50
Electrostatics Electric circuits Ohm’s Law lecturer: Kristóf Karádi Original slide:Kata Türmer (changes: Kristóf Karádi) 11.03.2019.

Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electrostatics Electric circuits

Ohm’s Law

lecturer: Kristóf KarádiOriginal slide:Kata Türmer (changes: Kristóf Karádi)

11.03.2019.

Page 2: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electric Charge

Page 3: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Ancient Greeks

◦amber: elecktron [gr]

◦(magnetite).

Page 4: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics
Page 5: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Law of charges:

Same charges repel, and different charges attract.!

Page 6: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

+ +

+ + +

+ + -

-

-

-

-

--

Page 7: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Benjamin Franklin (1706-1790): the charge left on a glass rod after rubbing with rabbit fur was given the name “positive”, while that left on amber was called “negative”.

Positive: electron deficiency.

Negative: electron excess.

Page 8: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Coulomb (C)

Q = n · e

◦ Q of an electron: -1.6 · 10-19 C◦ Q of a proton: +1.6 · 10-19 C◦ Q of a neutron: 0

(+ or -) 1,6 * 10-19 * (6,02*10 23)=96320 C

the charge of one mole protons or electrons

Page 9: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

In an isolated (closed) system:

◦ Charge is not created, only exchanged.

◦ Objects become charged because negative charge istransferred from one object to another.

The net charge of an isolated system remains constant.

!

!

Page 10: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electrostatic Charging

Page 11: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Conductors: electrons have relatively high mobility.◦ Metals

◦ When a conductor is charged in a small region, the chargedistributes itself over the entire surface.

Insulators: electrons are more tightly bound to the atom.◦ Glass, rubber

◦ When insulators are charged by rubbing, only the rubbed area becomes charged.

There is no tendency for the charge to move to other regions of the material.

Page 12: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics
Page 13: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

grounding

Page 14: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics
Page 15: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electric Force and Electric Field

Page 16: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

The magnitude of the force between q1 and q2 is described by Coulomb’s Law:

k= Coulomb constant (9,0 × 109 N∙m2 / C2)

F k q1q2

r2!

Page 17: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Two point charges of -1.0 µC and +2.0 µC are separated by a distance of 0.30 m. What is the electrostatic force on each particle?

Page 18: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

An electric field exists in space around a charged object.◦ When another charged object enters this electric field, the

field exerts a force on the second charged object.

E: magnitude of the electric field

q0: positive test charge

k: Coulomb constant (9,0 × 109 N∙m2 / C2)

E F

q0 C

N

r 2E

kqUnit:

Page 19: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electric fields are represented by electric field lines (imaginary).

direction?

touching?

Electric field vector represents the force directionof a small positive charge in the electric field.

Page 20: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

+ -

Page 21: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

The ‘density’ of field lines!

+ -

Page 22: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

The ‘density’ of field lines determines the strength of the field.

Page 23: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Any excess charge on an isolated conductor residesentirely on the surface of the conductor

The electric field is zero everywhere inside acharged conductor

The electric field at the outer surface of a chargedconductor is perpendicular to the surface

Charge tends to accumulate at sharp points, orlocations of greatest curvature, on asymmetriccharged conductors (lightning rod!)

Page 24: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Lightning rod Faraday cage (cars, airplanes)

earth

Page 25: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electrical Energy and Electric Potential

Page 26: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

When 2 or more charges are brought closertogether or further apart, work is done, andenergy is expended or stored

Electrostatic potential energy:

Change in potential energy=Electricalpotential = Voltage

W: work done in bringing the test charge in from infinity

Unit: volt (J/C) V

V W

Q

V WAB

Q

Page 27: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electronvolt

1 eV=1,602*10 -19 joule

Page 28: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Franck-Hertz-experiment

Cath.

An.

Page 29: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Photoelectric effect

Ekin = h f – W

h=6.63*10-34 m2kg/s

Page 30: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Capacitance and Dielectrics

Page 31: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Capacitors store electrical energy

Q: charge

V: voltage

C: capacitance(constant of proportionality)

unit: F (farad)

BatteryQ CV!

Page 32: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

A: surface area

d: distance between plates

ε0 : permittivity of vacuum (8.85 × 10-12 C2/Nm2)

C 0 A

d!

Page 33: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

What would be the area of the plates of a 1.0 F parallel-plate capacior with a plate separaion of 1.0 mm?

Page 34: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics
Page 35: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Closed electrical network (electrical network which has closed

loop giving a return path for the current).

Elements (devices) of the electrical circuit:

Source of the voltage (battery)

Transmission lines (wires)

Resistors

(Capacitors)

Page 36: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

energy into Converts chemical electric energy.

Anode: positively chargedterminal of the battery.

charged Cathode: negativelyterminal of the battery.

Electromotive force voltage):

(electric electricpotential or

potential difference between theterminals of the battery.

Page 37: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Source of the voltage (electric potential) thatsupplies the electric energy throughconversation of other forms of energy.

Conductor which must possess mobilecharged particles e.g. ions, electrons.

Closed electrical circuit: gives a return pathfor the current.

Page 38: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Consider charges moving in a conductor – such as a wire. If an electric field is applied, there is a net flow of charges in the conductor.

Electric current (I): net charge flowing through the cross-sectional area (A)in time:

Unit of current: A (ampere)

The current flowing through a unit cross-sectional area is called Current Density:

Unit of current density:

I q

t

J I

A

C1A 1sec

m2

A

!

Page 39: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

A current of 0.50 A flows in a circuit for 2.0 min. How much charge passes through a cross-sectional area of one of the connecting wires during this time?

Page 40: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Ohm’s Law and Resistance

Page 41: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Current is directly proportional to the voltage

The slope of the straight line gives the resistance (R) of the system

I ~ V

Page 42: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Resistance (R) is inverse proportional to the current

unit: Ohm (Ω)

I ~1

R

R V

I

Ohm’s law: shows the connection between current, voltage and resistance

UI R

U R I !(Ohmic conductor: obeys to Ohm’s Law)

UVR I

Page 43: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

• Resistance comes from the collision of atoms and ions (that build up thematter) with the flowing electrons.

• It depends on:

- the kind of the matter– electrical resistivity (ρ)

- length of the conductor(l)

- the cross sectional area (A)

- temperature

• Electrical resistivity is temperature dependent (usually increases withincreasing temperature)

• Specific conductance (σ) is the inverse of electrical resistivity:

Origin of resistance

A

lR

1

Page 44: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Problem:If the specific conductance is 1000 1/(Ωm), the length of the conductor cable is 10 m,and it’s diameter is 1 cm, then how much is it’s resistance?

Page 45: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Electric Circuits

Page 46: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

I. Kirchhoff's first law (current law), Kirchhoff's point rule, or Kirchhoff's

junction rule (or nodal rule).

The principle of conservation of electric charge implies that: At any node

(junction) in an electrical circuit, the sum of currents flowing into that

node is equal to the sum of currents flowing out of that node

II. This law is called Kirchhoff's (voltage law) second law, Kirchhoff's loop (or

mesh) rule, and Kirchhoff's second rule.

The principle of conservation of energy implies that

The directed sum of the electrical potential differences (voltage) around

any closed network is zero

Kirchoff’s laws:*

*wikipedia

Page 47: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Series circuit◦ Resistors are connected end to

end.

◦ Theeach

current going through resistor is equal to the

current of the source.

◦ The voltage of the sourcedecreases at each resistor.

◦ The equivalent resistance (Rs) of the circuit (net resistance).

Rs R1 R2 R3

Page 48: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Parallel circuit◦ Resistors are connected with one end to another.

◦ The voltage drop on each resistor is equal to the voltage of the source.

◦ The current divides among the resistors proportionally.◦ The equivalent resistance (Rp) of the circuit (net

resistance).

1 11 1

R2 R3R p R1

Page 49: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Problem)Find the missing values of the table!

V0

R1 R2

R3

V0 (kV) 0.2

V1 (V) 90

I1 (A)

R1 (kΩ) 1

V2 (V)

I2 (A)

R2 (Ω)

V3 (V)

I3 (mA) 1000

R3 (Ω)

R net total

(Ω)

Page 50: Electrostatics Electric circuits Ohm’s La · 2020. 4. 30. · Franck-Hertz-experiment Cath. An. Photoelectric effect E kin = h f – W h=6.63*10-34 m2kg/s. Capacitance and Dielectrics

Thank you for the attention!