28
Equation of state for distributed mass quark matter T.S.Bíró , P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark matter Consistent eos with mass distribution Fit to lattice eos data Arguments for a mass gap Strange Quark Matter 2006, 27.03.2006. Los Angeles

Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Equation of state for distributed mass quark matter

T.S.Bíró, P.Lévai, P.Ván, J.Zimányi

KFKI RMKI, Budapest, Hungary

• Distributed mass partons in quark matter

• Consistent eos with mass distribution

• Fit to lattice eos data

• Arguments for a mass gap

Strange Quark Matter 2006, 27.03.2006. Los Angeles

Page 2: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Why distributed mass?

valence mass hadron mass ( half or third…)

c o a l e s c e n c e : c o n v o l u t i o n

Conditions: w ( m ) is not constant zero probability for zero mass

Zimányi, Lévai, Bíró, JPG 31:711,2005

w(m)w(m) w(had-m)

Page 3: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Previous progress (state of the art…)

• valence mass + spin-dependent splitting :

• too large perturbations (e.g. pentaquarks)

• Hagedorn spectrum (resonances):

• no quark matter,

• forefactor uncertain

• QCD on the lattice:

• pion mass is low

• resonances survive Tc

• quasiparticle mass m ~ gT leads to p / p_SB < 1

Page 4: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Strategies

1. guess w ( m ) hadronization rates

eos (check lattice QCD)

2. Take eos (fit QCD) find a single w ( m ) rates, spectra

o r

Page 5: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Consistent quasiparticle thermodynamics

∫ ∫

∫ ∫

Φ+=−+=

∂Φ∂

−∂∂

+=∂∂

=

∂Φ∂

−∂∂

+=∂∂

=

Φ−=

dmemwpsTne

dmpw

dmnmwp

n

Tdmp

T

wdmsmw

T

ps

TdmTpmwTp

m

mm

mm

m

)(

)(

)(

),(),()(),(

μ

μμμ

μμμ

This is still an ideal gas (albeit with an infinite number of components) !

Page 6: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Consistent quasiparticle thermodynamics

μμ ∂∂Φ∂

=∂∂Φ∂

TT

22

Integrability (Maxwell relation):

1. w independent of T and µ Φ constant

2. single mass scale M Φ(M) and ∂ p / ∂ M = 0.

Page 7: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

pressure – mass distribution

z)((z)

zKz

(z)

dttf

dtgttfp

pg

SB

−=

=

==

=Φ+

=

∫∞

expK :ation transformLaplace

)(2

K :nnsformatio Meijer tra

1)()0( :limit SB

ation transformintegral )( K )()(

2

2

0

0

σ

σ

Page 8: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Adjust M(µ,T) to pressure

Page 9: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

t = m / M

f (

t )

= M

w(

m )

Page 10: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

T / M (T, 0)

All lattice QCD data from: Aoki, Fodor, Katz, Szabó hep-lat/0510084

Page 11: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark
Page 12: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Adjusted M(T) for lattice eos

Page 13: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

MeVTT

TTM c 170,)36.3(024.0

1.028.0),0(

3=

++=

Page 14: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark
Page 15: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark
Page 16: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

T and µ-dependence of mass scale M

Boltzmann approximation starts to fail

Page 17: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

pressure – mass distribution 2

Page 18: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Analytically solvable case

Page 19: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Example for inverse Meijer trf.

SBp

p

)( gσ

)( xF )(tf

Page 20: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

eos fits to obtain eos fits to obtain σσ(g) (g) f(t) f(t)

● sigma values are in (0,1)● monotonic falling● try exponential of odd powers● try exponential of sinh● study - log derivative numerically● fit exponential times Wood-Saxon (Fermi) form

All lattice QCD data from: Aoki, Fodor, Katz, Szabó hep-lat/0510084

Page 21: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

exp(-λg) / (1+exp((g-a)/b) ) fit to normalized pressure

1 / g =

σ(g)

=

Page 22: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

MASS GAP: fit exp(λg) * data

g =

Page 23: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Fermi eos fit mass distribution

mass gap (threshold behavior)

Page 24: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

⎟⎠

⎞⎜⎝

⎛+

+→ε

εβλπ 1

4)(

2ttf

asymptotics:

4104.2 −⋅=ε

Page 25: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

zoom

Page 26: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Moments of the mass distribution

( )∫ ∫∞ ∞

−+−

Γ=

0 0

123

21 )(,

)(

12)( dgggB

ndttft nnn σ

π

n = 0 limiting case: 1 = 0 ·

n < 0 all positive mass moments diverge

due to 1/m² asymptotics

n > 0 inverse mass moments are finite

due to MASS GAP

Page 27: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Conclusions

1) Lattice eos data demand finite width T-independent mass distribution, this is unique

2) Adjusted < m >(T) behaves like the fixed mass in the quasiparticle model

3) Strong indication of a mass gap:

• best fit to lattice eos: exp · Fermi

• SB pressure achieved for large T

• all inverse mass moments are finite

• - d/dg ln σ(g) has a finite limit at g=0

Page 28: Equation of state for distributed mass quark matter T.S.Bíró, P.Lévai, P.Ván, J.Zimányi KFKI RMKI, Budapest, Hungary Distributed mass partons in quark

Interpretation

Does the quark matter interact?

Mass scale vs mean field:

* M(T) if and only if Φ(T)

* w(m) T-indep. Φ const.

What about quantum statistics and color confinement?

From what do (strange) hadrons form?

How may the Hagedorn spectrum be reflected in our analysis?