40
25-Jul-15 1 Hydraulic machines Chapter one: Introudction Eng. Laith Batarseh Introduction Turbo machines used to transfer energy from or to continuous fluid flow by means of rotating parts Turbo machines Work done by fluid Work done on fluid Turbine Pump, compressor and fan 1.1. Basic Concepts

Eng. Laith Batarseh

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

25-Jul-15

1

Hydraulic machines

Chapter one: Introudction

Eng. Laith Batarseh

Introduction

Turbo machines used to transfer energy from or to continuous fluid flow by means

of rotating parts

Turbo machines

Work done by fluid Work done on fluid

Turbine Pump,

compressor

and fan

1.1. Basic Concepts

25-Jul-15

2

Introduction

Fluid energy

Incompressible fluid

Compressible fluid

Pressure Enthalpy

Introduction

• Examples

Pelton wheel Francis turbine Kaplan turbine

25-Jul-15

3

Introduction

• Examples

centrifugal pump impeller reciprocating pump

Introduction

Outlet flow

Axial

Radial

Mixed

the path of the through-flow is wholly or mainly parallel to the axis of rotation

the path of the through-flow is wholly or mainly in a plane perpendicular to the

rotation axis

the direction of the through-flow at rotor

outlet when both radial and axial velocity

components are present in significant

amounts

25-Jul-15

4

Introduction

• Control Volume

Introduction

• Linear Momentum Equation

Where:

Fx is the force component in x-direction

Fpx represents the pressure force component in x-direction

Fsx represents the shear force component in x-direction

Fbx represents the body force component in x-direction

Mx is the momentum flux in x-direction = ρQVx.

1.1,,

inxoutxcvxbxsxpxx MMM

tFFFF

1.2. Free jets

25-Jul-15

5

Introduction

• For steady state flow case, linear momentum equation

become

• Similar momentum equations are applicable to

other coordinate directions y and z.

2.1

,,

inxoutx

inxoutxbxsxpxx

QVQV

MMFFFF

Introduction

Free jets

Case1: jet on Stationary Plate

Assume:

1. The flow is open to atmospheric

2. No friction between fluid and plate

25-Jul-15

6

Introduction

Case2: jet on Movable Plate

Introduction

Case2: jet on Movable Plate

power transmitted to the plate (P)

25-Jul-15

7

Introduction

Example 1.1

Problem statement

Introduction

Example 1.1

Solution

25-Jul-15

8

Introduction

Example 1.1

Solution (a)

Introduction

Example 1.1

Solution (b)

25-Jul-15

9

Introduction

Example 1.2

Problem statement

Introduction

Example 1.2

Solution

25-Jul-15

10

Introduction Example 1.2

Solution

Introduction

Example 1.2

Solution

25-Jul-15

11

Introduction

Example 1.2

Solution

Introduction

Example 1.3

Problem statement

25-Jul-15

12

Introduction

Example 1.3

Solution

Introduction

Example 1.3

Solution

25-Jul-15

13

Introduction

Example 1.3

Solution

Introduction

Example 1.3

Solution

25-Jul-15

14

Introduction

Case3: Jet impingement on a set of flat plates mounted on a wheel

when all the plates on the wheel are

considered, one or other vanes will

intercept all the flow from the jet. Thus,

the entire discharge issuing out of the

jet is involved in the transfer of power

to the wheel. While the relative velocity

of plates is still (V – u), the total

discharge Q (= AV) is involved in the

momentum flux undergoing the

change and not the relative discharge

Qr

Introduction

Case3: Jet impingement on a set of flat plates mounted on a wheel

25-Jul-15

15

Introduction

Case4: Jet Impingement on a Stationary Curved Plate

Introduction

Case4: Jet Impingement on a Stationary Curved Plate

25-Jul-15

16

Introduction

Case5:Jet Impingement on a Single Moving Symmetric Curved Plate

Introduction

Case5:Jet Impingement on a Single Moving Symmetric Curved Plate

25-Jul-15

17

Introduction

Case5:Jet Impingement on a Single Moving Symmetric Curved Plate

Introduction Example 1.4

Problem statement

25-Jul-15

18

Introduction solution

Introduction solution

Study example 1.5

25-Jul-15

19

Introduction Example 1.6

Problem statement

Introduction Solution

25-Jul-15

20

Introduction Solution

Introduction

Case6: Jet impingement on a Series of Curved Vanes Mounted on a Wheel

25-Jul-15

21

Introduction

Case6: Jet impingement on a Series of Curved Vanes Mounted on a Wheel

Introduction

Case6: Jet impingement on a Series of Curved Vanes Mounted on a Wheel

25-Jul-15

22

Introduction

Velocity Triangles

Introduction

1.3. Velocity Triangles

25-Jul-15

23

Introduction

Other cases

1.3. Velocity Triangles

Introduction

Velocity Triangles

Mo

vin

g b

lad

e

25-Jul-15

24

Introduction

Velocity Triangles

α < 90o

Introduction

Velocity Triangles

α = 90o

25-Jul-15

25

Introduction

Velocity Triangles

α > 90o

Introduction Example 1.10

Problem statement

25-Jul-15

26

Introduction Example 1.10

Solution

Introduction Example 1.10

Solution

25-Jul-15

27

Introduction Example 1.10

Solution

Introduction Example 1.12

Problem statement

25-Jul-15

28

Introduction Example 1.12

Solution

Introduction Example 1.12

Solution

25-Jul-15

29

Introduction Example 1.12

Solution

Introduction Example 1.12

Solution

25-Jul-15

30

Introduction

1.7. classification of hydraulic turbines

Interaction with

water flow

Impact Reaction

No pressure change at the

rotor (i.e. jet impact occurs at

atmospheric pressure)

Examples: Pelton wheel

pressure changes at the rotor

(i.e. jet impact occurs in cased

machine)

Examples: Francis and Kaplan

turbine s

Introduction

1.7. 1classification of hydraulic turbines

Head

High head

H> 400m

Low head

3m<H<60m

Medium head

60m<H<400m

25-Jul-15

31

Introduction

1.7.2. turbine Efficiencies

Introduction

1.7.2. turbine Efficiencies

1. Volumetric Eficiency, ηv

2. Hydraulic Eficiency, ηh

25-Jul-15

32

Introduction

1.7.2. turbine Efficiencies

3. Mechanical Eficiency, ηm

4. Overall Eficiency, ηo

Introduction

1.7.2. turbine Efficiencies

25-Jul-15

33

Introduction

1.8. similarity ratios

Introduction

1.8. 5. Similarity Ratios of Turbinebsy Dimensionanl Aalysis

25-Jul-15

34

Introduction

1.8. 5. Similarity Ratios of Turbinebsy Dimensionanl Aalysis

Reynolds number

Introduction

1.8. 5. Similarity Ratios of Turbinebsy Dimensionanl Aalysis

Assume the effect Reynolds number is neglected

1.8. 6. Specific Quantities

25-Jul-15

35

Introduction

1.8. 6. Specific Quantities

Introduction

1.8. 6. Specific Quantities

25-Jul-15

36

Introduction

Introduction

25-Jul-15

37

Introduction

Introduction

25-Jul-15

38

Introduction

Introduction

25-Jul-15

39

Introduction

Introduction

25-Jul-15

40

Introduction

Introduction