19
ENT345 Mechanical Components Design Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 1 1) LOAD AND STRESS ANALYSIS i. Principle stress ii. The maximum shear stress iii. The endurance strength of shaft. 1) Problem 3- 71 A countershaft carrying two-V belt pulleys is shown in the figure. Pulley A receives power from a motor through a belt with the belt tensions shown. The power is transmitted through the shaft and delivered to the belt on pulley B. Assume the belt tension on the loose side at B is 15 percent of the tension on the tight side. a) Determine the tensions in the belt on pulley B, assuming the shaft is running at a constant speed. b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as simple supports. c) Draw shear-force and bending moment diagrams for the shaft. If needed, make one set for the horizontal plane and anther set for the vertical plane. d) At the point of maximum bending moment, determine the bending stress and the torsional shear stress. e) At the point of maximum bending moment, determine the principal stresses and the maximum shear stress. Solution Assume the belt tension on the loose side at B is 15 percent of the tension on the tight side. T 2 = 0.15 T 1

ENT345 Mechanical Components Design - UniMAP Portalportal.unimap.edu.my/portal/page/portal30/Lecture...ENT345 Mechanical Components Design Dr. Haftirman Mechanical Engineering Program

  • Upload
    others

  • View
    116

  • Download
    7

Embed Size (px)

Citation preview

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 1

1) LOAD AND STRESS ANALYSIS

i. Principle stress

ii. The maximum shear stress

iii. The endurance strength of shaft.

1) Problem 3- 71

A countershaft carrying two-V belt pulleys is shown in the figure. Pulley A

receives power from a motor through a belt with the belt tensions shown.

The power is transmitted through the shaft and delivered to the belt on

pulley B. Assume the belt tension on the loose side at B is 15 percent of

the tension on the tight side.

a) Determine the tensions in the belt on pulley B, assuming the shaft is

running at a constant speed.

b) Find the magnitudes of the bearing reaction forces, assuming the

bearings act as simple supports.

c) Draw shear-force and bending moment diagrams for the shaft. If

needed, make one set for the horizontal plane and anther set for the

vertical plane.

d) At the point of maximum bending moment, determine the bending

stress and the torsional shear stress.

e) At the point of maximum bending moment, determine the principal

stresses and the maximum shear stress.

Solution

Assume the belt tension on the loose side at B is 15 percent of the tension on the

tight side. T2 = 0.15 T1

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 2

a) Determine the tensions in the belt on pulley B, assuming the shaft

is running at a constant speed.

βˆ‘π‘» = 𝟎

(πŸ‘πŸŽπŸŽ βˆ’ πŸ’πŸ“)𝑡(πŸπŸπŸ“)π’Žπ’Ž + (π‘»πŸ βˆ’ π‘»πŸ)𝑡(πŸπŸ“πŸŽ)π’Žπ’Ž = 𝟎

πŸ‘πŸπŸ–πŸ•πŸ“π‘΅π’Žπ’Ž + (𝟎. πŸπŸ“π‘»πŸ βˆ’ π‘»πŸ)𝑡(πŸπŸ“πŸŽ)π’Žπ’Ž = 𝟎

πŸ‘πŸπŸ–πŸ•πŸ“π‘΅π’Žπ’Ž βˆ’ πŸπŸπŸ•. πŸ“π‘»πŸ = 𝟎

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 3

π‘»πŸ = πŸπŸ“πŸŽπ‘΅π’Žπ’Ž On pulley B

π‘»πŸ = (𝟎. πŸπŸ“)πŸπŸ“πŸŽπ‘΅π’Žπ’Ž = πŸ‘πŸ•. πŸ“ π‘΅π’Žπ’Ž

𝑻 = π‘»πŸ + π‘»πŸ = πŸπŸ“πŸŽ + πŸ‘πŸ•. πŸ“ = πŸπŸ–πŸ•. πŸ“ π‘΅π’Žπ’Ž

b) Find the magnitudes of the bearing reaction forces, assuming the

bearings act as simple supports.

Y 31.82 N 45 N

31.82N T2=0.15 T1

X 212.132 N 300 N

A 45˚ B

Z 212.132 N

T1

βˆ‘π‘€π‘œπ‘¦ = 0

πŸ‘πŸ’πŸ“π’„π’π’”πŸ’πŸ“Β°(πŸ‘πŸŽπŸŽ) βˆ’ πŸπŸ–πŸ•. πŸ“(πŸ•πŸŽπŸŽ) + 𝑹π‘ͺ𝒛(πŸ–πŸ“πŸŽ) = 𝟎

𝑹π‘ͺ𝒛 = βˆ’πŸπŸ“πŸŽ. πŸ• 𝑡

βˆ‘πΉπ‘§ = 0

𝑹𝑢𝒛 βˆ’ πŸ‘πŸ’πŸ“π’„π’π’”πŸ’πŸ“Β° + πŸπŸ–πŸ•. πŸ“ βˆ’ πŸπŸ“πŸŽ. πŸ• = 𝟎

𝑹𝑢𝒛 = πŸπŸŽπŸ•. 𝟐 𝑡

βˆ‘π‘€π‘œπ‘§ = 0

πŸ‘πŸ’πŸ“π’”π’Šπ’πŸ’πŸ“Β°(πŸ‘πŸŽπŸŽ) + 𝑹π‘ͺπ’š(πŸ–πŸ“πŸŽ) = 𝟎

𝑹π‘ͺπ’š = βˆ’πŸ–πŸ”. 𝟏𝟎 𝑡

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 4

βˆ‘πΉπ‘¦ = 0

π‘Ήπ‘Άπ’š + πŸ‘πŸ’πŸ“π’„π’π’”πŸ’πŸ“Β° βˆ’ πŸ–πŸ”. 𝟏𝟎 = 𝟎

𝑹𝑢𝒛 = βˆ’πŸπŸ“πŸ•. πŸ— 𝑡

y 243.952

O A B C X

300 mm 400 mm 150 mm

-157.9 86.1

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 5

Z 243.952 150.7 N

O A B C X

300 mm 400 mm 150 mm

107.2 287.5

c) Draw shear-force and bending moment diagrams for the shaft. If

needed, make one set for the horizontal plane and anther set for

the vertical plane.

y 243.952

O A B C X

300 mm 400 mm 150 mm

-157.9 86.1

V (N)

86.1

O

-157.9

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 6

M (Nm)

O x

-47.37

Z 243.952 150.7 N

O A B C X

300 mm 400 mm 150 mm

107.2 287.5

V (N)

136.8

O

-107.2 150.7

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 7

M (Nm) 22.56

O x

-32.16

d) At the point of maximum bending moment, determine the bending

stress and the torsional shear stress.

The critical location is at A where both planes have the maximum

bending moment. Combining the bending moments from the two

planes;

𝑀 = √(βˆ’47.37)2 + (βˆ’32.16)2 = 57.26 π‘π‘š

The torque transmitted through the shaft from A to B is

𝑇 = (300 βˆ’ 45)(0.125) = 31.88 π‘π‘š

The bending stress and the torsional stress are both maximum are on

the outer surface of a stress element.

𝜎 =𝑀𝑐

𝐼=

32𝑀

πœ‹π‘‘3=

32(57.26)

πœ‹(0.020)3= 72.9π‘₯106π‘ƒπ‘Ž = 72.9π‘€π‘ƒπ‘Ž

𝜏 =π‘‡π‘Ÿ

𝐽=

16𝑇

πœ‹π‘‘3=

16(31.88)

πœ‹(0.020)3= 20.3π‘₯106π‘ƒπ‘Ž = 20.3π‘€π‘ƒπ‘Ž

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 8

e) At the point of maximum bending moment, determine the principal

stresses and the maximum shear stress.

𝜎1, 𝜎2 =𝜎π‘₯

2± √(

𝜎π‘₯

2)2

+ (𝜏π‘₯𝑦)2

=72.9

2± √(

72.9

2)2

+ (20.3)2 =

𝜎1 = 78.2π‘€π‘ƒπ‘Ž

𝜎2 = βˆ’5.27π‘€π‘ƒπ‘Ž

πœπ‘šπ‘Žπ‘₯ = √(𝜎π‘₯

2)2

+ (𝜏π‘₯𝑦)2

= √(72.9

2)2

+ (20.3)2 = 41.7 π‘€π‘ƒπ‘Ž

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 9

2) Problem 3-73

A gear reduction unit uses the countershaft shown in the figure. Gear A

receives power from another gear with the transmitted force FA applied at

the 20˚ pressure angle as shown. The power is transmitted through the shaft

and delivered through gear B through a transmitted force FB at the pressure

angle shown.

a) Determine the force FB, assuming the shaft is running at a constant

speed.

b) Find the magnitudes of the bearing reaction forces, assuming the

bearings act as simple supports.

c) Draw shear-force and bending-moment diagrams for the shaft. If

needed, make one set for the horizontal plane and another set for the

vertical plane.

d) At the point of maximum bending moment, determine the bending

stress and the torsional shear stress.

e) At the point of maximum bending moment, determine the principal

stresses and the maximum shear stress.

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 10

FB

Y FA

20˚ 25˚

Z

a) Determine the force FB, assuming the shaft is running at a constant

speed.

βˆ‘π‘» = 𝟎

βˆ’πŸπŸπŸŽπŸŽπŸŽ(π’„π’π’”πŸπŸŽΒ°)(πŸ‘πŸŽπŸŽ) βˆ’ 𝑭𝑩(π’„π’π’”πŸπŸ“Β°)(πŸπŸ“πŸŽ) = 𝟎

𝑭𝑩 = πŸπŸπŸ–πŸπŸŽ 𝑡

b) Find the magnitudes of the bearing reaction forces, assuming the

bearings act as simple supports.

βˆ‘π‘€π‘œπ‘§ = 0

βˆ’πŸπŸπŸŽπŸŽπŸŽ(π’”π’Šπ’πŸπŸŽΒ°)(πŸ’πŸŽπŸŽ) βˆ’ πŸπŸπŸ–πŸπŸŽ(π’”π’Šπ’πŸπŸ“Λš)(πŸ•πŸ“πŸŽ) + 𝑹π‘ͺπ’š(πŸπŸŽπŸ“πŸŽ)

= 𝟎

𝑹π‘ͺπ’š = πŸ–πŸ‘πŸπŸ— 𝑡

βˆ‘πΉπ‘¦ = 0

π‘Ήπ‘Άπ’š βˆ’ 𝟏𝟏𝟎𝟎𝟎(π’”π’Šπ’πŸπŸŽΒ°) βˆ’ πŸπŸπŸ–πŸπŸŽ(π’”π’Šπ’πŸπŸ“Λš) + πŸ–πŸ‘πŸπŸ— = 𝟎

π‘Ήπ‘Άπ’š = πŸ“πŸŽπŸ–πŸ‘ 𝑡

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 11

βˆ‘π‘€π‘œπ‘¦ = 0

𝟏𝟏𝟎𝟎𝟎(π’„π’π’”πŸπŸŽΒ°)(πŸ’πŸŽπŸŽ) βˆ’ πŸπŸπŸ–πŸπŸŽ(π’„π’π’”πŸπŸ“Λš)(πŸ•πŸ“πŸŽ) βˆ’ 𝑹π‘ͺ𝒛(πŸπŸŽπŸ“πŸŽ) = 𝟎

𝑹π‘ͺ𝒛 = βˆ’πŸπŸŽπŸ–πŸ‘πŸŽ 𝑡

βˆ‘πΉπ‘§ = 0

𝑹𝑢𝒛 βˆ’ 𝟏𝟏𝟎𝟎𝟎(π’„π’π’”πŸπŸŽΒ°) + πŸπŸπŸ–πŸπŸŽ(π’„π’π’”πŸπŸ“Λš) βˆ’ πŸπŸŽπŸ–πŸ‘πŸŽ = 𝟎

𝑹𝑢𝒛 = πŸ’πŸ—πŸ’ 𝑡

y

8319

O A B C X

400 mm 350 mm 300 mm

5083 3762 9640

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 12

Z 10337 10830

O A B C X

400 mm 350 mm 300 mm

494 20673

c) Draw shear-force and bending-moment diagrams for the shaft. If

needed, make one set for the horizontal plane and another set for

the vertical plane.

d)

V (N)

5083

1321

O

-8319

M (Nm)

2496 x

2033

-47.37

V (N) 9843

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 13

O

-494

-10830

M (Nm) 3249

O

-198

d) At the point of maximum bending moment, determine the bending

stress and the torsional shear stress.

The critical location is at B where both planes have the maximum

bending moment. Combining the bending moments from the two

planes;

𝑀 = √(2496)2 + (3249)2 = 4097 π‘π‘š

The torque transmitted through the shaft from A to B is

𝑇 = 11000(π‘π‘œπ‘ 20Β°)(0.3) = 3101 π‘π‘š

The bending stress and the torsional stress are both maximum are on

the outer surface of a stress element.

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 14

𝜎 =𝑀𝑐

𝐼=

32𝑀

πœ‹π‘‘3=

32(4097)

πœ‹(0.050)3= 333.9π‘₯106π‘ƒπ‘Ž = 333.9π‘€π‘ƒπ‘Ž

𝜏 =π‘‡π‘Ÿ

𝐽=

16𝑇

πœ‹π‘‘3=

16(3101)

πœ‹(0.050)3= 126π‘₯106π‘ƒπ‘Ž = 20.3π‘€π‘ƒπ‘Ž

e) At the point of maximum bending moment, determine the principal

stresses and the maximum shear stress.

𝜎1, 𝜎2 =𝜎π‘₯

2± √(

𝜎π‘₯

2)2

+ (𝜏π‘₯𝑦)2

=333.9

2± √(

333.9

2)2

+ (126.3)2

=

𝜎1 = 376π‘€π‘ƒπ‘Ž

𝜎2 = βˆ’42.4π‘€π‘ƒπ‘Ž

πœπ‘šπ‘Žπ‘₯ = √(𝜎π‘₯

2)2

+ (𝜏π‘₯𝑦)2

= √(333.9

2)2

+ (126.3)2 = 209 π‘€π‘ƒπ‘Ž

f) The endurance strength of the shaft:

Material: AISI 1040 CD with Sut = 590 MPa

Diameter of shaft: d = 50 mm

Machined or cold-drawn a = 4.51 and b = - 0.265

S𝑒′ = 0.5(590) = 295 π‘€π‘ƒπ‘Ž

π‘˜π‘Ž = π‘Žπ‘†π‘’π‘‘π‘ = (4.51)(590)βˆ’0.265 = 0.83157

Surface factor ka =0.83157

The loading situation is rotating bending.

π‘˜π‘ = (𝑑

7.62)βˆ’0.107

= (50

7.62)βˆ’0.107

= 0.8176

𝑺𝒆 = π’Œπ’‚π’Œπ’ƒπ‘Ίπ’†β€² = (𝟎. πŸ–πŸ‘πŸπŸ“πŸ•)(𝟎. πŸ–πŸπŸ•πŸ”)(πŸπŸ—πŸ“) = 𝟐𝟎𝟎. πŸ“πŸ”πŸ–π‘΄π‘·π’‚.

The endurance strength is Se = 200.568 MPa

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 15

3) Problem 11-34

A gear-reduction unit uses the countershaft depicted in figure.

Find the two bearing reactions. The bearings are to be angular-contact ball

bearings, having a desired life of 40 kh when used at 200 rev/min. Use 1.2

for the application factor and a reliability goal for the bearing pair of 0.95.

Select the bearings from Table 11-2

Solution

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 16

FB

Y FA

20˚ 25˚

Z

b) Determine the force FB, assuming the shaft is running at a constant

speed.

βˆ‘π‘» = 𝟎

βˆ’πŸπŸŽπŸ”πŸ–(π’„π’π’”πŸπŸŽΒ°)(πŸ‘πŸŽπŸŽ) βˆ’ 𝑭𝑩(π’„π’π’”πŸπŸ“Β°)(πŸπŸ“πŸŽ) = 𝟎

𝑭𝑩 = πŸπŸπŸπŸ’. πŸ”πŸ–πŸ“ 𝑡

c) Find the magnitudes of the bearing reaction forces, assuming the

bearings act as simple supports.

βˆ‘π‘€π‘œπ‘§ = 0

βˆ’πŸπŸŽπŸ”πŸ–(π’”π’Šπ’πŸπŸŽΒ°)(πŸ’πŸŽπŸŽ) βˆ’ πŸπŸπŸπŸ’. πŸ”πŸ–πŸ“(π’”π’Šπ’πŸπŸ“Λš)(πŸ•πŸ“πŸŽ) + 𝑹π‘ͺπ’š(πŸπŸŽπŸ“πŸŽ)

= 𝟎

𝑹π‘ͺπ’š = πŸ–πŸŽπŸ•. πŸ•πŸŽπŸŽ 𝑡

βˆ‘πΉπ‘¦ = 0

π‘Ήπ‘Άπ’š βˆ’ πŸπŸŽπŸ”πŸ–(π’”π’Šπ’πŸπŸŽΒ°) βˆ’ πŸπŸπŸπŸ’. πŸ”πŸ–πŸ“(π’”π’Šπ’πŸπŸ“Λš) + πŸ–πŸŽπŸ•. πŸ•πŸŽπŸŽ = 𝟎

π‘Ήπ‘Άπ’š = πŸ’πŸ—πŸ‘. πŸ“πŸ’πŸ‘ 𝑡

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 17

βˆ‘π‘€π‘œπ‘¦ = 0

πŸπŸŽπŸ”πŸ–(π’„π’π’”πŸπŸŽΒ°)(πŸ’πŸŽπŸŽ) βˆ’ πŸπŸπŸπŸ’. πŸ”πŸ–πŸ“(π’„π’π’”πŸπŸ“Λš)(πŸ•πŸ“πŸŽ) βˆ’ 𝑹π‘ͺ𝒛(πŸπŸŽπŸ“πŸŽ)

= 𝟎

𝑹π‘ͺ𝒛 = βˆ’πŸπŸŽπŸ“πŸ. πŸ‘πŸ– 𝑡

βˆ‘πΉπ‘§ = 0

𝑹𝑢𝒛 βˆ’ πŸπŸŽπŸ”πŸ–(π’„π’π’”πŸπŸŽΒ°) + πŸπŸπŸπŸ’. πŸ”πŸ–πŸ“(π’„π’π’”πŸπŸ“Λš) βˆ’ πŸπŸŽπŸ“πŸ. πŸ‘πŸ– = 𝟎

𝑹𝑢𝒛 = πŸ’πŸ–. πŸ’πŸŽπŸ“ 𝑡

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 18

y

807.7

O A B C X

400 mm 350 mm 300 mm

493.543 365.27 935

Z 10337 10830

O A B C X

400 mm 350 mm 300 mm

48.405 20673

𝑹𝒐 = √(π‘Ήπ’π’š)𝟐 + (𝑹𝒐𝒛)

𝟐 = √(πŸ’πŸ—πŸ‘. πŸ“πŸ’πŸ‘)𝟐 + (πŸ’πŸ–. πŸ’πŸŽπŸ“)𝟐

𝑹𝒐 = βˆšπŸπŸ’πŸ“πŸ—πŸπŸ•. πŸ•πŸ‘πŸ” = πŸ’πŸ—πŸ“. πŸ—πŸπŸ 𝑡

𝑹𝒄 = √(π‘Ήπ’„π’š)𝟐 + (𝑹𝒄𝒛)

𝟐 = √(πŸ–πŸŽπŸ•. πŸ•)𝟐 + (βˆ’πŸπŸŽπŸ“πŸ. πŸ‘πŸ–)𝟐

𝑹𝒐 = βˆšπŸπŸ•πŸ“πŸ•πŸ•πŸ•πŸ—. πŸπŸ— = πŸπŸ‘πŸπŸ“. πŸ–πŸπŸ‘ 𝑡

ENT345 Mechanical Components Design

Dr. Haftirman Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis UniMAP Page 19

𝑭𝑫𝑢 = (𝟏. 𝟐)(πŸ’πŸ—πŸ“. πŸ—πŸπŸ) = πŸ“πŸ—πŸ“. πŸŽπŸ—πŸ‘ 𝑡

𝑭𝑫π‘ͺ = (𝟏. 𝟐)(πŸπŸ‘πŸπŸ“. πŸ–πŸπŸ‘) = πŸπŸ“πŸ—πŸŽ. πŸ—πŸ• 𝑡

𝒙𝑫 =π‘³π‘«π’π‘«πŸ”πŸŽ

π‘³π‘Ήπ’π‘ΉπŸ”πŸŽ=

(πŸ’πŸŽπŸŽπŸŽπŸŽ)(𝟐𝟎𝟎)(πŸ”πŸŽ)

(πŸπŸŽπŸ”)= πŸ’πŸ–πŸŽ

Realibility for RA and RB are √R = √0.95 = 0.975

(𝐢10)𝑂 = 595.093

[

480

0.02 + 4.439 [𝑙𝑛 (1

0.975)]

11.483

]

13

= 6351.465 𝑁

Bearing Type is angular contact bearing at O, series number 02- 12

Bore : 12 mm

OD : 32 mm

Width : 10 mm

Fillet radius : 0.6 mm

Shoulder diameter: ds = 14.5 mm, dH= 28 mm

(𝐢10)𝑂 = 1590.97

[

480

0.02 + 4.439 [𝑙𝑛 (1

0.975)]

11.483

]

13

= 16980.522 𝑁

Bearing Type is angular contact bearing at C, series number 02- 30

Bore : 30 mm

OD : 62 mm

Width : 16 mm

Fillet radius : 1.0 mm

Shoulder diameter: ds = 35 mm, dH= 55 mm