouthernEuropewithalocalDNIof2,050kWh/m².

22c€/kWh -15% -45%

ACTIVITYKPIsDescription Metric BASELINE TARGETS

2010 2015 2020/2025

1.Increaseefficiencyandreducecosts

KPI-2 Increasedsolar-to-electricityconversionefficiency 15%Trough

8.5%Fresnel17%Dish12.5%Tower

(relativetobaseline)+5%Trough+15%Fresnel+15%Dish+50%Tower36

(relativetobaseline)+20%Trough+30%Fresnel+30%Dish+65%Tower

KPI-3 IncreaseHTFTemperature 400°CTrough280°CFresnel650°CDish250°CTower

560°CTower420°CFresnel

>500°CTrough500°CFresnel

>900°CDish>900°CTower

KPI-4 ReducecostofinstalledproductsandO&Mforstate-of-the-artcommercialplants

2%ofCAPEX -10% -20%

KPI-5 Reducepowerblockcosts 1,300€/kWpTroughwiththermaloil

1,300€/kWpMoltenSaltasHTF1,000€/kWpHybridplant

1,200€/kWpAdvancedHTF800€/kWpAdvancedhybridplant

KPI-6 Reducecollectorcosts 250€/m2Troughwiththermaloil

250€/m2

MoltenSaltorhybridplant

200€/m2

Advancedhybridplant

KPI-7 ReducethespecificcostoftheHTFsystem

330€/kWth

Troughwiththermaloil295€/kWthMoltenSaltasHTF165€/kWth

Hybridplant

120€/kWthAdvancedHTF100€/kWth

Advancedhybridplant

2.Improvedispatchability[Figuresconcerningstoragearebasedonlyonmoltensalttechnology]

KPI-8 Investmentcostofstorage 35,000€/MWhth 20,000€/MWhth 15,000€/MWhth

KPI-9 Increaseefficiencyofstorage

94% 96%

3.Improvetheenvironmentalprofile

KPI-10 Substantialreductionofwaterconsumptionwithonlyminorlossofperformancerelativetocurrentwatercoolingsystem

3.5liters/kWh <1liter/kWh

36-AfterGemasolarbreakthrough

It+Mt+Ft

(1+rt)t

Et

(1+rt)t

LCOE=

∑t=1

∑t=1n

n

Page 109: ESTELA Strategic Research Agenda 2020-2025

109december 2012

Anne

x I

WhereIt,MtandFtaretheexpendituresoninvestments,maintenanceandinterestsinyeart,Etistheelectricitygeneratedinyeart,rtisthecostofcapitalinyeartandnisthelifespanoftheplantinyears.

Itisessentiallytheresultofdividingthepresentvalueofthecostsbythepresentvalueoftheenergyproduced.Eachcostisconvertedintoitspresentvalue,dependingontheyearinwhichthiscostisincurredandthesamehappenstotheelectricityproduced.Therefore,thewayinwhichthecapitalisinvestedplaysaveryimportantroleindeterminingtheLCOEalongwiththeO&Mandfinancialcosts.

Thesimplifiedcostbreakdownstructureofa50MWSTEplantwith7.5hoursofstorageisconsideredasfollows:

nSolarfield 50%nPowerblockandrelatedinfrastructure 25%nStoragesystem 20%nOthers 5%

ThisbreakdownisusedinordertocalculatetheimpactofthecostreductiontargetsatsubsystemlevelintheLCOE.

Forthepurposeofmonitoring,atafirststage,referenceSTEplantsandtheirrespectiveLCOEswillbeconsideredas50MWPTplantlocatedintheSouthofEurope–DNIaround2,050kWh/m².Thereferenceplantassump-tionsforcalculationoftheLCOEKPIareindicatedinthistablefor2010:

CSP reference systemDNI 2,050kWh/m²

Totalplantcapacity 50MW

Capitalinvestmentcost 300M€

O&Mcosts(inpercentageofinvestmentcosts) 2%

Capacityfactor 42%

Costofcapital 9%

Projectlifetime 40years

BaselineLCOEfor2010 22c€/kWh

Page 110: ESTELA Strategic Research Agenda 2020-2025

110 STrATegIc reSeArcH AgendA 2020-2025

Anne

x II

AnneX II: PAST And PreSenT eu-Funded PrOjecTS

FP Topic description Projects EC contribution (€)

DemonstrationPlants

FP 5 PS10Firstsolarthermaltowerplant PS10 5.000.000

FP 5 MainCSPcomponentsforhigh-temperatureoperation AndaSol 5.000.000

FP 5 SolarTressolarthermalpowerplantwithstorage SOLARTRES/GEMASOLAR 5.000.000

FP 7 Demonstrationofinnovativemulti-purposesolarpowerplant MATS 11.755.552

Systems,ComponentsandStorage

FP 5 DirectSolarSteamgeneration DISS 2.000.000

FP 5 Solarvolumetricairreceiverforcommercialsolarplants SOLAIR 1.497.092

FP 6 CostreductionfordishStirlingsystems EURODISH 750.000

FP 6 EnergystorageforDirectSteamSolarpowerplants DISTOR 2.228.917

FP 6 EuropeanCSProad-mapping ECOSTAR 223.129

FP 7 UsingCSPforwaterdesalination MED-CSD 999.960

FP 7 ImprovetheenvironmentalprofileoftheCSPinstallations SOLUGAS 5.997.752

FP 7 UsingCSPforwaterdesalination DIGESPO 3.280.000

FP 7 Energyproductionbyacombinedsolarthermionic-thermoelectricsystem E2PHEST2US 1.980.000

FP 7 Dry-coolingmethodsformulti-MWsizedconcentratedsolarpowerplants MACCSOL 4.088.546

FP 7 MainCSPcomponentsforhigh-temperatureoperation HITECO 3.440.194

FP 7 ThermochemicalEnergyStorageforConcentratedSolarPowerPlants TCSPOWER 2.850.000

FP 7 AdvancedheattransferfluidsforCSPtechnology CSP2 2.260.000

FP7 Newsystemforthermalenergystorageusingmoltensalt OPTS 8.650.000

SolarHybridPlants

FP 5 Solarhybridgasturbineelectricpowersystem SOLGATE 1.498.772

FP 5 DishStirlinghybridsystem HYPHIRE 971.894

FP 5 Desalinationandprocessheatcollector EUROTHROUGH 1.199.899

FP 6 Solar-HybridPowerandCogenerationplants SOLHYCO 1.599.988

FP 7 Novelsolar-assistedfuel-drivenpowersystem SOLASYS 1.568.320

FP7 PThybridisedwithbiomassproducingelectricityandfreshwater ARCHETYPESW550 14.385.217

FP7 InnovativeconfigurationforafullyrenewablehybridCSPplant HYSOL 6.168.484

SolarChemistry

FP 5 Solarcarbothermicproductionofzinc SOLZINC 1.284.282

FP 5 / 6 Solarhydrogenviawatersplitting HYDROSOLIandII 3.499.849

FP 6 Solarsteamre-formingofmethane-richgas SOLREF 2.100.000

FP 6 Hydrogenfromsolarthermalenergy SOLHYCARB 1.997.300

ResearchInfrastructure

FP 6 HighfluxsolarfacilitiesforEurope SOLFACE 345.000

TOTAL 103.620.147

Page 111: ESTELA Strategic Research Agenda 2020-2025

111december 2012

Anne

x II

I

AnneX III: HeAT TrAnSFer FLuIdS VS. enVIrOnmenTAL cOmPOnenTS

HTF Melting (liquid) point

Risk for environment (according to regulation (EC) No 1272/2008, and 91/155/CEE)

Toxicity (according to regulation (EC) No 1272/2008, and 91/155/CEE)

Compatibility with air

Upper thermal point (°C)

Approximate cost, taking as unity the value for thermal oils

Nitratescontainingmixtures

≈90°C-235°C •Waterandlandenvironment:lowrisk(mediumiflithiumisemployed)

•Oxidisingagent•Verytoxicforfishes•Lithiumisextremely

toxicforplants

•Relativelylowacuteoraltoxicity

•Causesseriouseyeirritation

Stable ≈600°C,≈430°Cifcalciumisemployed

From1/7(Na/K60/40wt%mixture)to1/2(iflithiumisemployed)

Nitratesandnitritescontainingmixtures

≥142°C •Waterandlandenvironment:mediumrisk

•Oxidisingagent•Verytoxictoaquaticlife,

especiallyforalgae

•Medium-highoraltoxicity

•Causesseriouseyeirritation

Possibleoxidation

450(underair)538(undernitrogen)

1/3

Thermaloils(biphenyl-diphenyloxidemixtures,alsoterphenylandphenantrene)

-18°C-12°C •Waterandlandenvironment:highrisk

•Verytoxictoaquaticlifewithlonglastingeffects

•Marinepollutant•Verytoxicforalgae,

fishes,crustaceans

•Harmfulifinhaled•Causeseyeburns,

irritationtorespira-torytractandskin

•Containsmaterialwhichcancauseliverandnervedamage

Firepoint:127°C-143°CAutoignitionTemperature(ASTMD-2155)585°C-621°C

≤440(undernitrogenpressure)

1

Gases/steam Gas 1/10

Nanoparticlesmaterials(nanoparticlesadditivetogasesorliquids)

Ceramicnanoparticles:Al2O3, TiO2

Practicallyinsolubleinwater,canbeconsideredecologicallysafe.

Fewdataavailable,butprobablylowtoxiceffects.

Dependsonnanoparticlesandcarrierfluidchemicalnature.Ninanoparticlesisaflammablesubstance.

Riskofparticlessizegrowingathightemperatures

DependsonnanoparticlesandcarrierfluidchemicalnatureMetaloxides

nanoparticlesCuO:Verytoxictoaquaticorganisms,maycauselong-termadverseeffectsintheaquaticenvironment.SnO2:Noparticulareco-logicalproblemsexpected.

CuO:Harmfulforingestion.SnO2:Ifparenteraladministeredtincompoundsarehighlytoxic.

Metallicnanoparticles:Ni

Harmfultoaquaticorganisms,maycauselong-termadverseeffectsintheaquaticenvironment.

Dangerofseriousdamagetohealthbyprolongedexposurethroughinhalation.Maycausesensitisationbyskincontact

Carbonnanotubes

Noparticularecologicalproblemsexpected.

Causesseriouseyeirritationandrespira-torytractirritation

Page 112: ESTELA Strategic Research Agenda 2020-2025

112 STrATegIc reSeArcH AgendA 2020-2025

note

s

nOTeS

.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

Page 113: ESTELA Strategic Research Agenda 2020-2025

113december 2012

note

s

.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................

Page 114: ESTELA Strategic Research Agenda 2020-2025

me

mbe

rs o

f es

tela

114 STrATegIc reSeArcH AgendA 2020-2025

NationalAssociations

MembersofESTELA

JoinESTELADownload the Membership Application Form at:

www.estelasolar.eu

Page 115: ESTELA Strategic Research Agenda 2020-2025

Copyright © 2012 by Association Européenne pour la promotion de l’Electricité Solaire Thermique, a.s.b.l.

ESTELARue d’Arlon, 63-651040 – Bruxelles, Belgique

All rights reserved. This book or any portion thereofmay not be reproduced or used in any manner whatsoeverwithout the express written permission of the publisherexcept for the use of brief quotations in a book review.

Printed in Belgium

First Printing, December 2012

Page 116: ESTELA Strategic Research Agenda 2020-2025

European Solar ThermalElectricity Association

december

2012

SOLAr THermAL eLecTrIcITY

STrATegIc reSeArcH AgendA 2020-2025

European Solar ThermalElectricity Association

European Solar Thermal Electricity Association

Rue d’Arlon, 63-67B - 1040 - Brussels

Tel. : +32 (0)2 400 10 90 Fax : +32 (0)2 400 10 91

[email protected]

www.estelasolar.eu

Printed on Satimat green, silk coated paper, FSC® certified, produced from 60% FSC® certified

recycled fibre and 40% FSC® certified virgin fibre, ensuring a reduced impact on the environment. De

sign:

ww

w.a

cg-b

xl.be

SOLA

r T

Her

mA

L eL

ecTr

IcIT

Y -

STrA

TegI

c re

SeAr

cH A

gend

A 20

20-2

025

dece

mbe

r 20

12ST

rATe

gIc

reSe

ArcH

Age

ndA

2020

-202

5eS

TeLA