6
eGaN® FET DATASHEET EPC2215 EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 EPC2215 eGaN® FETs are supplied only in passivated die form with solder bars. Die Size: 4.6 mm x 1.6 mm Applications • DC-DC Converters • BLDC Motor Drives • Sync Rectification for AC/DC and DC-DC • Multi-level AC/DC Power Supplies • Wireless Power • Solar Micro Inverters • Robotics • Class-D Audio Benefits • Ultra High Efficiency • No Reverse Recovery • Ultra Low Q G • Small Footprint EFFICIENT POWER CONVERSION G D S HAL EPC2215 – Enhancement Mode Power Transistor V DS , 200 V R DS(on) , 8 mΩ I D , 32 A Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 200 V I D Continuous (T A = 25°C) 32 A Pulsed (25°C, T PULSE = 300 µs) 162 VGS Gate-to-Source Voltage 6 V Gate-to-Source Voltage -4 T J Operating Temperature -40 to 150 °C T STG Storage Temperature -40 to 150 Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 0.5 °C/W R θJB Thermal Resistance, Junction-to-Board 2.5 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. # Defined by design. Not subject to production test. Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 0.6 mA 200 V I DSS Drain-Source Leakage V GS = 0 V, V DS = 160 V 0.15 0.48 mA I GSS Gate-to-Source Forward Leakage V GS = 5 V 0.03 3.8 Gate-to-Source Forward Leakage # V GS = 5 V, T J = 125°C 0.5 8.7 Gate-to-Source Reverse Leakage V GS = -4 V 0.15 0.48 V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 6 mA 0.8 1.1 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 20 A 6 8 mΩ V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 1.6 V Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

eGaN® FET DATASHEET EPC2215

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1

EPC2215 eGaN® FETs are supplied only in passivated die form with solder bars. Die Size: 4.6 mm x 1.6 mm

Applications• DC-DC Converters• BLDC Motor Drives• Sync Rectification for

AC/DC and DC-DC• Multi-level AC/DC

Power Supplies

• Wireless Power• Solar Micro Inverters• Robotics• Class-D Audio

Benefits• Ultra High Efficiency• No Reverse Recovery• Ultra Low QG

• Small Footprint

EFFICIENT POWER CONVERSIONG

D

S

HAL

EPC2215 – Enhancement Mode Power Transistor

VDS , 200 VRDS(on) , 8 mΩID , 32 A

Maximum Ratings

PARAMETER VALUE UNITVDS Drain-to-Source Voltage (Continuous) 200 V

ID

Continuous (TA = 25°C) 32A

Pulsed (25°C, TPULSE = 300 µs) 162

VGSGate-to-Source Voltage 6

VGate-to-Source Voltage -4

TJ Operating Temperature -40 to 150°C

TSTG Storage Temperature -40 to 150

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 0.5

°C/W RθJB Thermal Resistance, Junction-to-Board 2.5

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 52Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

# Defined by design. Not subject to production test.

Static Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITBVDSS Drain-to-Source Voltage VGS = 0 V, ID = 0.6 mA 200 V

IDSS Drain-Source Leakage VGS = 0 V, VDS = 160 V 0.15 0.48

mAIGSS

Gate-to-Source Forward Leakage VGS = 5 V 0.03 3.8

Gate-to-Source Forward Leakage# VGS = 5 V, TJ = 125°C 0.5 8.7

Gate-to-Source Reverse Leakage VGS = -4 V 0.15 0.48

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 6 mA 0.8 1.1 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 20 A 6 8 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 1.6 V

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Page 2: EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

eGaN® FET DATASHEET EPC2215

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 2

160

140

120

100

80

60

40

20

00 1 2 3 4 5 6

I D –

Drai

n Cu

rrent

(A)

Figure 1: Typical Output Characteristics at 25°C

VDS – Drain-to-Source Voltage (V)

VGS = 5 VVGS = 4 VVGS = 3 VVGS = 2 V

I D –

Drai

n Cu

rrent

(A)

VGS – Gate-to-Source Voltage (V) 1.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 2: Transfer Characteristics

25˚C125˚C

VDS = 3 V

25˚C125˚C

VDS = 6 V

160

140

120

100

80

60

40

20

0

20

15

10

5

02.5 3.02.0 3.5 4.0 4.5 5.0

R DS(o

n) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ)

VGS – Gate-to-Source Voltage (V)

Figure 3: RDS(on) vs. VGS for Various Drain Currents

ID = 10 AID = 20 AID = 30 AID = 40 A

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4: RDS(on) vs. VGS for Various Temperatures

R DS(o

n) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V)

25˚C125˚C

VDS = 3 V

25˚C125˚C

ID = 20 A

20

15

10

5

0

Dynamic Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITCISS Input Capacitance#

VDS = 100 V, VGS = 0 V

1356 1790

pF

CRSS Reverse Transfer Capacitance 2.0

COSS Output Capacitance# 390 585

COSS(ER) Effective Output Capacitance, Energy Related (Note 2)VDS = 0 to 100 V, VGS = 0 V

556

COSS(TR) Effective Output Capacitance, Time Related (Note 3) 699

RG Gate Resistance 0.4 Ω

QG Total Gate Charge# VDS = 100 V, VGS = 5 V, ID = 20 A 13.6 17.7

nC

QGS Gate-to-Source Charge

VDS = 100 V, ID = 20 A

3.3

QGD Gate-to-Drain Charge 2.1

QG(TH) Gate Charge at Threshold 2.4

QOSS Output Charge# VDS = 100 V, VGS = 0 V 69 104

QRR Source-Drain Recovery Charge 0# Defined by design. Not subject to production test.Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS. Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.

Page 3: EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

eGaN® FET DATASHEET EPC2215

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 3

Capa

citan

ce (p

F)

0 50 100 150 200

Figure 5a: Capacitance (Linear Scale)

VDS – Drain-to-Source Voltage (V)

1600

1400

1200

1000

800

600

400

200

0

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

Capa

citan

ce (p

F)

10000

1000

100

10

10 50 100 150 200

Figure 5b: Capacitance (Log Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

Figure 6: Output Charge and COSS Stored Energy

Q OSS

– O

utpu

t Cha

rge (

nC)

E OSS

– C O

SS St

ored

Ener

gy (µ

J)120

96

72

48

24

00 50 100 150 200

VDS – Drain-to-Source Voltage (V)

8.0

6.4

4.8

3.2

1.6

0.0

Figure 7: Gate Charge

V GS –

Gate

-to-S

ourc

e Vol

tage

(V)

5

4

3

2

1

00 10 12 148642

QG – Gate Charge (nC)

ID = 20 AVDS = 100 V

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I SD –

Sour

ce-to

-Dra

in Cu

rrent

(A)

VSD – Source-to-Drain Voltage (V)

Figure 8: Reverse Drain-Source Characteristics160

140

120

100

80

60

40

20

0

25˚C

VGS = 0 V

125˚C

Figure 9: Normalized On-State Resistance vs. Temperature

Norm

alize

d On

-Sta

te R

esist

ance

RDS

(on)

2.0

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 20 AVGS = 5 V

Page 4: EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

eGaN® FET DATASHEET EPC2215

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 4

Figure 12: Transient Thermal Response Curves

Figure 10: Normalized Threshold Voltage vs. Temperature

Norm

alize

d Th

resh

old

Volta

ge

1.4

1.3

1.2

1.1

1.

0.9

0.8

0.7

0.6 0 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 6 mA

1000

100

10

1

0.10.1 1 10 100 1000

I D –

Drai

n Cu

rrent

(A)

VDS – Drain-Source Voltage (V)

Limited by RDS(on)

Pulse Width 1 ms 100 µs

10 µs

Figure 11: Safe Operating Area

tp, Rectangular Pulse Duration, seconds

Z θJB

, Nor

mal

ized T

herm

al Im

peda

nce

0.50.2

0.05

0.02

Single Pulse

0.01

0.1

Duty Cycle:

Junction-to-Board

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJB x RθJB + TB

PDM

t1

t2

10-5 10-4 10-3 10-2 10-1 1 10+1

1

0.1

0.01

0.001

tp, Rectangular Pulse Duration, seconds

Z θJC

, Nor

mal

ized T

herm

al Im

peda

nce 0.5

Junction-to-Case

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJC x RθJC + TC

PDM

t1

t2

10-6 10-5 10-4 10-3 10-2 10-1 1

1

0.1

0.01

0.001

0.0001

0.2

0.050.02

Single Pulse

0.01

0.1

Duty Cycle:

TJ = Max Rated, TC = +25°C, Single Pulse

Page 5: EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

eGaN® FET DATASHEET EPC2215

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 5

DIE MARKINGS

DIE OUTLINESolder Bump View

Pad 1 is Gate;Pads 2 ,4, 6 are Source;Pads 3, 5 are Drain

DIM

Micrometers

MIN Nominal MAX

A 4570 4600 4630B 1570 1600 1630

c 1210

d 1450

e 1000

f 275

g 450

h 700

j 875

Side View

YYYY2215

ZZZZ

TAPE AND REEL CONFIGURATION4 mm pitch, 12 mm wide tape on 7” reel

7” inch reel Dieorientationdot

Gate solder baris under thiscorner

Die is placed into pocketsolder bump side down(face side down)

Loaded Tape Feed Direction

a

d

e f g

h

c

b

DIM Dimension (mm)EPC2215 (Note 1) Target MIN MAX

a 12.00 11.90 12.30b 1.75 1.65 1.85c (Note 2) 5.50 5.45 5.55d 4.00 3.90 4.10e 4.00 3.90 4.10f (Note 2) 2.00 1.95 2.05g 1.50 1.50 1.60h 1.50 0.95 1.05

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Part Number

Laser Markings

Part #Marking Line 1

Lot_Date CodeMarking Line 2

Lot_Date CodeMarking Line 3

EPC2215 2215 YYYY ZZZZ

2215YYYY ZZZZ Die orientation dot

Gate Pad bump isunder this corner

518 ±

-25

Seating plane

638

120 ±

12

A

dj

hg

B

e

c

f

2

3 4 5 6

1

Page 6: EPC2215 – Enhancement Mode Power Transistor - epc-co.com · θJA Thermal Resistance, Junction-to-Ambient (Note 1) 52 Note 1: R θJA is determined with the device mounted on one

eGaN® FET DATASHEET EPC2215

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 6

RECOMMENDEDLAND PATTERN (units in µm)

RECOMMENDEDSTENCIL DRAWING (units in µm)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Split stencil design can be provided upon request, but EPC has tested this stencil design and not found any scooping issues.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

A

d

j

hg

B

e

c

f

2

3 4 5 6

1

R60

A

d

j

hg

B

e

c

f

2

3 4 5 6

1

Information subject to change without notice.

Revised November, 2020

Land pattern is solder mask definedIt is recommended to have on-Cu trace PCB vias

Pad 1 is Gate;Pads 2 ,4, 6 are Source;Pads 3, 5 are Drain

DIM Nominal

A 4600B 1600c 1210d 1450e 1000f 275g 450h 700j 875

DIM Nominal

A 4600B 1600c 1210d 1450e 1000f 275g 450h 700j 875