18
Environmental Report Uppsala 2017 Vattenfall Heat

Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Environmental Report Uppsala 2017

Vattenfall Heat

Page 2: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Our integrated management system is certified in accordance with the environmental management standard ISO 14001, and we were the first energy company in Sweden to have an energy management system that is certified to ISO 50001. The reception and management of waste for energy recovery is quality certified to ISO 9001.

Vattenfall Heat Uppsala Environmental Report 2017

Management review

HSE report

Internal audit

Deviations

Monitoring and measurements

Documentation

Safety and protection OperationsOperating and maintenance

PurchasingContractorsChemicals

Communication

Training and competence

Organisation

Target and target programme

Action plan

Aspects/risks/energy surveys

Laws and other requirements

Policy

Situation analysis

Page 2Environmental Report Uppsala 2017 · Vattenfall Heat

Page 3: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Vattenfall Heat in Uppsala, Knivsta and Storvreta are proud to be your local supplier of district heating, and in Uppsala steam and district cooling too. At the same time, in Uppsala we also generate electricity and manage combustible waste so it doesn’t need to go to landfill. More than half of the annual requirement for fuel in Uppsala is covered by waste, much of which is also renewable. Utilising this spent material as a resource means that we don’t need to use as much of other fuels such as peat, wood and oil. Some of the waste is sorted combustible waste from the UK, Ireland, Norway and Finland, which don’t have a district heating network and plants that can deal with the waste. Although Sweden can only take a small proportion of the combustible waste in these countries, the environmental benefits of the partnership are two-fold – it saves wood here and it avoids landfill there.

District heating is by definition a local business – our district heating network is located close to our customers. Our district heating network also allows us to utilise waste heat from various sources, e.g. from the heat in waste water. This year we launched the SamEnergi project, which makes it easier for small waste heat suppliers to connect and supply heat to the district heating network. We believe that this is all part of the new energy landscape that is emerging. District heating customers will be able to do the same as electricity customers: be consumers for part of the time and, at other times, be generators for the shared network.

Another partnership that we are involved in is the Uppsala Climate Protocol where we participate in various focus groups and lead the ”War on Plastic” to raise awareness of the importance of recycling plastic and manufacturing it from renewable raw materials. We can all do our bit for the environment. The Sustainable Transport focus group organises various activities to promote cycling and public transport. We are proud to be a cycle-friendly workplace.Customers who are keen to reduce their CO2 emissions can choose our CO2 Neutral Heat and Cooling products. In 2017, these products reduced CO2 emissions by more than 16,000 tonnes over the course of the year.

It’s all happening on site!In 2017 we planned a wide range of measures which will become increasingly evident as time goes on. We plan to replace peat with wood in two stages. The first stage is to completely refurbish the fuel handling unit for our hot water furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP plant. We will also gradually replace fossil oil with bio-oil. During the course of 2017, two furnaces were converted to bio-oil. The bio-oil comes from by-products of various kinds, e.g. from the food and cosmetics industry, and is sustainability certified. Overall, this will halve our climate-impacting CO2 emissions by 2020. Our aim is for our production to be carbon neutral by 2030, and we will work together with other stakeholders to ensure that fossil-based plastic is phased out.

Working on so many different projects at the same time is both exhilarating and challenging. It’s important to ensure that accidents don’t occur and we always try to work systematically, and there’s always something that can be improved and that we can learn from. By thinking things through carefully from the outset and then reflecting on the safest way of working while the work is under way, we can keep many risks to a minimum. There’s truth in the expression ”we don’t have time to hurry”.

Partnership for Uppsala, Knivsta and Storvreta

Adrian Berg von LindeHead of Business Development Heat

Johan SiilakkaPlant Manager Uppsala

Page 3Environmental Report Uppsala 2017 · Vattenfall Heat

Page 4: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Climate-impacting CO2Generally speaking, 2017 was just as cold as 2016, and CO2 emissions were slightly lower than the previous year. The dotted line in the diagram shows our long-term plan for achieving carbon-neutral production by 2030. The measures under the HVC and Carpe Futurum projects primarily comprise of an increased admixture of wood until such time as peat has been fully replaced by wood fuels of various kinds. In the peat-fuelled hot water furnace, conversion to wood pellets is already under way and commissioning is due to take place in autumn 2018.

We are offering our customers the opportunity to contribute to reduced CO2 emissions, in addition to the planned reduction, by choosing our Carbon Neutral Heating and/or Carbon Neutral Cooling product. The sale of these products reduced carbon dioxide emissions by 16,376 tonnes during 2017, compared to projections if no customers had chosen this offer. You can learn more about these products on our website: www.vattenfall.se/fjarrvarme.

Acidifying substancesNitrogen oxides (NOx) and sulphur dioxide (SO2) have the greatest impact on our acidifying emissions. In 2017, emissions of sulphur dioxides were lower than previous years, while emissions of nitrogen dioxides increased slightly because the HVC furnace was needed more during the winter months. Our facilities are included in the national system of nitrogen oxide charges. Our total nitrogen oxide emissions of 182 tonnes (as shown in the diagram to the right) equate to 103.5 mg of NOx per generated kWh. This is well below the Swedish average for 2017, which is 145 mg/kWh for CHP plants and 154 mg/kWh for waste Incineration. The average for energy plants in 2017 was 172 mg/kWh.

DustDust emissions in 2017 were at the same level as previous years. Historically the reduction from 2005 onwards has been due to reduced peat-firing and increased waste incineration. The waste incineration plant has the most extensive flue gas cleaning of all our production plants. Of all fuels, waste contains the most heavy metals, so it is important that this flue gas cleaning works effectively and that the plant exceeds the applicable environmental requirements by a good margin (see page 13).

Air emissions from facilities in Uppsala

4

Utsläpp till luft från anläggningarna i Uppsala Klimatpåverkande koldioxid År 2017 var i stort sett lika kallt som år 2016 och koldioxidutsläppen blev något lägre jämfört med året innan. Den prickade linjen i diagrammet visar vår långsiktiga plan för att nå koldioxidneutral produktion 2030. HVC och Carpe Futurum projektens åtgärder består huvudsakligen av ökad träinblandning fram till dess att torven helt ersätts med trädbränslen av olika slag. I den torveldade hetvattenpannan har konverteringen till träpellets redan påbörjats och beräknas tas i drift hösten 2018.

Vi erbjuder våra kunder möjlighet att medverka till minskade koldioxidutsläpp, utöver den prognosticerade minskningen, genom att välja vår produkt Koldioxidneutral Värme och/eller Koldioxidneutral Kyla. Försäljningen av dessa produkter minskade utsläppen av koldioxid med 16 376 ton under 2017, jämfört med om ingen kund hade valt detta erbjudande. Du kan läsa mer om produkterna på vår hemsida.

Försurande ämnen Kväveoxider (NOx) och svaveldioxid (SO2) har störst påverkan av våra försurande utsläpp, 2017 var utsläppen av svaveldioxider lägre än tidigare år medan kvävedioxiderna gick upp något eftersom HVC pannan behövdes mer under vintermånaderna. Våra anläggningar finns med i det nationella systemet för kväveoxidavgift. Våra totala kväveoxidutsläpp på 182 ton, som visas i diagrammet till höger, blir 103,5 mg NOx per producerad kWh. Detta ligger betydligt under Sverigemedel för 2017 som är 145 mg/kWh för kraftvärmeverk och 154 mg/kWh för avfallsförbränning. Medel för energianläggningar 2017 var 172 mg/kWh.

Stoft Stoftutsläppen låg 2017 på samma nivå som föregående år. Historiskt sett har minskningen från 2005 och framåt berott på minskad torveldning och ökad avfallsförbränning. Avfallsförbränningen har den mest omfattande rökgasreningen av alla våra produktionsanläggningar. Avfall är det bränsle som innehåller mest tungmetaller, det är därför viktigt med bra prestanda för denna rökgasrening och att anläggningen har god marginal till gällande miljövillkor, se sidan 15.

4

Utsläpp till luft från anläggningarna i Uppsala Klimatpåverkande koldioxid År 2017 var i stort sett lika kallt som år 2016 och koldioxidutsläppen blev något lägre jämfört med året innan. Den prickade linjen i diagrammet visar vår långsiktiga plan för att nå koldioxidneutral produktion 2030. HVC och Carpe Futurum projektens åtgärder består huvudsakligen av ökad träinblandning fram till dess att torven helt ersätts med trädbränslen av olika slag. I den torveldade hetvattenpannan har konverteringen till träpellets redan påbörjats och beräknas tas i drift hösten 2018.

Vi erbjuder våra kunder möjlighet att medverka till minskade koldioxidutsläpp, utöver den prognosticerade minskningen, genom att välja vår produkt Koldioxidneutral Värme och/eller Koldioxidneutral Kyla. Försäljningen av dessa produkter minskade utsläppen av koldioxid med 16 376 ton under 2017, jämfört med om ingen kund hade valt detta erbjudande. Du kan läsa mer om produkterna på vår hemsida.

Försurande ämnen Kväveoxider (NOx) och svaveldioxid (SO2) har störst påverkan av våra försurande utsläpp, 2017 var utsläppen av svaveldioxider lägre än tidigare år medan kvävedioxiderna gick upp något eftersom HVC pannan behövdes mer under vintermånaderna. Våra anläggningar finns med i det nationella systemet för kväveoxidavgift. Våra totala kväveoxidutsläpp på 182 ton, som visas i diagrammet till höger, blir 103,5 mg NOx per producerad kWh. Detta ligger betydligt under Sverigemedel för 2017 som är 145 mg/kWh för kraftvärmeverk och 154 mg/kWh för avfallsförbränning. Medel för energianläggningar 2017 var 172 mg/kWh.

Stoft Stoftutsläppen låg 2017 på samma nivå som föregående år. Historiskt sett har minskningen från 2005 och framåt berott på minskad torveldning och ökad avfallsförbränning. Avfallsförbränningen har den mest omfattande rökgasreningen av alla våra produktionsanläggningar. Avfall är det bränsle som innehåller mest tungmetaller, det är därför viktigt med bra prestanda för denna rökgasrening och att anläggningen har god marginal till gällande miljövillkor, se sidan 15.

4

Utsläpp till luft från anläggningarna i Uppsala Klimatpåverkande koldioxid År 2017 var i stort sett lika kallt som år 2016 och koldioxidutsläppen blev något lägre jämfört med året innan. Den prickade linjen i diagrammet visar vår långsiktiga plan för att nå koldioxidneutral produktion 2030. HVC och Carpe Futurum projektens åtgärder består huvudsakligen av ökad träinblandning fram till dess att torven helt ersätts med trädbränslen av olika slag. I den torveldade hetvattenpannan har konverteringen till träpellets redan påbörjats och beräknas tas i drift hösten 2018.

Vi erbjuder våra kunder möjlighet att medverka till minskade koldioxidutsläpp, utöver den prognosticerade minskningen, genom att välja vår produkt Koldioxidneutral Värme och/eller Koldioxidneutral Kyla. Försäljningen av dessa produkter minskade utsläppen av koldioxid med 16 376 ton under 2017, jämfört med om ingen kund hade valt detta erbjudande. Du kan läsa mer om produkterna på vår hemsida.

Försurande ämnen Kväveoxider (NOx) och svaveldioxid (SO2) har störst påverkan av våra försurande utsläpp, 2017 var utsläppen av svaveldioxider lägre än tidigare år medan kvävedioxiderna gick upp något eftersom HVC pannan behövdes mer under vintermånaderna. Våra anläggningar finns med i det nationella systemet för kväveoxidavgift. Våra totala kväveoxidutsläpp på 182 ton, som visas i diagrammet till höger, blir 103,5 mg NOx per producerad kWh. Detta ligger betydligt under Sverigemedel för 2017 som är 145 mg/kWh för kraftvärmeverk och 154 mg/kWh för avfallsförbränning. Medel för energianläggningar 2017 var 172 mg/kWh.

Stoft Stoftutsläppen låg 2017 på samma nivå som föregående år. Historiskt sett har minskningen från 2005 och framåt berott på minskad torveldning och ökad avfallsförbränning. Avfallsförbränningen har den mest omfattande rökgasreningen av alla våra produktionsanläggningar. Avfall är det bränsle som innehåller mest tungmetaller, det är därför viktigt med bra prestanda för denna rökgasrening och att anläggningen har god marginal till gällande miljövillkor, se sidan 15.

Page 4Environmental Report Uppsala 2017 · Vattenfall Heat

CO2 Heat Uppsala

Emissions of acidifying substances

Dust emissions

1,0

00

to

nn

es

CO

2to

nn

es

ton

ne

s

Fossil + Peat

Fossil

Trend line

Scheduled development

Sulphur dioxide

Nitrogen oxides

Page 5: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Operations in Uppsala

The proportion of renewables in the fuel mix for district heating is 70% with peat counted as (slowly) renewable. If peat is counted as a fossil fuel, the proportion is 50%. Waste is calculated here as 60% renewable in terms of energy, which makes the remainder non-renewable, i.e. plastic with fossil origins.

Key figures for delivered district heating, kg/MWh = g/kWh

2017 2016 2015 2014 2013 2012

CO2 in accordance with ETS 204 209 182 197 226 205

CO2ekv in accordance with VMK 194 182 159 181 235 216

NOx 0,11 0,11 0,09 0,09 0,10 0,12

SO2 0,16 0,16 0,15 0,17 0,20 0,14

The emissions reported do not include the district heating and district cooling volumes produced from waste that is covered by

customer-specific agreements (Carbon Neutral Heating and Cooling, respectively).

We report our carbon dioxide emissions using two different systems: the European emissions trading system ETS and the Swedish system set up by the Värmemarknadskommittén [Swedish Heating Market Committee] (VMK) in conjunction with the industry organisation Energiföretagen (previously Swedenergy and the Swedish District Heating Association). Details of the latter can be found on Energiföretagen’s website, www.energiforetagen.se. This data includes not only carbon dioxide emissions from the plant but also templates for emissions of the greenhouse gases methane and nitrous oxide, converted into CO2 equivalents. An emissions factor has also been added for the electricity that is purchased for the plant. Emissions are distributed between district heating and electricity produced using what is known as the ”alternative production method”. In brief, this means that more emissions are credited to the electricity compared with the heat produced at the same time, as alternative methods to generate electricity would require more fuel. For peat, we use the values that are checked in the system for emissions trading.

We are part of the emissions trading system for carbon dioxideOur plants are covered by the EU’s emissions trading scheme for carbon dioxide. We trade one emission allowance for every tonne of fossil CO2 emitted. This is our contribution to efforts to reduce emissions from EU member states.

We also offer Carbon Neutral Heating and CoolingWe offer larger customers a solution consisting of district heating and cooling from our waste incineration plant in Uppsala that is compensated for carbon dioxide. This is district heating and cooling that is carbon neutral because we compensate for that part of the waste that is not renewable, i.e. the fossil-based plastic in the waste. We do this by increasing the amount of biomass in our total fuel mix, over and above the amount that is already planned*.

* Compensation is limited to the carbon dioxide emissions directly associated with our district heating production.

Energy supplied 61% Waste (1,153 GWh) 20% Peat (371 GWh) 7% Wood (127 GWh) 2% Oil (37 GWh) 3% Waste heat (49 GWh) 8% Electricity (160 GWh)

Efficiency:93% Production89% Distribution Total efficiency 83%

Energy delivered 1,315 GWh District heating 94 GWh Electricity (net) 115 GWh Process steam 45 GWh District cooling

In addition, 12 GWh of cooling was supplied using ”island solutions”, i.e. independently of the district cooling network.

Page 5Environmental Report Uppsala 2017 · Vattenfall Heat

Page 6: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Fuel mix in UppsalaFuel supply and heat production and electricity generation in Uppsala

Fuel supplyOur mixture of fuels has changed over the years. We were entirely dependent on oil in the early 1980s. Since then, oil has been actively replaced, mainly by waste and peat. Two of our oil furnaces were converted to bio-oil during 2017, and the HVC furnace is currently being converted to wood fuel only.

Uppsala’s heat requirements control productionThere is a significant difference between Uppsala’s heat requirements during summer and winter, and we adapt our production accordingly. The bar chart shows the usage of different plants during a normal year. The waste incineration plant heats Uppsala throughout the year, but during the winter other furnaces are needed too.

Production in UppsalaGWh/month

6

Bränslemix i Uppsala Bränsletillförsel samt värme- och elproduktion i Uppsala Bränsletillförsel Vår blandning av bränslen har förändrats genom åren. I början av 1980-talet var vi helt beroende av olja. Sedan dess har oljan aktivt ersatts med framför allt avfall och torv. Två av våra oljepannor konverterades till bioolja under 2017 och HVC-pannan konverteras nu till enbart träbränsle.

Uppsalas värmebehov styr produktionen Det är stor skillnad på Uppsalas värmebehov under sommar och vinter och vi anpassar vår produktion i enlighet med detta. Stapeldiagrammet visar användningen av olika anläggningar under ett normalt år. Avfallsförbränningen värmer Uppsala under hela året, men under vintern behövs även övriga pannor.

6

Bränslemix i Uppsala Bränsletillförsel samt värme- och elproduktion i Uppsala Bränsletillförsel Vår blandning av bränslen har förändrats genom åren. I början av 1980-talet var vi helt beroende av olja. Sedan dess har oljan aktivt ersatts med framför allt avfall och torv. Två av våra oljepannor konverterades till bioolja under 2017 och HVC-pannan konverteras nu till enbart träbränsle.

Uppsalas värmebehov styr produktionen Det är stor skillnad på Uppsalas värmebehov under sommar och vinter och vi anpassar vår produktion i enlighet med detta. Stapeldiagrammet visar användningen av olika anläggningar under ett normalt år. Avfallsförbränningen värmer Uppsala under hela året, men under vintern behövs även övriga pannor.

Page 6Environmental Report Uppsala 2017 · Vattenfall Heat

Fuel supply & electricity and heat production in Uppsala

Oil

Coal

Peat

Wood

Heating production

Electricity

Waste heat

WasteElectricity production

Waste incineration

Hot water furnaces, peat/wood

CHP plants, peat/wood Heat pumps

Oil furnaces

Page 7: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Facilities in Uppsala

Distribution network District heating and district cooling are distributed to the heating and cooling systems of properties in the form of hot and cold water circulating in closed pipe systems. Our district heating network is 500 km long, and the district cooling network is 14 km long. We also have a 7 km network for steam.

Accumulators In order to meet the fluctuations in demand for district heating, there is a hot water accumulator inside the production area in Boländerna which holds 30,000 m3, providing 1,200 MWh of energy to supply 100 MW of power to the district heating network. There is also an accumulator for the district cooling network, which is located at Stallängsverket and is clearly visible from Kungsängsleden. It holds 3,000 m3, with energy of 30 MWh and can supply 10 MW of power. A large accumulator for district cooling, which is due to be completed by 2019, is also being built on the Boländerna site.

Waste-to-energyProducts: District heating, electricity, steam and district cooling.Capacity and fuel: Total of 170 MW heat + 10 MW electricity + 11 MW cooling, with 55 tonnes of waste per hour.Flue-gas cleaning: Nitrogen oxides – urea and ammonia injection and catalytic converters. Dust – electro-filters and fabric filters. Sulphur and hydrochloric acid cleaning – flue gas scrubber/condensation with energy recovery and fabric filter with limestone additive. Organic substances – fabric filters with active charcoal Cleaning of flue gas condensate through limestone additive and complexing agent for heavy metals, then precipitation stage plus sand and charcoal filters.

Gas turbine Backup for electricity generation.Product: Electricity for starting the CHP plant in the case of electrical power cut.Capacity and fuel: 16 MW electricity, light oil.

CHP plant Products: District heating and electricity. Capacity and fuel: 235 MW heating and 120 MW electricity with 80 tonnes of peat/wood briquettes per hour. Oil and coal are used as back-up fuels.Flue-gas cleaning: Sulphur – limestone additive in furnace and wet stage, before fabric filter. Nitrogen oxides – urea and ammonia injection and catalytic converters. Dust – electro-filters and fabric filters.Bolandsverket Products: District heating and electricity.Capacity and fuel: Peat-fuelled hot-water furnace (HVC) 100 MW, electric furnace 10 and 50 MW (steam back-up), oil furnaces 4 x 75 MW (back-up), two of which run on bio-oil.Flue-gas cleaning HVC: Sulphur – limestone additive in furnace. Nitrogen oxides – urea injection. Dust – electro-filters and fabric filters.

Husbyborg unit Heat pump facility located at Uppsala’s sewage works.Products: District heating and district cooling.Capacity: 3 x 15 MW heating and 3 x 8 MW cooling from electricity and waste heat, plus 2 x 1.4 MW compression refrigerating machines.

Stallängsverket Located at Ultuna CampusProduct: District coolingCapacity: District heat-driven absorption refrigeration 1.5 MW, cooling tower 1 MW, compression refrigerating machines 1.3 + 2.5 MW.

Ultuna cooling plant Located at Ultuna CampusProduct: District coolingCapacity: District heat-driven absorption refrigeration 1.5 MW, cooling tower 1 MW, compression refrigerating machines 1.3 + 2.5 MW.

Page 7Environmental Report Uppsala 2017 · Vattenfall Heat

Page 8: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Ångström cooling plant Located at Ångström Laboratory.Product: District coolingCapacity: District heat-driven absorption refrigeration 2.5 MW, cooling tower 2.7 MW. compression refrigerating machines 8 MW.

Knivsta – almost fully carbon neutral heating

In Knivsta, south of Uppsala, we supply district heating produced from biomass using our heating plant and district heating distribution network. The heating plant has two biomass-fuelled furnaces of 8 and 15 MW respectively, and oil furnaces for back-up and peak load. The fuel is ”green chips”, plus bark and wood chips. An impressive 99% of the fuel for the plant is biomass, which means that district heating in Knivsta is largely carbon-neutral. Knivsta has had district heating since 1976, and we have about 700 customers here.

Heat loss arises during both production and distribution. Smaller district heating networks and networks with many single family home customers have lower efficiency than larger distribution networks.

CO2 emissions are reported using two different systems (see the description for Uppsala on page 5).

Key figures for delivered district heating, kg/MWh = g/kWh

2017 2016 2015 2014 2013 2012

CO2 from oil 4 3 5 5 15 7

CO2eq in accordance with VMK

10 16 19 18

NOx 0,39 0,36 0,36 0,34 0,37 0,42

SO2 0,15 0,18 0,18 0,26 0,26 0,26

The plant in Knivsta

Solid fuel furnacesProduct: District heatingCapacity and fuel: 8+15 MW wood chips, green chips and barkFlue-gas cleaning: Dust – electro-filters

Oil boilers Peak load and production back-upProduct: District heatingCapacity and fuel: 10+13 MW light oil

Energy supplied96% Biomass (76.8 GWh) 1% Oil (0.7 GWh) 3% Electricity for pumps and fans, etc. (2.0 GWh)

Energy deliveredDistrict heating 52.8 GWh

Efficiency:81% Production 84% Distribution

Page 8Environmental Report Uppsala 2017 · Vattenfall Heat

Page 9: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Operations in Storvreta

In 2017, in Storvreta north of Uppsala, we supplied heating generated almost entirely from wood. Very little oil was needed. The heating plant has two 2 MW furnaces that are fuelled with wood pellets. An oil furnace in Ärentuna School is used for back-up and peak load. A large water-filled underground rock cavity is used for heat storage and can deliver 8 MW.

We report CO2 emissions using two different systems (see the description for Uppsala on page 5).

Key figures for delivered district heating, kg/MWh = g/kWh

2017 2016 2015 2014 2013 2012

CO2 from oil 0,26 0,13 0,04 0 12 13

CO2ekv in accordance with VMK 6 9 9 9

NOx 0,38 0,38 0,36 0,7 0,7 0,7

SO2 0,003 0,003 0,003 0,003 0,003 0,004

The plant in Storvreta

Solid fuel furnacesProduct: District heatingCapacity and fuel: 2 x 2 MW wood pelletsFlue-gas cleaning: Dust – cyclones

Rock cavity Large rock cavity for storage of hot waterCapacity: 2 x 4 MW storage volume 100,000 m3 (can store 5 GWh heat)

Ärentuna School Peak load and production back-upProduct: District heatingCapacity and fuel: 4 MW light oil

Energy supplied99% Biomass, 21 GWh 0% Oil, 0.01 GWh 1% Electricity for pumps and fans, etc., 0.2 GWh

Energy deliveredDistrict heating 14 GWh

Efficiency:93% Production 76% Distribution including rock cavity storage

Page 9Environmental Report Uppsala 2017 · Vattenfall Heat

Page 10: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Fuel and ash

Fuel in UppsalaThe waste is composed of 50% household waste and 50% industrial waste. The majority of the waste comes from Uppland, Södermanland and Västmanland. We export energy recovery services to the UK, Ireland, Norway and Åland, which amounts in total to around 30% of the energy source for waste incineration.

The peat comes in the form of briquettes from Härjedalen and Belarus. The peat fuel is mixed with wood pellets and wood briquettes. Bio-oil is now connected up to two of our back-up oil furnaces and will be used in preference to oil as the back-up fuel in the event of problems with the supply of normal fuel or inadequate capacity in the ordinary installations. Oil may also be needed for peak load during the very coldest winter days.

Ash from waste incinerationWaste incineration produces two different types of ash, as well as sludge from water treatment. The first type of ash is bottom ash from the furnaces, also called slag. The metals in the slag are sorted out and sent for recycling. The remaining ash is sorted into two different sizes. The fine fraction is used as a sealant and the coarse fraction is used as a drainage layer when covering landfills. The other type of ash is fly ash from the flue-gas cleaning. This ash contains material separated from the flue gases and is not suitable for roads, etc. It is managed and used instead on landfill sites for hazardous waste. There are also wet cleaning stages for the flue gases. The water from these cleaning stages is treated in a process which includes the addition of an organic sulphide, which binds heavy metals. The impurities are precipitated as a sludge, which is sent to a hazardous waste deposit site. This means that the heavy metals that make their way into the installation via waste are removed from circulation in society. In order for the quantity of heavy metals in waste to be reduced, products must be manufactured without them, or those who use items such as batteries and low-energy bulbs must recycle them carefully, so that they are not disposed of with combustible waste.

Ash from peat-burningPeat produces ash that is ideal for constructing roads and other surfaces. We have forest roads in Uppsala and a jogging circuit in Storvreta where peat ash is used as construction material. The approach ramp in Librobäck’s recycling station is made of peat ash. There are also projects where the peat ash replaces cement, which saves one kilo of carbon dioxide emissions per kilo of replaced cement. One of the reasons that ashes from peat can be used in this way is because lime is added in the combustion process in order to bind sulphur. The lime content in the ash makes it hard, but simultaneously light. District heating in SwedenOver half of all homes and properties are heated using district heating. District heating is the main reason why Sweden has succeeded in reducing its emissions of greenhouse gases. District heating has doubled in Sweden since 1982, and in the same period, oil in the district heating system has been replaced by wood, peat and waste. Uppsala’s modified fuel consumption is shown on page 6.

12

Fjärrvärme i Sverige Mer än hälften av alla bostäder och lokaler värms med fjärrvärme. Fjärrvärme är den viktigaste förklaringen till att Sverige lyckats reducera utsläppen av växthusgaser. Fjärrvärmevolymen har fördubblats i Sverige sedan 1982 och under samma tid har oljan i fjärrvärmesystemet ersatts av trä, torv och avfall. Uppsalas förändrade bränsleanvändning framgår på sidan 5.

Avfall som bränsle Diagrammet ovan från Avfall Sverige visar hur hanteringen av hushållsavfall utvecklats genom åren. Den totala mängden behandlat hushållsavfall år 2017 uppgick till 4,8 miljoner ton eller 473 kg per person och år, det är en ökning med 2,5 procent jämfört med 2016. Tack vare utökad materialåtervinning, biologisk behandling och avfallsförbränning med energiutvinning, gick endast 0,5 procent av allt behandlat hushållsavfall till deponi 2017. www.avfallsverige.se

Energiåtervinningstjänster Sverige har gjort en fantastisk resa de senaste 10 åren när det gäller hur vårt hushållsavfall tas om hand. Vi har kunnat stänga våra soptippar för brännbart avfall och istället energiåtervinna det som inte längre kan materialåtervinnas. Avfallstrappan berättar om hur vi får ut mesta möjliga nytta av varor och material: först minimering och återanvändning, därefter materialåtervinning. Sedan energiåtervinning och först därefter deponering av t.e.x. askor om de inte kan användas eller om de innehåller sådant som ska föras ut ur kretsloppet.

Torv som bränsle Då torv i vissa fall klassas som fossilt bränsle medans Internationella klimatpanelen (IPPC) definierar torv som en egen kategori, vare sig fossil som olja och kol, eller biobränsle som trä har vi valt att redovisa koldioxidutsläppen både med och utan bidrag från torv, se sidan 3. Vattenfall har tagit beslut på att sluta elda torv, redan under 2018 konverteras HVC-pannan för att elda endast träbränsle och KVV-pannan fasas ut under 2020-talet där de sista åren blir som enbart reservoljepanna.

12

Fjärrvärme i Sverige Mer än hälften av alla bostäder och lokaler värms med fjärrvärme. Fjärrvärme är den viktigaste förklaringen till att Sverige lyckats reducera utsläppen av växthusgaser. Fjärrvärmevolymen har fördubblats i Sverige sedan 1982 och under samma tid har oljan i fjärrvärmesystemet ersatts av trä, torv och avfall. Uppsalas förändrade bränsleanvändning framgår på sidan 5.

Avfall som bränsle Diagrammet ovan från Avfall Sverige visar hur hanteringen av hushållsavfall utvecklats genom åren. Den totala mängden behandlat hushållsavfall år 2017 uppgick till 4,8 miljoner ton eller 473 kg per person och år, det är en ökning med 2,5 procent jämfört med 2016. Tack vare utökad materialåtervinning, biologisk behandling och avfallsförbränning med energiutvinning, gick endast 0,5 procent av allt behandlat hushållsavfall till deponi 2017. www.avfallsverige.se

Energiåtervinningstjänster Sverige har gjort en fantastisk resa de senaste 10 åren när det gäller hur vårt hushållsavfall tas om hand. Vi har kunnat stänga våra soptippar för brännbart avfall och istället energiåtervinna det som inte längre kan materialåtervinnas. Avfallstrappan berättar om hur vi får ut mesta möjliga nytta av varor och material: först minimering och återanvändning, därefter materialåtervinning. Sedan energiåtervinning och först därefter deponering av t.e.x. askor om de inte kan användas eller om de innehåller sådant som ska föras ut ur kretsloppet.

Torv som bränsle Då torv i vissa fall klassas som fossilt bränsle medans Internationella klimatpanelen (IPPC) definierar torv som en egen kategori, vare sig fossil som olja och kol, eller biobränsle som trä har vi valt att redovisa koldioxidutsläppen både med och utan bidrag från torv, se sidan 3. Vattenfall har tagit beslut på att sluta elda torv, redan under 2018 konverteras HVC-pannan för att elda endast träbränsle och KVV-pannan fasas ut under 2020-talet där de sista åren blir som enbart reservoljepanna.

12

Fjärrvärme i Sverige Mer än hälften av alla bostäder och lokaler värms med fjärrvärme. Fjärrvärme är den viktigaste förklaringen till att Sverige lyckats reducera utsläppen av växthusgaser. Fjärrvärmevolymen har fördubblats i Sverige sedan 1982 och under samma tid har oljan i fjärrvärmesystemet ersatts av trä, torv och avfall. Uppsalas förändrade bränsleanvändning framgår på sidan 5.

Avfall som bränsle Diagrammet ovan från Avfall Sverige visar hur hanteringen av hushållsavfall utvecklats genom åren. Den totala mängden behandlat hushållsavfall år 2017 uppgick till 4,8 miljoner ton eller 473 kg per person och år, det är en ökning med 2,5 procent jämfört med 2016. Tack vare utökad materialåtervinning, biologisk behandling och avfallsförbränning med energiutvinning, gick endast 0,5 procent av allt behandlat hushållsavfall till deponi 2017. www.avfallsverige.se

Energiåtervinningstjänster Sverige har gjort en fantastisk resa de senaste 10 åren när det gäller hur vårt hushållsavfall tas om hand. Vi har kunnat stänga våra soptippar för brännbart avfall och istället energiåtervinna det som inte längre kan materialåtervinnas. Avfallstrappan berättar om hur vi får ut mesta möjliga nytta av varor och material: först minimering och återanvändning, därefter materialåtervinning. Sedan energiåtervinning och först därefter deponering av t.e.x. askor om de inte kan användas eller om de innehåller sådant som ska föras ut ur kretsloppet.

Torv som bränsle Då torv i vissa fall klassas som fossilt bränsle medans Internationella klimatpanelen (IPPC) definierar torv som en egen kategori, vare sig fossil som olja och kol, eller biobränsle som trä har vi valt att redovisa koldioxidutsläppen både med och utan bidrag från torv, se sidan 3. Vattenfall har tagit beslut på att sluta elda torv, redan under 2018 konverteras HVC-pannan för att elda endast träbränsle och KVV-pannan fasas ut under 2020-talet där de sista åren blir som enbart reservoljepanna.

Page 10Environmental Report Uppsala 2017 · Vattenfall Heat

Million tonnes

Recycling

Biological recovery

Energy recovery

Landfill

Page 11: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Waste as fuelThe graph above from the Swedish Waste Management and Recycling Association shows how the treatment of household waste has developed in recent years. In 2017, the total volume of managed household waste was 4.8 million tonnes, or 473 kg per person per year, an increase of 2.5% compared with 2016. Thanks to increased recycling, biological treatment and waste incineration with energy recovery, only 0.5% of all managed household waste went to landfill in 2017. www.avfallsverige.se

Energy recovery servicesOver the past 10 years, Sweden has made huge progress in the management of household waste. We have been able to close our landfill sites for combustible waste and, instead, we now recover energy from materials that can no longer be recycled. The waste hierarchy tells us how we can obtain the maximum benefit from goods and materials: first prevention and reuse, then recycling. Then energy recovery and, only after that, disposal, for example, of ash that can’t be used or that contains materials which must be removed from the cycle.

Peat as fuelSince, in some cases, peat can be classified as fossil fuel and the Intergovernmental Panel on Climate Change (IPCC) places peat in a category of its own, neither fossil fuel nor biomass, we have chosen to report CO2 emissions both with and without the contribution of peat (see page 3). Vattenfall has decided to stop burning peat: during the course of 2018 the HVC furnace is being converted to burn wood fuels only, and the KVV furnace is to be phased out in the 2020s and will serve as a back-up oil furnace only in its final years.

We are working to reduce our impact on the environment Through our work to reduce our impact on the environment, we have identified our key environmental factors, some of which are described in brief below.

Climate impactSee diagram on page 4 for emissions of carbon dioxide and page 5 for emissions for delivered district heating. Uppsala also has emissions of other greenhouse gases. Nitrous oxide emissions (N2O) amount to around 6 tonnes per year, which, with a conversion factor of 290GWP, contributes less than 0.5% compared with carbon dioxide emissions. We also use the coolant R134a, which contributes around 10 per cent compared with carbon dioxide emissions, despite the large conversion factor of 1,430GWP.

Acidifying emissions to air See diagram on page 4 for emissions of substances that produce acidification such as nitrogen oxides and sulphur dioxide, and page 5 for emissions for delivered district heating. Nitrogen dioxide emissions for the Uppsala plants are below the average for Sweden in the nitrogen oxide charge system. More information on the nitrogen oxide charge is available on the Swedish Environmental Protection Agency’s website www.naturvardsverket.se

Emissions to waterEmissions to water result from flue gas condensation, as described on page 13, and rainwater entering surface water drains. Rainwater carries with it particles of various types from the asphalt surfaces around the plant, e.g. flakes of paint from containers, fuel and ash dust, etc. We regularly measure the levels of heavy metals in the surface water and, during 2017, we built a sedimentation reservoir for particle separation of surface water from half of the site. A reservoir for the remainder of the site is planned in conjunction with the construction of a new plant on the site.

Energy efficiencyOur total energy turnover can be seen on pages 5, 8 and 9. It shows the degree of efficiency from fuel to delivery to the customer. We are working systematically on increasing energy efficiency, e.g. improved utilisation of waste heat from hot flue gases in Uppsala and the installation of a new more energy-efficient compressed air compressor in Knivsta.

- Internal electricity consumption In 2017 in Uppsala, we consumed 76.6 GWh of electricity (43.6 kWh electricity consumption/total generation in MWh) for pumps, fans and other equipment, which is less than last year. For Knivsta we consumed 2.1 GWh electricity (33 kWh/generated MWh), which is a higher consumption than last year but the ratio is lower because generation has increased since new grid connections were established during the course of the year. For Storvreta we consumed 0.17 GWh (9 kWh/MWh), which is less than last year.

Page 11Environmental Report Uppsala 2017 · Vattenfall Heat

Page 12: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Our electricity efficiency work should be seen in the context of the long-term downward trend. In cold years, such as 2010, electricity

consumption is lower per generated MWh because the idling consumption is shared across a large production volume.

- The customer’s energy use also affects the environment Our customers’ energy consumption affects society’s use of resources and the degree of emissions. Examples of how we contribute to our customers’ good energy housekeeping are outlined below:

- Providing free energy statistics on My Pages via www.vattenfall.se for all of our customers allows them to track trends and changes.- Flow charges benefit larger customers if their district heating units are more efficient than the norm.- Dividing these charges into a power component and an energy component benefits customers who reduce their power requirements, e.g. through additional insulation. The need for heat is then reduced even during the coldest winter days, and oil can be used for peak loads. - We recommend different types of energy optimisation adapted to the customer’s situation. We have skills, expertise and experience to offer, such as service and heat exchanger replacement, to help customers achieve a high degree of efficiency in their heating system.

Resource efficiencyOur fuel consumption in Uppsala is based on refuse, which is a waste resource and is therefore more resource-efficient than other fuels. All our fuel consumption is shown on pages 6-7.

- Use of finite resources – fossil fuels Oil and coal are now only used as back-up fuels and in very cold weather, in the event of interruptions in operations, breakdowns, etc. In 2017, the proportion of oil in our fuel mix was 2 per cent in Uppsala, 1 per cent in Knivsta and almost 0 per cent in Storvreta.

- Hydro For the Uppsala plant we used 477,980 m3 of water in 2017 (271 litres per delivered MWh). This is less than in 2016, mainly due to less network leakage. For Knivsta we used 3,666 m3 of water (58.3 litres/ MWh), which is less than in 2016, again due to less leakage during the course of the year. For Storvreta we only used 161 m3 (8.6 litres/MWh), which is considerably less than in 2016 when a major leak was identified and subsequently rectified in late 2016.

- Waste Scrap metal is sorted from the slag from incinerated waste and recycled. Peat ash is recycled for road construction.

Flue ash and sludge from waste incineration Each year about 10,000 tonnes of fly ash and sludge are produced from waste incineration. This is about 5 kg per MWh delivered, and does not change from year to year. The content of metal in the waste determines the amount of metal in the ash from waste incineration. The sludge separated through the waste incineration’s water purification treatment includes an organic sulphide, which binds metals such as mercury and cadmium. The sludge and fly ash are considered hazardous waste and treated according to current regulations, which means that leaching from landfills is minimal. Good incineration reduces the content of organic matter in fly ash and sludge.

13

Vi arbetar för att minska vår miljöpåverkan I arbetet med att minska vår miljöpåverkan har vi identifierat våra betydande miljöaspekter, här nedan följer en kort redovisning av några av dessa. Klimatpåverkan Utsläpp av koldioxid, se diagram sidan 3 och utsläpp per levererad fjärrvärme på sidan 4. Uppsala har även utsläpp av andra växthusgaser. Lustgasutsläppen (N2O) uppgår till cirka 6 ton per år vilket med omräkningsfaktorn 290 ger ett bidrag på mindre än 0,5 procent jämfört med koldioxidutsläppen. Vi använder även köldmedia R134a som bidrar med ca 10 procent jämfört med koldioxidutsläppen trots den stora omräkningsfaktorn 1430. Försurande utsläpp till luft Utsläpp av försurande ämnen som kväveoxider och svaveldioxid, se diagram sidan 3 och utsläpp per levererad fjärrvärme på sidan 6. Kvävedioxidutsläppen sammantaget för Uppsalaanläggningarna ligger under Sverigemedel i kväveoxidavgiftssystemet. Mer om kväveoxidavgiften finns på naturvårdsverkets hemsida www.naturvardsverket.se Utsläpp till vatten Utsläpp sker till vatten från rökgaskondenseringen vilket redovisas på sidan 18, men också via regnvatten till dagvattenbrunnar. Regnvattnet för med sig partiklar av olika slag från asfaltsytorna runt anläggningen, t.e.x. färgflagor från containrar, bränsle- och askdamm o.s.v.. Vi mäter regelbundet halterna av tungmetaller i dagvattnet och under 2017 inrättades ett sedimenteringsmagasin för partikelavskiljning av dagvatten från halva delen av tomten. Ett magasin för resterande del av tomten planeras i samband med byggandet av en ny anläggning på tomten.

Energieffektivitet Vår totala energiomsättning finns på sidorna 6, 10 och 11. Där visas verkningsgraden från bränsle till leverans hos kund. Vi arbetar systematiskt för ökad energieffektivitet, till exempel förbättrat tillvaratagande av spillvärme från varma rökgaser i Uppsala och installation av ny effektivare tryckluftskompressor i Knivsta. - Intern elförbrukning I Uppsala använde vi 76,6 GWh el (43,6 kWh elförbrukning/total produktion i MWh) år 2017 till pumpar, fläktar och annan utrustning, vilket är mindre än förra året. För Knivsta användes 2,1 GWh el (33 kWh/producerad MWh) vilket är högre förbrukning än förra året men kvoten är lägre då produktionen ökat sedan nya nätanslutningar gjorts under året. För Storvreta användes 0,17 GWh (9 kWh/MWh) vilket är lägre än förra året.

Vårt arbete med eleffektiviseringar syns i den långsiktiga trenden som har sjunkit. Kalla år som t.e.x. 2010 blir elförbrukningen lägre per producerad MWh då tomgångsförbrukningen fördelas på en stor produktionsvolym.

Page 12Environmental Report Uppsala 2017 · Vattenfall Heat

Electricity consumption, Heat Uppsala (kWh/produced MWh)

55.0

50.0

45.0

40.0

35.0

Page 13: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Sustainable fuelFuel suppliers can affect the environment and the work environment in different countries. Oil extraction has an environmental impact and there is a risk of oil spills in connection with transporting oil. Both the environment and the work environment are important when cutting peat. We have visited our suppliers to ensure that the conditions are good enough. We are also monitoring developments around sustainability criteria for biomass fuels and are conducting supplier assessments.

Risk of environmental accidentsInstituting preventive measures against accidents such as oil spills and fires is an important part of our work. We do this through, for example, maintenance, inspections, risk analyses and deviation reports. There were no major accidents in 2017.

Risk of disturbances in the local environmentWe prevent disturbances in the local environment, such as dust from peat and ash, by handing fuels and ashes indoors as far as possible. Disturbances can also arise from the odour of waste that is used as a fuel. We prevent this by working proactively in planning deliveries, waste inspections and controlling air flows in connection with waste treatment.

Emissions and environmental limits

A selection of substances and conditions that are of interest from an environmental point of view are presented below.

Air emissions from waste incineration Emission limits 2017 results

Dust, mg/m3, as a daily average, measured continuously

10 No days over 10

Mercury, µg/m3, measured twice a year 25 0,4 – 0,5

Dioxins, ng/m3, measured twice a year 0,1 <0,011

Total organic coal, mg/m3, as a daily average, measured continuously

10 No days over 10

Dust is interesting from an environmental perspective as it can contain both heavy metals and hydrocarbon (unburned). It is consequently important to keep dust emissions down. However, mercury is a heavy metal that is not usually carried in dust and is therefore reported separately.

Keymg milligram thousandth of a gramµg microgram millionth of a gramng nanogram billionth of a gram

Water emissions from waste incineration Emission limits 2017 results

Mercury, kg per year, limit value, continuous measurement 0,5 <0,02

Lead, kg per year, limit value, continuous measurement 12,5 3,4

Cadmium, kg per year, limit value, continuous measurement 0,75 0,2

Dioxins, ng/l, measured twice a year, target value 0,1 < 0,004

During the year, a limited number of operational interruptions occurred, and these were reported to the supervisory authority. A full report on emissions and environmental conditions can be found in our environmental report to the authorities, which can be ordered from Vattenfall Heat Uppsala.

Page 13Environmental Report Uppsala 2017 · Vattenfall Heat

Page 14: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

We help meet Sweden’s environmental targets in the following ways

Reduced Climate ImpactUppsala Municipality’s goal is to be fossil free by 2030 and climate-positive by 2050. By 2030 at the latest, emissions of greenhouse gases from energy consumption, transport and work machinery in the municipality of Uppsala must be almost zero and must be based on renewable energy sources. Vattenfall Heat Uppsala has reduced carbon dioxide emissions by 25 per cent compared with 1990, and by 2020 plans to have halved emissions compared with 2013. Carbon dioxide emissions will be reduced through our plans to replace peat with wood, particularly when the CHP plant is replaced with a new plant in 2021. We are participating in the Uppsala Climate Protocol, which is a collaborative project started by the Uppsala municipality for reduced climate impact.

Fresh airThe County Administrative Board has stated that the greatest source of particle and nitrogen oxide emissions in Uppsala county is from traffic. For particles, our contribution to inner city air is at most 0.004 µg/m3 of the environmental quality standard of 50 per day. For nitrogen oxides, our contribution to inner city air is at most 1.5 µg/m3 of the environmental quality standard of 90 per hour.

Only natural acidificationOur emissions of acidifying substances have decreased significantly over the years; see the graphs on acidifying substances on page 4.

A non-toxic environmentOur air emissions of mercury and dioxins have been dramatically reduced since the 1980s, see the diagram below. Our water emissions contribute only a limited amount to the transport of heavy metals in the Fyris River. Our water emissions from flue gas condensation during waste incineration are reported on page 13.

17

Så här bidrar vi till att uppfylla de svenska miljömålen

Begränsad klimatpåverkan Uppsala kommuns mål är att bli fossilfria till 2030 och klimatpositiva till 2050. Utsläppen av växthusgaser från energianvändning, transporter och arbetsmaskiner inom Uppsala kommungeografi ska senast år 2030 vara nära noll samt baseras på förnybara energikällor.

Vattenfall Värme Uppsala har minskat koldioxidutsläppen med 25 procent jämfört med 1990 och planerar att till 2020 ha halverat utsläppen jämfört med 2013. Koldioxidutsläppen kommer att minska genom våra projekt för att byta torv mot trä, främst då kraftvärmeverket ersätts av ett nytt år 2021. Vi deltar i Uppsala Klimatprotokoll, som är ett samarbete startat av Uppsala kommun för minskad klimatpåverkan.

Frisk luft Länsstyrelsen anger att den största källan till utsläpp av partiklar och kväveoxider i Uppsala län är utsläppen från trafiken. Vår produktions bidrag till innerstadsluften av partiklar är som mest 0,004 µg/m3 av miljökvalitetsnormen 50 per dygn. För kväveoxider är vårt bidrag till innerstadsluften som mest 1,5 µg/m3 av miljökvalitetsnormen 90 per timme.

Bara naturlig försurning Våra utsläpp av försurande ämnen har minskat betydligt genom åren, se graferna över försurande ämnen på sidan 3.

Giftfri miljö Våra utsläpp till luft av kvicksilver och dioxiner har minskat dramatiskt sedan 1980-talet, se diagrammen härintill. Våra utsläpp till vatten bidrar endast i begränsade mängder till transporten av tungmetaller i Fyrisån. Våra utsläpp till vatten från avfallsförbränningens rökgaskondensering finns redovisade på sidan 15.

Page 14Environmental Report Uppsala 2017 · Vattenfall Heat

Mercury emissions to air

Wet flue gas cleaning AFA (Condensation)

Additional dry flue gas cleaning AFA (Filsorption)

Page 15: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

No eutrophicationThe Fyris River has moderate ecological status under the Water Framework Directive. This is due to the transportation of nitrogen and phosphorous, primarily from agriculture but also from large and small waste water treatment plants. Vattenfall Heat Uppsala’s total emissions of nitrogenous substances have been reduced over the years as mentioned above, and are primarily in the form of airborne nitrogen oxides; around 50 tonnes per year calculated as nitrogen, or 4% of the county’s emissions. Water emissions are around 5 tonnes per year calculated as nitrogen, which constitutes one per cent of the total nitrogen emissions into the Fyris River.

Good urban environmentDistrict heating allows cities and urban areas to provide a good and healthy lifestyle environment and also contribute to a good regional and global environment. District heating is the ideal form of heating for cities and urban areas.

Environmental glossary

Sulphur, nitrogen oxides, hydrogen chloride and ammonia are substances which cause acidification. This leads to nutrients leaching out of the ground and metals being released that are normally bound. Sulphur emissions have decreased throughout the entire country, thanks to reduced use of coal and oil. Nitrogen oxides are formed in connection with all combustion and affect the environment in four different ways as they lead to acidification, eutrophication, intensification of the greenhouse effect and formation of ground level ozone. Hydrogen chloride is a corrosive gas and together with water it forms hydrochloric acid, which is acidifying. Ordinary salts can form hydrogen chloride in conjunction with waste incineration Hydrogen chloride is removed from flue gas through condensing. Ammonia also appears to be acidifying as it easily forms ammonium ions, which are weak acids.

Dust is particles of ash that are released into the air from industry and cars. The dust can contain heavy metals and hydrocarbon. We clean the flue gases of dust using electrofilters and fabric filters. The dust from waste incineration (fly ash) is hazardous waste. Fly ash from peat and wood contains only low levels of pollutants and can be used, for example, in road building and as a substitute for cement.

Carbon dioxide is a gas that is found naturally in the air and is one of the most important substances in photosynthesis. However, a distinction is made between the amount of carbon dioxide that is part of the natural cycle, and the surplus that arises through use of fossil fuels. This surplus intensifies the greenhouse effect. The increase that disturbs the balance is caused chiefly by traffic and burning of fossil fuels such as oil and coal. On the other hand, the amount of carbon dioxide that arises when biomass fuels are used is absorbed again by plants.

18

Ingen övergödning Fyrisån har måttlig ekologisk status enligt Vattendirektivet. Detta beror på kväve- och fosfortransporten, främst från jordbruk men även från stora och små reningsverk. Vattenfall Värme Uppsalas samlade utsläpp av kvävehaltiga ämnen har minskat genom åren som nämns ovan och sker framförallt i form av kväveoxider till luft, cirka 50 ton per år räknat som kväve, eller 4 procent av utsläppen i länet. Utsläppen till vatten är cirka 5 ton per år räknat som kväve, vilket utgör 1 procent av de totala kväveutsläppen till Fyrisån.

God bebyggd miljö Fjärrvärme bidrar till att städer och tätorter kan utgöra en god och hälsosam livsmiljö och medverkar till en god regional och global miljö. Fjärrvärme passar utmärkt som uppvärmningsform för städer och tätorter.

Miljöbegrepp

Svavel, kväveoxider, klorväte och ammoniak är ämnen orsakar försurning. Det leder till att marken urlakas på näringsämnen och metaller frigörs som normalt är bundna. Svavelutsläppen har minskat i hela landet, tack vare minskad användning av kol och olja. Kväveoxider bildas vid all förbränning och påverkar miljön på fyra olika sätt genom att de leder till försurning, övergödning, förstärkning av växthuseffekten och bildandet av marknära ozon. Klorväte, eller väteklorid, är en frätande gas och tillsammans med vatten bildar den saltsyra, som är försurande. Vanliga salter kan bilda klorväte vid avfallsförbränning. Klorvätet renas ur rökgasen genom kondensering. Även ammoniak verkar försurande genom att den lätt bildar ammoniumjoner, som är svaga syror.

Stoft är partiklar av aska som släpps ut i luften från industrier och bilar. Stoftet kan bära på tungmetaller och kolväten. Vi renar rökgaserna från stoft med el- och textilfilter. Stoftet från avfallsförbränning (flygaska) är farligt avfall. Flygaska från torv och trä innehåller endast låga halter föroreningar och kan användas för till exempel vägbyggen och som ersättning för cement.

Page 15Environmental Report Uppsala 2017 · Vattenfall Heat

Dioxin emissions to air

Incineration engineering steps AFA

Wet flue gas cleaning (AFA Condensation)

Additional dry flue gas cleaning AFA (Filsorption)

15.0

13.0

11.0

9.0

7.0

5.0

3.0

1.0

- 1.0

Page 16: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Dioxins are a group of over 200 different chlorinating hydrocarbons. Some of the variants are highly toxic. In principle, dioxin arises in connection with all combustion, where landfill fires are the worst. A single short-lived fire at a landfill site produces more emissions of dioxin into the air than Heat Uppsala’s waste incineration plant does in ten years, which is one of the reasons why there is a ban on dumping combustible waste.

Heavy metals impact on the environment, primarily mercury, lead and cadmium. They are naturally present in all animals and plants, but only in small quantities. If their content increases unnaturally, these heavy metals are highly powerful environmental toxins.

In Sweden, emissions of many heavy metals have declined substantially in recent years, thanks to new processing techniques, better purification techniques, a ban on mercury, increased collection of batteries and a ban on lead in petrol.

The major sources of emissions of mercury are crematoriums and chlor-alkali industries. For cadmium it is the metal industries. Waste incineration in Sweden accounts for less than one per cent of the total air emissions of heavy metals.

More information

• The industry association Swedish Waste Management has information about waste disposal: www.avfallsverige.se• The industry organisation Energiföretagen: www.energiforetagen.se• Swedish peat production: www.svensktorv.se • The Swedish Energy Authority has statistics on energy use in Sweden and information about energy and energy efficiency: www.energimyndigheten.se• Energy advice and environmental programmes, Uppsala Municipality www.uppsala.se, including a link to Uppsala Municipality’s Climate Protocol• Details of the progress made on Sweden’s environmental targets can be found at www.miljomal.nu For more information about Vattenfall, you can visit our website: www.vattenfall.se

Page 16Environmental Report Uppsala 2017 · Vattenfall Heat

Page 17: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Environmental policy

An important part of Vattenfall’s vision is to be among the leaders in developing environmentally sustainable production, supply, and distribution of energy.

This means the following:

We strive to be amongst the best in class for each energy source we use and for each type of technology we implement, as well as along the entire value chain. Our ambition is to be a role model in the areas in which we operate.

Our investment projects are based on well-informed judgements, which strike a balance between environmental and economic impact. With this in mind, we do our utmost to invest in modern, efficient and environmentally effective technologies and solutions.

We aim to increase our use of low-emission energy sources and technologies, such as low-carbon technologies.

We invest in research and development to improve the environmental performance of our operations, to increase the competitiveness of our renewable and low-emission energy sources and to reduce emissions of CO2 from our power plants.

We take a systematic approach to environmental factors and environmental risks. This includes making continuous improvements, setting requirements and targets and performing reviews. We treat this as an integral part of our management system and have regular strategic discussions at senior management level.

We specify and assess environmental performance when selecting suppliers, contractors and business partners.

We engage with our customers and promote the efficient use of energy with a view to reducing environmental impact.

We strive to constantly improve our internal energy and resource efficiency.

Safety, results and co-operation are fundamental to our operations.

Our environmental work paves the way for sustainable business development and makes us more competitive. We comply with existing laws, regulations and permits.

Through continuous improvements, our aim is to lead the way in our sector and to act as a role model in the markets on which we operate. Within our area of operation, we focus on environmental protection, pollution prevention and human health.

Our actions are characterised by respect for the cultures of the regions in which we operate. We are committed to maintaining an open dialogue on issues relating to the environmental impact of our leadership, our day-to-day operations and our products. We endeavour to provide society with energy solutions that enable sustainable development.

__________________________

Page 17Environmental Report Uppsala 2017 · Vattenfall Heat

Page 18: Environmental Report Uppsala 2017 - Vattenfall · 2018-12-04 · furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP

Heat Uppsala is a business unit in Vattenfall AB.

District heating is the major part of our business and our customers are real estate companies, housing associations, home owners, industrial and public facilities; for example schools, swimming pools and libraries. The business covers the entire value chain: production, distribution and sales. We also offer district cooling and steam, with the latter being used in industrial processes. Producing electricity and heat simultaneously delivers a high level of efficiency. Uppsala has Vattenfall’s largest plant for district heating in Sweden.

Our main plants in Sweden, including subsidiaries If you have questions please contact us:

Vattenfall Heat Uppsala Customer enquiries: Vattenfall Customer ServicePO Box 13SE-880 30 Näsåker, Sweden

Telephone: +46 (0)20 82 00 00email: [email protected]/uppsala

Visiting address:Vattenfall Heat UppsalaBolandsgatan [email protected]

1 Västerbergslagens Energi AB (VB Energi) and Gotlands Energi AB (Geab).

21

Värme Uppsala är en affärsenhet i Vattenfall AB. Fjärrvärme är den största delen av vår verksamhet och våra kunder är fastighetsbolag, bostadsrättsföreningar, villaägare, industrier och offentliga lokaler till exempel skolor, simhallar och bibliotek. Verksamheten omfattar hela värdekedjan: produktion, distribution och försäljning. Vi erbjuder även fjärrkyla och ånga, den senare används i industriella processer. Att producera el och värme samtidigt ger hög verkningsgrad. Uppsala är Vattenfalls största anläggning för fjärrvärme i Sverige.

Våra större anläggningar i Sverige, inkl dotterbolag 1

Har du frågor är du välkommen att kontakta oss:

Vattenfall Värme Uppsala

Kundfrågor: Vattenfall kundservice Box 13 880 30 Näsåker Telefon: 020-82 00 00 e-post: [email protected] www.vattenfall.se/uppsala

Besöksadress: Vattenfall Värme Uppsala Bolandsgatan 13

[email protected]

1 Västerbergslagens Energi AB (VB Energi) och Gotlands Energi AB (Geab).

Page 18Environmental Report Uppsala 2017 · Vattenfall Heat

Our main plants in Sweden, including subsidiariesHeat volume: 4,000 GWhElectricity volume: 380 GWhTurnover: MSEK 3,000Employees: 400