22
EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Embed Size (px)

Citation preview

Page 1: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

EPA

Jon Persinger

Jonathan Snyder

Devon Dallmann

Henry Au-Yeung

Khushboo Verma

Page 2: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Hardware System diagram

TMS470R1A256 CPLD

Driver Circuit 16x16

Solenoid Array

Compact Flash

Hardware Debug

Get pic button

256k Flash

12k RAM

Pin ready interrupt

Send data via SPI

17 control lines

4x4 Test

Power Regulation

3.3V 3.3V 1.8V 5V5V, 10Apeak

12V

State Machine

Page 3: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Compact Flash

•Non-proprietary

•Has built-in controller

•Operation in PC Card Memory Mode; FAT16 format

•Operates in 16-bit mode

Page 4: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Processor•Operates 24 MHz

•256K on-chip Flash (image processing requires lots of space)

•12k on-chip RAM

•Use of Rowley CrossWorks and CrossConnect for programming and compiler

•Olimex Dev Board

•Open source code available for ARM7 architecture

•Use of two High End Timers (HET) for PWMs

•Built in SPI controller

•Provides enough IO for Compact Flash communication in 16-bit mode

Page 5: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma
Page 6: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Controls Schematic

Page 7: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Driver•Verification of Driver circuit shown during PDR was completed successfully.

•The addition of a dead time circuit was necessary in order to prevent the reverse current circuit from shorting the supply rails.

•The layout of this circuit is shown here.

Solenoid

CLMN Select CKT

CPLD

Reverse Current CKT

Page 8: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Drive Schematic

Page 9: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

PCB Layout•The PCB is a 4-layer 6.5” x 6.5” board with 2oz copper on signal layers and 1oz on internal layers.

•Logic and current carrying grounds are isolated via a split ground plane.

•Power planes are split to limit the current loops to the drive circuit per row.

•A temporary hardware debug section including manual switches to control a 4x4 binary grid without the processor and CPLD.

•High current traces were routed with copper pours and planes to allow for low voltage drops.

Page 10: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma
Page 11: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma
Page 12: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma
Page 13: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

FPGA vs CPLDPROS

1. CPLDs cost more than FPGAs (cheapest Spartan III is $10 and has more gates in it than the 95288, which is $50) and have less gate space

2. CPLDs have ALOT worse timings than FPGAs, their setup and hold times are a lot longer, the gate delay is longer, the pin to pin delay is longer (all by about a magnitude of at least 10)

3. FPGAs typically come in smaller packages than CPLDs

4. In a CPLD programming is restricted to function blocks and macro cells, in an FPGA it is not (layout is more efficient in an FPGA)   

CONS

1. CPLDs do not have to be reprogrammed at every power up (they are static memory not dynamic, a FPGA is programmed and loses its memory when the power goes off). So we'd have to add some sort of PROM (which Xilinx does sell and it's pretty cheap) to program a FPGA at every power on

2. FPGAs are only 2.5 and 3.3 volt compatible, not 5 volt, so we'd have to use step up and step down converters. CPLD is 5 volt compatible

3. 9500 series CPLDs hold their data for at least 20 years, and reprogramable 10,000 times

Page 14: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

FPGA Simulation/Timing Diagram

Page 15: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Solenoids•1000 turns allows for 5v operation which will yield an RMS current of 225mA with a peak current of 500mA as shown here

•The solenoids are constructed with 30AWG copper with a standard enamel coating

•The inside diameter is 0.08inches with an outer diameter of 1/4inch

•MagneLab will construct 256 coils at a cost of $500 USD.

•Essentially no coil temperature increase, even if left on.

mAmADuty

IRMS pk 2253

5.0500

3

Page 16: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Image Processing and Code• Use C++ for Image Processing instead of MATLAB• Cimg.h image processing library/Imagemagik (JPEG

images)• Algorithm for Code

• Load BMP, JPG, PNG images etc• Obtain color map for the image• Scale the image• Use formula to calculate the intensity of each pixel• Translate intensity level evenly for the required height

levels for the pins• Obtain the x and y values for each pixel and store these

along with the corresponding pin heights• Code currently loads a BMP image and plots the intensity for

the pixels• Compiled executable code size 800KB--Too Big!

• Customize Cimg.h, discard unused functions• Compile the C++ code using CrossWorks ARM7

Compiler to convert it into Assembly

Page 17: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Power•120VAC/12VDC, 60W Adapter

•Step down converters (12V/5,3.3,1.8V)

•5V rail needs to supply 10A (50W) (Buck regulator)

•3.3V can source up to 1.5A (Buck regulator)

•1.8V rail (LDO regulator), external cap ESR is critical

Page 18: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Responsibilities

•PCB—Jonathan

•CPLD/Verilog—Devon

•Processor—Jon, Henry

•Board Population—Henry, Jonathan

•Image Processing—Khushboo,

Jon

•Solenoid Housing—Jonathan

•Documentation—Everyone

•Driver Circuit—Jonathan, Henry

Page 19: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

MilestonesMilestone I: 1st pcb board assembled and debugged; hardware able to display image via switches; ability to read from Compact Flash

Milestone II: 2nd pcb board assembled and debugged; processor/code will be stand alone; first draft of user’s manual; majority of technical reference completed

Expo: Processor reading images from Compact Flash, formats it, and sends to CPLD; possible extras

Page 20: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

CostsTotal project budget: $1617.69EEF Request: $900 Outside funding: Amount  UROP $90024 Test Solenoids $75Use of CNC machine in ITLL FREE Item Total Cost Part Number4 Layer PCB Revisions 1 and 2 $200 N/APerf. Board $20 8.5”x8.5”Processor (x4) $57.64 TMS470R1A256Development Kit $399 TMDS-FET470R1B1MCustom Solenoids (x256) $500 Made by: Magnelab, IncMagnets (x550) $50 Neodymium Iron BoronCompact flash Card 128mb $15.90 CF128 (Kingston)Power adapter 5V,12A $36.96 DTS120500U Components for buck regulator $200 N/APower Supply and control circuitry  Pin Rig – Plastic $30.28 8lb High Density PolyethylenePin Rig – Plywood $7.49 3/8” x 2” x 4”Pin Rig – Foam Pad $3.49 1’ x 4.5’Pin Rig - Plexiglass $1.00 6.5”x6.5”Pin Rig – Nuts/Bolts/Spacers $10 N/A Shipping Costs, misc. and taxes $50 Total: $1617.69

Page 21: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Risks•Processor Issues

•Acquired compiler/assembler/programmer this week

•Very limited software support

•On chip flash hard to work with

•Power converters/regulators

•Code Optimization

•Image processing may not fit into on-chip FLASH

•Magnetic Problems

•Increase solenoid spacing or

•Downsize 8x8 Array

Page 22: EPA Jon Persinger Jonathan Snyder Devon Dallmann Henry Au-Yeung Khushboo Verma

Questions